예제 #1
0
def stdSigmas(listtype='std', gammatype='pi0eff50', path=None):
    """
    Load standard ``Sigma+`` reconstructed from ``Sigma+ -> p+ [pi0 -> gamma gamma]```.
    The ``pi0`` is reconstructed using the specified gamma list and ``pi0``s in mass range
    ``100 ~ 160 MeV`` are combined the with protons from ``p+:loose`` list to form a ``Sigma+``.
    
    Tree fitter is used for the vertex fit with IP constraint and mass constraint on the ``pi0``.
    
    The particle list is named ``Sigma+:std`` with mass range ``1.66 ~ 1.22 GeV``.
    
    Parameters:
        gamma_type (str): the gamma list to use
        path (basf2.path): path to load the particle list
    """

    stdPhotons(gammatype, path=path)
    stdPr('loose', path=path)
    ma.reconstructDecay(
        f'pi0:for_sigma -> gamma:{gammatype} gamma:{gammatype}',
        '0.1 < M < 0.16',
        path=path)
    ma.reconstructDecay('Sigma+:std -> p+:loose pi0:for_sigma',
                        '1.1 < M < 1.3',
                        path=path)
    ma.vertexTree('Sigma+:std',
                  0,
                  ipConstraint=True,
                  massConstraint=[111],
                  updateAllDaughters=False,
                  path=path)
    ma.applyCuts('Sigma+:std', '1.16 < M < 1.22', path=path)

    if listtype == 'std':
        pass
    elif listtype == 'loose':
        vtx_cuts = 'cosaXY > 0.99 and dr > 0.12 and abs(dz) > 0.1 and chiProb > 0.001'
        ma.cutAndCopyList('Sigma+:loose', 'Sigma+:std', vtx_cuts, path=path)
    else:
        B2ERROR(
            f'stdSigmas: Invalid listtype ({listtype}. Choose from std, loose.'
        )
예제 #2
0
ntuple_vars = sigma_vars + proton_vars + pi0_vars + gamma_vars + event_vars

# Reconstruction
# ==============================================
# Standard PID cuts for charged final state particles
ma.fillParticleList('p+:good', 'pid_ppi >= 0.6 and pid_pk >= 0.6', path=mp)
ma.reconstructDecay('Sigma+:loose -> p+:good pi0:mdst',
                    'M >= 1.0 and M <= 1.4',
                    path=mp)
## !!! Have to set updateAllDaughters = True because the pi0:mdst list is mass constrained
ma.vertexTree('Sigma+:loose',
              0,
              ipConstraint=True,
              updateAllDaughters=True,
              path=mp)
ma.applyCuts('Sigma+:loose', 'M >= 1.1 and M <= 1.3', path=mp)
# ma.matchMCTruth('Sigma+:loose', path = mp)
# mp.add_module('VariablesToNtuple', particleList = 'Sigma+:loose',
#               variables=ntuple_vars, treeName='sigma_loose', fileName=sys.argv[2])

# Eff of this cut is about 96% and rejects about 50% of the background for Sigma+
pi0_mass_cut = 'daughter(1, M) >= 0.12 and daughter(1, M) <= 0.15'
ma.cutAndCopyList('Sigma+:good', 'Sigma+:loose', pi0_mass_cut, path=mp)
ma.vertexTree('Sigma+:good',
              0,
              ipConstraint=True,
              massConstraint=[],
              updateAllDaughters=False,
              path=mp)
ma.applyCuts('Sigma+:good', 'M >= 1.16 and M <= 1.22', path=mp)
ma.matchMCTruth('Sigma+:good', path=mp)
예제 #3
0
ma.cutAndCopyList('p+:berger',
                  'p+:all',
                  'pid_ppi > 0.6 and pid_pk > 0.6',
                  path=mp)
# M Berger: photons > 40 MeV and pi0 lab frame momentum > 100 MeV
ma.cutAndCopyList(
    'pi0:berger',
    'pi0:mdst',
    'daughter(0, E) > 0.05 and daughter(0, E) > 0.05 and p > 0.1',
    path=mp)
ma.reconstructDecay('Sigma+:berger_loose -> p+:berger pi0:berger',
                    'M >= 1.0 and M <= 1.4',
                    path=mp)
# Set updateAllDaughters = True because the pi0:mdst list is mass constrained
ma.vertexTree('Sigma+:berger_loose',
              0,
              ipConstraint=True,
              massConstraint=[111],
              path=mp)
# M Berger: discard condidates with wrong sign of flight distance
ma.applyCuts('Sigma+:berger_loose', 'M >= 1.15 and M <= 1.225', path=mp)
ma.matchMCTruth('Sigma+:berger_loose', path=mp)
mp.add_module('VariablesToNtuple',
              particleList='Sigma+:berger_loose',
              variables=ntuple_vars,
              treeName='sigma_loose',
              fileName=sys.argv[2])

