def run(self): """ | 処理の最後 """ print("---" + __class__.__name__ + ": run") with self.output().open("w") as target: exp_data = pd.read_pickle(self.intermediate_folder + mu.convert_date_to_str(self.end_date) + '_exp_data.pkl') # 予測を実施 pred_df = self.skproc.proc_predict_sk_model(exp_data) print("End_baoz_predict run: pred_df", pred_df.shape) import_df = self.skproc.create_import_data(pred_df) if self.export_mode: print("export data") import_df.to_pickle(self.intermediate_folder + self.skproc.version_str + '/' + 'export_data.pkl') if self.skproc.version_str == "win": analyze_df = self.skproc.eval_pred_data(import_df) print(analyze_df) self.skproc.import_data(import_df) Output.post_slack_text(dt.now().strftime("%Y/%m/%d %H:%M:%S") + " finish predict job:" + self.skproc.version_str) print(__class__.__name__ + " says: task finished".format(task=self.__class__.__name__))
def run(self): """ 渡されたexp_data_nameに基づいてSK_DATA_MODELから説明変数のデータを取得する処理を実施。pickelファイル形式でデータを保存 """ print("----" + __class__.__name__ + ": run") Output.post_slack_text(dt.now().strftime("%Y/%m/%d %H:%M:%S") + " start download jrdb file") with self.output().open("w") as target: download = JrdbDownload() download.procedure_download() download.move_file()
def run(self): """ 渡されたexp_data_nameに基づいてSK_DATA_MODELから説明変数のデータを取得する処理を実施。pickelファイル形式でデータを保存 """ print("----" + __class__.__name__ + ": run") Output.post_slack_text(dt.now().strftime("%Y/%m/%d %H:%M:%S") + " start predict job:" + self.skproc.version_str) with self.output().open("w") as target: print("------ モデル毎に予測データが違うので指定してデータ作成を実行") predict_df = self.skproc.create_predict_data() print("Sub_get_exp_data run: predict_df", predict_df.shape) predict_df.to_pickle(self.intermediate_folder + mu.convert_date_to_str(self.end_date) + '_exp_data.pkl') print(__class__.__name__ + " says: task finished".format(task=self.__class__.__name__))
def run(self): # 特徴量作成処理を実施。learningの全データ分を取得してSkModel特徴作成処理を実行する print("---" + __class__.__name__ + ": run") Output.post_slack_text(dt.now().strftime("%Y/%m/%d %H:%M:%S") + " start Sub_create_feature_select_data job:" + self.skproc.version_str) with self.output().open("w") as target: file_name = self.intermediate_folder + "_learning.pkl" with open(file_name, 'rb') as f: learning_df = pickle.load(f) learning_df = self.skproc.merge_learning_df(learning_df) self.skproc.create_featrue_select_data(learning_df) Output.post_slack_text( dt.now().strftime("%Y/%m/%d %H:%M:%S") + " finish Sub_create_feature_select_data job:" + self.skproc.version_str) print(__class__.__name__ + " says: task finished".format(task=self.__class__.__name__))
def run(self): # SkModelを読んで学習データを作成する。すべてのデータを作成後、競馬場毎のデータを作成する print("----" + __class__.__name__ + ": run") Output.post_slack_text(dt.now().strftime("%Y/%m/%d %H:%M:%S") + " start Sub_get_learning_data job:" + self.skproc.version_str) with self.output().open("w") as target: print("------ learning_dfを作成") self.skproc.set_learning_df() print("------ 学習用データを保存") self.skproc.learning_df.to_pickle(self.intermediate_folder + '_learning.pkl') Output.post_slack_text(dt.now().strftime("%Y/%m/%d %H:%M:%S") + " finish Sub_get_learning_data job:" + self.skproc.version_str) print(__class__.__name__ + " says: task finished".format(task=self.__class__.__name__))
def run(self): # 目的変数、場コード毎に学習を実施し、学習モデルを作成して中間フォルダに格納する print("---" + __class__.__name__ + ": run") Output.post_slack_text(dt.now().strftime("%Y/%m/%d %H:%M:%S") + " start End_baoz_learning job:" + self.skproc.version_str) with self.output().open("w") as target: file_name = self.intermediate_folder + "_learning.pkl" with open(file_name, 'rb') as f: df = pickle.load(f) # 学習を実施 df = self.skproc.merge_learning_df(df) self.skproc.proc_learning_sk_model(df) Output.post_slack_text(dt.now().strftime("%Y/%m/%d %H:%M:%S") + " finish End_baoz_learning job:" + self.skproc.version_str) print(__class__.__name__ + " says: task finished".format(task=self.__class__.__name__))
from modules.report import Report from modules.output import Output from modules.import_to_cosmosdb import Import_to_CosmosDB from datetime import datetime as dt from datetime import timedelta n = 0 start_date = (dt.now() + timedelta(days=n)).strftime('%Y/%m/%d') end_date = (dt.now() + timedelta(days=n)).strftime('%Y/%m/%d') mock_flag = False output = Output() rep = Report(start_date, end_date, mock_flag) post_text = '' now_time = dt.now() def export_to_dropbox(): start_date = dt.now().strftime('%Y/%m') + '/01' end_date = dt.now().strftime('%Y/%m/%d') rep = Report(start_date, end_date, mock_flag) rep.export_bet_df() rep.export_race_df() rep.export_raceuma_df() current_text = rep.get_current_text() if rep.check_flag: bet_text = rep.get_todays_bet_text() post_text += current_text
def run(self): print("---" + __class__.__name__ + ": run") with self.output().open("w") as target: target_sr = pd.read_pickle(self.dict_path + 'model/kaime/target_sr.pkl') cond_df = pd.read_pickle(self.dict_path + 'model/kaime/cond_df.pkl') to = Output(self.start_date, self.end_date, self.term_start_date, self.term_end_date, self.test_flag, target_sr, cond_df) to.set_pred_df() to.set_result_df() to.create_raceuma_score_file() to.create_main_mark_file() to.create_raceuma_mark_file() to.create_result_race_comment_file() to.create_result_raceuma_comment_file() to.create_target_mark_df() to.create_vote_file() to.create_pbi_file() to.create_pbi_result_file()
if args.pdbs: pdbs = args.pdbs if args.depth_files: depth_files = args.depth_files if args.out: out = args.out[0] exp_list = Reference(referee).get_residues() #obtain models from input and run scoring. #scores collected in models dictionary models = {} if pdbs and not depth_files: for pdb in pdbs: depth = Depth(pdb, None, depth_path) models[pdb.split('.pdb')[0]] = Score(depth, exp_list).score_mono() elif depth_files: for depth_file in depth_files: depth = Depth(None, depth_file, depth_path) models[depth_file.split('-residue.depth')[0]] = Score( depth, exp_list).score_mono() else: print("Please specify pdbs or depth files, use -h flag for help.") sys.exit() Output(models, out)