def main(): print("Importing Data") ((trX, trY), (teX, teY)) = extractor(file='data/emails.csv').min_max_nomalized() print(trX[0]) print("Creating Model") model = FFNN() print("Training Model") print(type(trX)) acc, t = model.train(trX[0:100], trY[0:100], teX[0:100], teY[0:100]) print(acc) return acc, t
def main(name, args={}, norm="minmax", dim=1500): print("Importing Data") if norm == "minmax": ((trX, trY), (teX, teY)) = extractor(file='data/emails.csv').min_max_nomalized() elif norm == "pca": ((trX, trY), (teX, teY)) = extractor( file='data/emails.csv').pca_reduced_nomarlize(dim=dim) print("Creating Model") model = FFNN(**args) print("Training Model") print(type(trX)) acc, t, lr = model.train(trX, trY, teX, teY) df = pd.DataFrame({ 'accuracy': acc, 'epoc': list(range(len(acc))), 'time_per_iteration(s)': t, 'learning_rate': lr }) df.to_csv("output/{0}.csv".format(name))
from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import accuracy_score,confusion_matrix,classification_report from sklearn.metrics import precision_recall_fscore_support import time validation_list = [] precision_list = [] time_list = [] for i in range(1,10): # init start = 0.0 end = 0.0 prediction = dict() kwarg = {'test_size':i*0.1} ((x_train,x_test),(y_train,y_test)) = extractor(file='data/emails.csv',**kwarg).get() model = MultinomialNB() model.fit(x_train,x_test) #prediction start = time.time() prediction["naive_bayes"] = model.predict(y_train) end = time.time() precision,recall,fscore,support = precision_recall_fscore_support( y_test, prediction['naive_bayes'], average='macro') precision_list.append(precision) validation_list.append(kwarg['test_size'])
from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import accuracy_score, confusion_matrix, classification_report from sklearn.metrics import precision_recall_fscore_support import time validation_list = [] precision_list = [] time_list = [] for i in range(1, 10): # init start = 0.0 end = 0.0 prediction = dict() kwarg = {'test_size': i * 0.1} ((x_train, x_test), (y_train, y_test)) = extractor( file='data/emails.csv').min_max_nomalized(on_hot=False) model = RandomForestClassifier(n_estimators=100, max_depth=100, random_state=0) model.fit(x_train, x_test) #prediction start = time.time() prediction["random_forest"] = model.predict(y_train) end = time.time() precision, recall, fscore, support = precision_recall_fscore_support( y_test, prediction['random_forest'], average='macro') precision_list.append(precision) validation_list.append(kwarg['test_size'])