b2.process(path=mp)
print(b2.statistics)
예제 #4
0
gamma_vars = create_aliases_for_selected(['phi', 'theta', 'E', 'goodBelleGamma', 'clusterReg', 'clusterE9E21', 
                             'clusterTiming', 'clusterErrorTiming', 'genMotherPDG', 'isSignal'],
                            'Sigma+ -> p+ [pi0 -> ^gamma ^gamma]', prefix = ['gamma1', 'gamma2'])

ntuple_vars = sigma_vars + proton_vars + pi0_vars + gamma_vars + event_vars

# RECONSTRUCTION
# ==============================================
ma.fillParticleList('p+:all', '', path = mp)
# M Berger: standard pairwise PID > 0.6 and impact parameter > 0.003
ma.cutAndCopyList('p+:berger', 'p+:all', 'pid_ppi > 0.6 and pid_pk > 0.6', path = mp)
# M Berger: photons > 40 MeV and pi0 lab frame momentum > 100 MeV
ma.cutAndCopyList('pi0:loose',  'pi0:mdst', '', path = mp)
ma.reconstructDecay('Sigma+:loose -> p+:berger pi0:loose', 'M >= 1.15 and M <= 1.23', path = mp)
# Set updateAllDaughters = True because the pi0:mdst list is mass constrained
ma.vertexTree('Sigma+:loose', 0, ipConstraint = True, updateAllDaughters=True, path = mp)

# M Berger: discard condidates with wrong sign of flight distance
ma.cutAndCopyList('Sigma+:good', 'Sigma+:loose',
                  'gamma1_E > 0.03 and gamma2_E > 0.03 and pi0_M >= 0.11 and pi0_M <= 0.16 and pi0_p > 0.05', 
                   path = mp)
ma.vertexTree('Sigma+:good', 0, ipConstraint = True, massConstraint = [111], path = mp)
ma.applyCuts('Sigma+:good', 'M >= 1.17 and M <= 1.21', path = mp)
ma.matchMCTruth('Sigma+:good', path = mp)
mp.add_module('VariablesToNtuple', particleList = 'Sigma+:good', 
              variables=ntuple_vars, treeName='good', fileName=sys.argv[2])

b2.process(path=mp)
print(b2.statistics)

    # Training labels
    'eventExtraInfo(smartBKG)',
]


if __name__ == '__main__':

    args = GetCmdArgs()
    os.makedirs(os.path.dirname(args.out_file), exist_ok=True)

    # Load the input skim file
    path = ma.create_path()
    ma.inputMdstList('MC9', filelist=[], path=path)
    # ma.inputMdstList('default', filelist=[], path=path)

    ma.applyCuts(particle_list, 'nCleanedTracks(dr<2 and abs(dz)<4) <= 12', path=path)

    print(event_vars)

    # Apply the smartBKG NN model
    # Will use extraInfo saved as training labels later,
    # need to be flattened before training to 0 or 1
    NNApplyModule_m = NNApplyModule(
        model_file=args.model,
        model_type='combined-wideCNN',
        threshold=0.,
        # threshold=args.threshold,
        extra_info_var='smartBKG'

