def build_learner(pre, post, ws, act_space, num_frames): global_step = tf.train.get_or_create_global_step() init_lr = FLAGS.init_lr decay = FLAGS.lr_decay warmup_steps = FLAGS.warmup_steps gamma = FLAGS.gamma n_step = FLAGS.n_step use_soft = FLAGS.use_soft time_scale = FLAGS.time_scale use_hrnn = FLAGS.use_hrnn use_reward_prediction = FLAGS.use_reward_prediction after_rnn = FLAGS.after_rnn use_pixel_control = FLAGS.use_pixel_control pq_kl_coef = FLAGS.pq_kl_coef p_kl_coef = FLAGS.p_kl_coef global_step_float = tf.cast(global_step, tf.float32) lr = tf.train.polynomial_decay( init_lr, global_step, FLAGS.total_environment_frames // (FLAGS.batch_size * FLAGS.seqlen), init_lr / 10.) is_warmup = tf.cast(global_step_float < warmup_steps, tf.float32) lr = is_warmup * global_step_float / warmup_steps * init_lr + ( 1.0 - is_warmup) * (init_lr * (1.0 - decay) + lr * decay) optimizer = tf.train.AdamOptimizer(lr) if FLAGS.zero_init: pre["state_in"] = tf.zeros_like(pre["state_in"]) if use_hrnn: rnn = TmpHierRNN(time_scale, 64, 4, 2, 8, 'lstm', 'rmc', return_sequences=True, return_state=True, name="hrnn") else: rnn = tf.compat.v1.keras.layers.LSTM(256, return_sequences=True, return_state=True, name="lstm") pre_model = Model(act_space, gamma, n_step, use_soft, rnn, use_hrnn, use_reward_prediction, after_rnn, use_pixel_control, False, **pre) post["state_in"] = tf.stop_gradient(pre_model.state_out) post_model = Model(act_space, gamma, n_step, use_soft, rnn, use_hrnn, use_reward_prediction, after_rnn, use_pixel_control, True, **post) v_loss = mse( post_model.qa, tf.stop_gradient( rescaleTarget(post_model.n_step_rewards, gamma**n_step, post_model.qa1))) v_loss = FLAGS.vf_coef * tf.reduce_mean( v_loss * post_model.mask[:, :-n_step] * ws[:, None]) add_loss = 0.0 if use_hrnn: pq_kl_loss = KL_from_gaussians(post_model.q_mus, post_model.q_sigmas, post_model.p_mus, post_model.p_sigmas) pq_kl_loss = tf.reduce_mean(pq_kl_loss * post_model.mask) p_kl_loss = KL_from_gaussians(post_model.p_mus, post_model.p_sigmas, tf.zeros_like(post_model.p_mus), 0.01 * tf.ones_like(post_model.p_sigmas)) p_kl_loss = tf.reduce_mean(p_kl_loss * post_model.mask) with tf.name_scope("hierarchy_loss"): tf.summary.scalar("kl_div_pq", pq_kl_loss) tf.summary.scalar("kl_div_prior", p_kl_loss) add_loss += pq_kl_coef * pq_kl_loss add_loss += p_kl_coef * p_kl_loss if use_reward_prediction: r_loss = tf.reduce_mean( mse(post_model.reward_prediction, post_model.r[:, 1:1 - n_step]) * post_model.mask[:, :-n_step]) tf.summary.scalar("r_loss", r_loss) add_loss += r_loss if use_pixel_control: s = tf.cast(post_model.s[:, :1 - n_step, :, :, :], tf.float32) / 255.0 target = s[:, 1:, :, :, :] - s[:, :-1, :, :, :] shape = get_shape(target) target = tf.reshape( target, (shape[0], shape[1], 4, shape[2] // 4, 4, shape[3] // 4, shape[4])) target = tf.reduce_mean(target, axis=(2, 4)) pixel_loss = tf.reduce_mean( mse(post_model.pixel_control, target) * post_model.mask[:, :-n_step, None, None, None]) with tf.name_scope("control_loss"): tf.summary.scalar("pixel_control_loss", pixel_loss) add_loss += pixel_loss loss = FLAGS.vf_coef * v_loss + add_loss abs_td = post_model.mask[:, :-n_step] * tf.abs( post_model.qa - rescaleTarget(post_model.n_step_rewards, gamma**n_step, post_model.qa1)) avg_p = tf.reduce_mean(abs_td, axis=-1) max_p = tf.reduce_max(abs_td, axis=-1) priority = 0.9 * max_p + 0.1 * avg_p beta = tf.train.polynomial_decay( 0.4, global_step, FLAGS.total_environment_frames // (FLAGS.batch_size * FLAGS.seqlen), 1.0) train_op = miniOp(optimizer, loss, FLAGS.grad_clip) target_op = assignOp(1.0, {"q": "q_target"}) dependency = [train_op] if use_soft: qf_entropy = entropy_from_logits(post_model.qf_logits) target_entropy = tf.train.polynomial_decay( 0.9 * np.log(act_space), global_step, FLAGS.total_environment_frames // (FLAGS.batch_size * FLAGS.seqlen), 0.5 * np.log(act_space)) ent_loss = tf.reduce_mean( mse(qf_entropy, tf.cast(target_entropy, tf.float32)[None, None])) with tf.name_scope("ent_loss"): tf.summary.scalar("ent_loss", ent_loss) ent_op = miniOp(optimizer, ent_loss, grad_clip=FLAGS.grad_clip, var_scope="temperature") dependency.append(ent_op) new_frames = tf.reduce_sum(post["mask"]) with tf.control_dependencies(dependency): num_frames_and_train = tf.assign_add(num_frames, new_frames) global_step_and_train = tf.assign_add(global_step, 1) tf.summary.scalar("learning_rate", lr) tf.summary.scalar("v_loss", v_loss) tf.summary.scalar("all_loss", loss) return num_frames_and_train, global_step_and_train, target_op, priority, beta
def build_learner(pre, post, act_space, num_frames, batch_weights): global_step = tf.train.get_or_create_global_step() init_lr = FLAGS.init_lr decay = FLAGS.lr_decay warmup_steps = FLAGS.warmup_steps gamma = FLAGS.gamma n_step = FLAGS.n_step time_scale = FLAGS.time_scale use_hrnn = FLAGS.use_hrnn use_rmc = FLAGS.use_rmc use_amc = FLAGS.use_amc use_beta = FLAGS.use_beta use_retrace = FLAGS.use_retrace use_reward_prediction = FLAGS.use_reward_prediction after_rnn = FLAGS.after_rnn use_pixel_control = FLAGS.use_pixel_control pq_kl_coef = FLAGS.pq_kl_coef p_kl_coef = FLAGS.p_kl_coef pi_coef = FLAGS.pi_coef vf_coef = FLAGS.vf_coef ent_coef = FLAGS.ent_coef qf_coef = FLAGS.qf_coef ppo_clip = FLAGS.ppo_clip vf_clip = FLAGS.vf_clip global_step_float = tf.cast(global_step, tf.float32) lr = tf.train.polynomial_decay( init_lr, global_step, FLAGS.total_environment_frames // (FLAGS.batch_size * FLAGS.seqlen), init_lr / 10.) is_warmup = tf.cast(global_step_float < warmup_steps, tf.float32) lr = is_warmup * global_step_float / warmup_steps * init_lr + ( 1.0 - is_warmup) * (init_lr * (1.0 - decay) + lr * decay) ent_coef = tf.train.polynomial_decay( ent_coef, global_step, FLAGS.total_environment_frames // (FLAGS.batch_size * FLAGS.seqlen), ent_coef / 10.) optimizer = tf.train.AdamOptimizer(lr) if FLAGS.zero_init: pre["state_in"] = tf.zeros_like(pre["state_in"]) if use_hrnn: rnn = TmpHierRNN(time_scale, 64, 4, 2, 8, 'lstm', 'rmc', return_sequences=True, return_state=True, name="hrnn") elif use_rmc: rnn = RMCRNN(64, 4, 64, return_sequences=True, return_state=True, name="rmc") elif use_amc: rnn = AMCRNN(64, 4, 64, return_sequences=True, return_state=True, name="amc") else: rnn = tf.compat.v1.keras.layers.CuDNNLSTM(256, return_sequences=True, return_state=True, name="lstm") pre_model = Model(act_space, gamma, n_step, rnn, use_hrnn, use_rmc, use_amc, use_beta, use_reward_prediction, after_rnn, use_pixel_control, False, **pre) post["state_in"] = tf.stop_gradient(pre_model.state_out) post_model = Model(act_space, gamma, n_step, rnn, use_hrnn, use_rmc, use_amc, use_beta, use_reward_prediction, after_rnn, use_pixel_control, True, **post) tf.summary.scalar("adv_mean", post_model.adv_mean) tf.summary.scalar("adv_std", post_model.adv_std) if use_retrace: q_loss = mse(post_model.qa, post_model.retrace_qs) else: q_loss = mse(post_model.qa, post_model.n_step_qs) # q_loss = mse( # post_model.qa, # tf.stop_gradient( # post_model.current_value[:, :-n_step] + post_model.adv)) q_loss = tf.reduce_mean(q_loss * post_model.mask[:, :-n_step] * batch_weights[:, None]) + 3.0 * tf.reduce_mean( q_loss * post_model.mask[:, :-n_step] * (1.0 - batch_weights[:, None])) ent_loss = tf.reduce_mean( entropy_from_logits(post_model.current_act_logits) * post_model.mask * batch_weights[:, None]) losses = dPPOcC( act=post_model.a[:, 1:1 - n_step], policy_logits=post_model.current_act_logits[:, :-n_step, :], behavior_logits=post_model.behavior_logits[:, :-n_step, :], advantage=post_model.adv, policy_clip=ppo_clip, vf=post_model.current_value[:, :-n_step], vf_target=post_model.vs, value_clip=vf_clip, old_vf=post_model.old_vf[:, :-n_step]) p_loss = tf.reduce_mean(losses.p_loss * post_model.mask[:, :-n_step] * batch_weights[:, None]) v_loss = tf.reduce_mean(losses.v_loss * post_model.mask[:, :-n_step] * batch_weights[:, None]) add_loss = 0.0 if use_hrnn: pq_kl_loss = KL_from_gaussians(post_model.q_mus, post_model.q_sigmas, post_model.p_mus, post_model.p_sigmas) pq_kl_loss = tf.reduce_mean(pq_kl_loss * post_model.mask) p_kl_loss = KL_from_gaussians(post_model.p_mus, post_model.p_sigmas, tf.zeros_like(post_model.p_mus), 0.01 * tf.ones_like(post_model.p_sigmas)) p_kl_loss = tf.reduce_mean(p_kl_loss * post_model.mask) with tf.name_scope("hierarchy_loss"): tf.summary.scalar("kl_div_pq", pq_kl_loss) tf.summary.scalar("kl_div_prior", p_kl_loss) add_loss += pq_kl_coef * pq_kl_loss add_loss += p_kl_coef * p_kl_loss if use_reward_prediction: r_loss = tf.reduce_mean( mse(post_model.reward_prediction, post_model.r[:, 1:1 - n_step]) * post_model.mask[:, :-n_step]) tf.summary.scalar("r_loss", r_loss) add_loss += r_loss if use_pixel_control: s = tf.cast(post_model.s[:, :1 - n_step, :, :, :], tf.float32) / 255.0 target = s[:, 1:, :, :, :] - s[:, :-1, :, :, :] shape = get_shape(target) target = tf.reshape( target, (shape[0], shape[1], 4, shape[2] // 4, 4, shape[3] // 4, shape[4])) target = tf.reduce_mean(target, axis=(2, 4)) pixel_loss = tf.reduce_mean( mse(post_model.pixel_control, target) * post_model.mask[:, :-n_step, None, None, None]) with tf.name_scope("control_loss"): tf.summary.scalar("pixel_control_loss", pixel_loss) add_loss += pixel_loss loss = (qf_coef * q_loss + vf_coef * v_loss + pi_coef * p_loss - ent_coef * ent_loss + add_loss) abs_td = post_model.mask[:, :-n_step] * tf.abs( post_model.qa - post_model.n_step_rewards + gamma**n_step * post_model.qa1) avg_p = tf.reduce_mean(abs_td, axis=-1) max_p = tf.reduce_max(abs_td, axis=-1) priority = 0.9 * max_p + 0.1 * avg_p beta = tf.train.polynomial_decay( 0.4, global_step, FLAGS.total_environment_frames // (FLAGS.batch_size * FLAGS.seqlen), 1.0) train_op = miniOp(optimizer, loss, FLAGS.grad_clip) if FLAGS.smooth_update: init_target_op = assignOp(1.0, {"q": "q_target"}) target_op = assignOp(1.0 / FLAGS.target_update, {"q": "q_target"}) else: init_target_op = assignOp(1.0, {"q": "q_target"}) target_op = tf.no_op() dependency = [train_op, target_op] new_frames = tf.reduce_sum(post["mask"]) with tf.control_dependencies(dependency): num_frames_and_train = tf.assign_add(num_frames, new_frames) global_step_and_train = tf.assign_add(global_step, 1) tf.summary.scalar("learning_rate", lr) tf.summary.scalar("pi_loss", p_loss) tf.summary.scalar("q_loss", q_loss) tf.summary.scalar("v_loss", v_loss) tf.summary.scalar("ent_loss", ent_loss) tf.summary.scalar("all_loss", loss) return num_frames_and_train, global_step_and_train, init_target_op, priority, beta