예제 #1
0
def train_svc():
    # Selecting the model
    return mp.ModelProperties(), svm.SVC(decision_function_shape='ovo')
예제 #2
0
def train_xgboost_classifier():
    return mp.ModelProperties(), xgboost.XGBClassifier()
예제 #3
0
def train_random_forest():
    # Selecting the model
    return mp.ModelProperties(), RandomForestClassifier(
        n_estimators=100)  # Default estimators is 10
예제 #4
0
def train_knn():
    # Selecting the model
    return mp.ModelProperties(), neighbors.KNeighborsClassifier(
    )  # default is 5 neighbors
예제 #5
0
def train_sgd_regressor():
    # Picking model
    return mp.ModelProperties(regression=True,
                              online=True), linear_model.SGDRegressor()
예제 #6
0
def train_passive_aggressive_regressor():
    # Picking model
    return mp.ModelProperties(
        regression=True,
        online=True), linear_model.PassiveAggressiveRegressor()
예제 #7
0
def train_bayesian_ridge():
    # Picking model
    return mp.ModelProperties(regression=True), linear_model.BayesianRidge()
예제 #8
0
def train_xgboost_regressor():
    return mp.ModelProperties(regression=True), xgboost.XGBRegressor()
예제 #9
0
def train_support_vector_regression():
    # Picking model
    return mp.ModelProperties(regression=True), svm.SVR()