    )
    # dead_path = b2.create_path()
예제 #6
0
# combine J/psi and KS candidates to form B0 candidates
ma.reconstructDecay('B0 -> J/psi:ee K_S0:merged',
                    cut='Mbc > 5.2 and abs(deltaE) < 0.3',
                    path=main)

# match reconstructed with MC particles
ma.matchMCTruth('B0', path=main)

# build the rest of the event
ma.buildRestOfEvent('B0', fillWithMostLikely=True, path=main)

# call flavor tagging
ft.flavorTagger('B0', path=main)

# remove B0 candidates without a valid flavor information
ma.applyCuts('B0', 'qrOutput(FBDT) > -2', path=main)

# fit B vertex on the tag-side
vertex.TagV('B0', constraintType='tube', fitAlgorithm='Rave', path=main)

# perform best candidate selection
#b2.set_random_seed('USBelleIISummerSchool')
#ma.rankByHighest('B0', variable='random', numBest=1, path=main)

# create list of variables for output ntuple
standard_vars = vc.kinematics + vc.mc_kinematics + vc.mc_truth
fs_vars = vc.pid + vc.track + vc.track_hits + standard_vars
jpsi_ks_vars = vc.inv_mass + vc.vertex + vc.mc_vertex + standard_vars
b_vars = vc.deltae_mbc + vc.tag_vertex + vc.mc_tag_vertex + ft.flavor_tagging + standard_vars

b_vars += vu.create_aliases_for_selected([*fs_vars, 'isBremsCorrected'],
예제 #7
0
    va.addAlias('p_decayAngle', 'decayAngle(0)')
    va.addAlias('pi0_decayAngle', 'decayAngle(1)')

    ma.fillParticleList('p+:good', 'pid_ppi > 0.6 and pid_pk > 0.6', path=mp)
    #     ma.vertexTree('pi0:mdst', ipConstraint = True, massConstraint = ['pi0'], path = mp)
    ma.reconstructDecay('Sigma+:std -> p+:good pi0:mdst',
                        '1.1 < M < 1.3',
                        path=mp)
    ma.vertexTree('Sigma+:std',
                  0,
                  ipConstraint=True,
                  updateAllDaughters=True,
                  path=mp)
    # Select good pi0 based on mass and gamma energy
    ma.applyCuts(
        'Sigma+:std',
        'daughter(1, daughter(0, E)) > 0.04 and daughter(1, daughter(1, E)) > 0.04 and daughter(1, abs(dM)) < 0.02',
        path=mp)
    ma.vertexTree('Sigma+:std',
                  0,
                  ipConstraint=True,
                  massConstraint=['pi0'],
                  path=mp)
    # 100 MeV mass window for Sigma+ should be large enough
    ma.applyCuts('Sigma+:std',
                 'cosaXY > 0 and daughter(1, p) > 0.1 and 1.16 < M < 1.22',
                 path=mp)
    ma.matchMCTruth('Sigma+:std', path=mp)

    ntuple = [
        'M', 'p', 'chiProb', 'cosa', 'cosaXY', 'dr', 'dz', 'distance',
        'isSignal', 'genMotherPDG'
예제 #8
0
    # Load the input skim file
    path = ma.create_path()
    ma.inputMdstList('MC9', filelist=[], path=path)

    # Build some event specific ROE and continuum vars
    ma.buildRestOfEvent(particle_list, path=path)
    ROEMask = ('ROE', IPtrack_cut, gamma_cut)
    ma.appendROEMasks(particle_list, [ROEMask], path=path)
    ma.buildContinuumSuppression(particle_list, roe_mask='ROE', path=path)

    B_vars += ROE_vars
    print(B_vars)

    # Then choose one candidate per event
    # Dont' need to, want to view changes to candidates overall
    # But let's try for fun
    ma.rankByHighest(particle_list, 'extraInfo(SignalProbability)',
                     outputVariable='FEIProbabilityRank', path=path)
    ma.applyCuts(particle_list, 'extraInfo(FEIProbabilityRank) == 1', path=path)

