예제 #1
0
analyzer = Analyzer(datestr=date_str)
loader = Loader(date_str)


# ArmInt_cluster = loader.load_excel(filename='ArmInt_cluster',foldername='Cluster')
# ArmInt_cluster.drop(['PanneDelai_1'], axis=1,inplace=True)
# feature_names = np.array(list(ArmInt_cluster.columns))
#
# clf = loader.load_pickle('Randomforest_Armoire')
# analyzer.plot_feature_importance(importances=clf.best_estimator_.feature_importances_,featurenames=feature_names,title='Randomforest_featureimportance_Armoire',top_n=40)
#
# clf = loader.load_pickle('GradientBoosting_Armoire')
# analyzer.plot_feature_importance(importances=clf.best_estimator_.feature_importances_,featurenames=feature_names,title='GradientBoosting_featureimportance_Armoire',top_n=40)
#



PL_cluster = loader.load_excel(filename='PL_cluster',foldername='Cluster')
PL_cluster.drop(['PanneDelai_1'], axis=1,inplace=True)
feature_names = np.array(list(PL_cluster.columns))

clf = loader.load_pickle('Randomforest_PL')
analyzer.plot_feature_importance(importances=clf.best_estimator_.feature_importances_,featurenames=feature_names,title='Randomforest_featureimportance_PL',top_n=40)

clf = loader.load_pickle('GradientBoosting_PL')
analyzer.plot_feature_importance(importances=clf.best_estimator_.feature_importances_,featurenames=feature_names,title='GradientBoosting_featureimportance_PL',top_n=40)




예제 #2
0
# cor_PL = PL_cluster.corr()
# cor_plot_PL = sns.heatmap(cor_PL, square = True).get_figure()
# cor_plot_PL.savefig(os.path.join(saver.datasavedir,'img','clustering','correlation_PL.jpg'))


"""
random forest
"""
# ArmInt_cluster = loader.load_excel(filename='ArmInt_cluster',foldername='Cluster')
# ArmInt_num = loader.load_excel(filename='ArmInt_encode_num',foldername='Encode/Armoire')
# ArmInt_num.reset_index(drop=True,inplace=True)
# ArmInt_cluster[['PanneDelai_1','DelaiInt_1','PanneDelai_2','DelaiInt_2']] = ArmInt_num[['PanneDelai_1','DelaiInt_1','PanneDelai_2','DelaiInt_2']]
# # print(ArmInt_cluster[['PanneDelai_1','DelaiInt_1','PanneDelai_2','DelaiInt_2']].head())
# y = pd.DataFrame(ArmInt_cluster['PanneDelai_1']).values
# ArmInt_cluster.drop(['PanneDelai_1'], axis=1,inplace=True)
# X = ArmInt_cluster.values
#
# modeler.train_RandomForest(X=X,y=y,title='Armoire')
# modeler.train_GradientBoosting(X=X,y=y,title='Armoire')

PL_cluster = loader.load_excel(filename='PL_cluster',foldername='Cluster')
PL_num = loader.load_excel(filename='PLInt_encode_num',foldername='Encode/PL')
PL_num.reset_index(drop=True,inplace=True)
PL_cluster[['PanneDelai_1','DelaiInt_1','PanneDelai_2','DelaiInt_2']] = PL_num[['PanneDelai_1','DelaiInt_1','PanneDelai_2','DelaiInt_2']]
# print(ArmInt_cluster[['PanneDelai_1','DelaiInt_1','PanneDelai_2','DelaiInt_2']].head())
y = pd.DataFrame(PL_cluster['PanneDelai_1']).values
PL_cluster.drop(['PanneDelai_1'], axis=1,inplace=True)
X = PL_cluster.values

modeler.train_RandomForest(X=X,y=y,title='PL')
modeler.train_GradientBoosting(X=X,y=y,title='PL')