    # Write output
    ma.variablesToNtuple(
        particle_list,
        B_vars,
        filename=args.out_file,
        path=path,
    )

    b2.process(path)
    print(b2.statistics)
예제 #9
0
variables.addAlias('pi0Likeness','extraInfo(Pi0_Prob)')
variables.addAlias('etaLikeness','extraInfo(Eta_Prob)')
variables.addAlias('cosThetaCMS','useCMSFrame(cosTheta)')
variables.addAlias('pCMS','useCMSFrame(p)')
variables.addAlias('ECMS','useCMSFrame(E)')
variables.addAlias('m12','daughterInvariantMass(0,1)')
variables.addAlias('m13','daughterInvariantMass(0,2)')
variables.addAlias('m23','daughterInvariantMass(1,2)')

main_path = b2.create_path() # Declaration of main path
bp.add_beamparameters(main_path,'Y4S')
ma.inputMdst('MC10', inputFilename, path=main_path)
sv.goodBelleKshort(path=main_path)
sg.stdPhotons('loose', path=main_path)
sc.stdPi('95eff', path=main_path)
ma.applyCuts('gamma:loose','1.4 < E < 4', path=main_path)
krescuts = " and daughterInvM(0,1,2) < 2 and daughterInvM(0,1) > 0.6 and daughterInvM(0,1) < 0.9"
#reconstructDecay(Kres+":all -> pi+:good pi-:good K_S0:all", krescuts)
ma.reconstructDecay("B0:signal -> pi+:95eff pi-:95eff K_S0:legacyGoodKS gamma:loose",
        "Mbc > 5.2 and deltaE < 0.2 and deltaE > -0.2 and  -0.65 < daughter(1, cosTheta) < 0.85"+krescuts, path=main_path)
ma.vertexRave('B0:signal',0.0001, 'B0 -> ^pi+ ^pi- ^K_S0 gamma', path=main_path)
#vertexTree('B0:signal',0.0001)

ma.rankByHighest('B0:signal',ratingVar, 1, outputVariable='myRating', path=main_path)

ma.buildRestOfEvent('B0:signal', path=main_path)


# define the "cleaner" mask
eclCut = '[E > 0.062 and abs(clusterTiming) < 18 and clusterReg==1] or \
[E>0.060 and abs(clusterTiming) < 20 and clusterReg==2] or \
예제 #10
0
list_pid = ['pid_ppi', 'pid_pk', 'pid_kpi']
list_event = ['IPX', 'IPY', 'IPZ']

# Variables
# =============================================
# Lambda0
list_ntuple = list_basics + list_lambda + list_event + list_mc
# proton and pion
list_ntuple += create_aliases_for_selected(list_basics + list_pid + list_mc,
                                           'Lambda0 -> ^p+ ^pi-',
                                           prefix=['p', 'pi'])

# Reconstruction
# ==============================================
# No reconstruction. Just MC match the Lambda0:mdst list
ma.vertexTree('Lambda0:mdst', 0, path=mp)
ma.matchMCTruth('Lambda0:mdst', path=mp)
ma.applyCuts('Lambda0:mdst', 'isSignal == 0', path=mp)

# Output
# =============================================
mp.add_module('VariablesToNtuple',
              particleList='Lambda0:mdst',
              variables=list_ntuple,
              treeName='lambda',
              fileName=sys.argv[2])

b2.process(path=mp)

print(b2.statistics)
예제 #11
0
파일: sigma.py 프로젝트: ch2ohch2oh/sigma
    ma.reconstructDecay(f'pi0:for_sigma -> gamma:for_pi0 gamma:for_pi0',
                        '0.1 < M < 0.16',
                        path=mp)

    stdPr('loose', path=mp)  # good tracks and protonID > 0.1
    ma.reconstructDecay('Sigma+:loose -> p+:loose pi0:for_sigma',
                        '1.1 < M < 1.3',
                        path=mp)
    # Have to use ipConstraint otherwise not enough degrees of freedom
    ma.vertexTree('Sigma+:loose',
                  0,
                  ipConstraint=True,
                  massConstraint=[111],
                  updateAllDaughters=False,
                  path=mp)
    ma.applyCuts('Sigma+:loose', 'abs(dM) < 0.03', path=mp)

    ma.matchMCTruth('Sigma+:loose', path=mp)

    va.addAlias('cosa', 'cosAngleBetweenMomentumAndVertexVector')
    va.addAlias('cosaXY', 'cosAngleBetweenMomentumAndVertexVectorInXYPlane')
    va.addAlias('abs_dM', 'abs(dM)')
    va.addAlias('M_noupdate', 'extraInfo(M_noupdate)')
    va.addAlias('p_noupdate', 'extraInfo(p_noupdate)')

    ntuple = [
        'M', 'p', 'chiProb', 'cosa', 'cosaXY', 'dr', 'dz', 'distance',
        'isSignal', 'genMotherPDG'
    ]
    ntuple += ['IPX', 'IPY', 'IPZ']
    ntuple += create_aliases_for_selected(
예제 #12
0
              ipConstraint=True,
              updateAllDaughters=True,
              path=mp)

# M Berger: discard condidates with wrong sign of flight distance
ma.cutAndCopyList(
    'Sigma+:good',
    'Sigma+:loose',
    'gamma1_E > 0.03 and gamma2_E > 0.03 and pi0_M >= 0.11 and pi0_M <= 0.16 and pi0_p > 0.05',
    path=mp)
ma.vertexTree('Sigma+:good',
              0,
              ipConstraint=True,
              massConstraint=[111],
              path=mp)
ma.applyCuts('Sigma+:good', 'M >= 1.17 and M <= 1.21', path=mp)
# ma.matchMCTruth('Sigma+:good', path = mp)

mp.add_module('MVAExpert',
              listNames=['Sigma+:good'],
              extraInfoName='Sigma_mva',
              identifier='MVA_Sigma_p.root')
variables.addAlias('Sigma_mva', 'extraInfo(Sigma_mva)')

ma.applyCuts('Sigma+:good', 'extraInfo(Sigma_mva) > 0.2', path=mp)

lamc_pi_vars = create_aliases_for_selected(
    [
        'p', 'M', 'dr', 'dz', 'pid_ppi', 'pid_kpi', 'pid_pk', 'mcPDG',
        'genMotherPDG', 'isSignal'
    ],
예제 #13
0
# with 3 different samples of at least 500k events (one for each sampler).
# Three different 500k events samples are needed in order to avoid biases between levels.
# We mean 500k of correctly corrected and MC matched neutral Bs. (isSignal > 0)
# You can also train track and event level for all categories (1st to 4th runs) and then train the combiner
# for a specific combination (last two runs).
# It is also possible to train different combiners consecutively using the same weightFiles name.
# You just need always to specify the desired category combination while using the expert mode as:
#
# flavorTagger(particleLists=['B0:jspipi0'], mode = 'Expert', weightFiles='B2JpsiKs_mu',
# categories=['Electron', 'Muon', 'Kaon', ... etc.])
#
# Another possibility is to train a combiner for a specific category combination using the default weight files

# You can apply cuts using the flavor Tagger: qrOutput(FBDT) > -2 rejects all events which do not
# provide flavor information using the tag side
ma.applyCuts(list_name='B0:jspipi0', cut='qrOutput(FBDT) > -2', path=my_path)

# If you applied the cut on qrOutput(FBDT) > -2 before then you can rank by highest r- factor
ma.rankByHighest(particleList='B0:jspipi0',
                 variable='abs(qrOutput(FBDT))',
                 numBest=0,
                 outputVariable='Dilution_rank',
                 path=my_path)

# Fit Vertex of the B0 on the tag side
vx.TagV(list_name='B0:jspipi0',
        MCassociation='breco',
        confidenceLevel=0.001,
        useFitAlgorithm='standard_PXD',
        path=my_path)