예제 #1
0
def main():
    model_specs = [['GBC', gbm_formula1, kw1]]
    train1 = []
    train2 = []
    test1 = []
    test2 = []
    global df
    for train, test, trial_i in utility.train_test_splitter(
            df, 0.1, 'ORIG_DTE'):
        train_pos = train[train['dflt_pct'] > 0]

        # stage 1
        train['PD_pred'], test['PD_pred'] = fit_stage1(model_specs[0], train,
                                                       test, True)
        print('\nRunning bootstraps...')
        btstrp_stage1 = bootstrap.get_btstrp(fit_stage1, model_specs[0], train,
                                             test, 1)
        vin_id, x, lo_name, hi_name = 'ORIG_DTE', 'AGE', '2.5%', '97.5%'
        df_stage1 = pd.concat(
            [test[[vin_id, x, 'did_dflt', 'PD_pred']], btstrp_stage1], axis=1)
        for date, dall in df_stage1.groupby(vin_id):
            print('\nGenerating plots for {0}...'.format(date))
            ds = []
            df_ = df_stage1
            to_append = df_[df_[vin_id] == date]
            del to_append[vin_id]
            ds.append(to_append)
            del dall[vin_id]

            #            fig, axes = plt.subplots(2, 2, figsize=(10, 10))
            #    plt.subplot(121)

            d1 = ds[0]
            fpr, tpr = utility.get_roc_curve(train['did_dflt'],
                                             train['PD_pred'])
            train1.append(fpr)
            train2.append(tpr)
            fpr_average1 = np.mean(train1)
            tpr_average1 = np.mean(train2)
            #    roc_auc = utility.get_auc(fpr, tpr)
            #    plt.plot(fpr, tpr, label='Train AUC = {0:.2f}'.format(roc_auc))

            #    plt.subplot(122)
            fpr, tpr = utility.get_roc_curve(d1['did_dflt'], d1['PD_pred'])
            test1.append(fpr)
            test2.append(tpr)
            fpr_average2 = np.mean(test1)
            tpr_average2 = np.mean(test2)


#    roc_auc = utility.get_auc(fpr, tpr)
#    plt.plot(fpr, tpr, label='Test AUC = {0:.2f}'.format(roc_auc))

    plt.subplot(121)
    plt.plot(fpr_average1,
             tpr_average1,
             label='Train AUC = {0:.2f}'.format(roc_auc))
    plt.subplot(122)

    plt.plot([-0.5, 1.5], [-0.5, 1.5])
    plt.plot(fpr_average2,
             tpr_average2,
             label='Test AUC = {0:.2f}'.format(roc_auc))
    plt.xlim([-0.05, 1.05])
    plt.ylim([-0.05, 1.05])
    plt.xlabel('False Positive Rate')
    plt.ylabel('True Positive Rate')
    plt.title('Probability of Default: ROC curve')
    plt.legend(loc="lower right")
예제 #2
0
def main(args):
    
    modelname = args.modelname
    dataname = args.dataname
    
    FILE_PATH = os.path.join(DATA_PATH, dataname)
    EXPORT_PATH = os.path.join(DIR_PATH, 'vintage_analysis', 'results')
    ECON_PATH = os.path.join(BASE_PATH, 'economic')
    
    if not os.path.exists(EXPORT_PATH):
        print('\nCreating results directory...')
        os.makedirs(EXPORT_PATH)
    output_dir_name = modelname + '-results'
    output_dir_path = os.path.join(EXPORT_PATH, output_dir_name)
    if not os.path.exists(output_dir_path):
        print('\nCreating directory at export location...')
        os.makedirs(output_dir_path)
        
    model1, model2, model3 = utility.load_all(modelname)

    train = model1.train
    df = pd.read_csv(FILE_PATH)
    test = df.copy()
    
    # stage 1
    train['PD_pred'] = model1.make_pred(use_train=True)
    test['PD_pred'] = model1.make_pred(pred_input=df)

    # stage 2
    train['EAD_pred'] = np.exp(model2.make_pred(pred_input=train))
    test['EAD_pred'] = np.exp(model2.make_pred(pred_input=df))

    # stage 3
    train['LGD_pred'] = model3.make_pred(pred_input=train)
    test['LGD_pred'] = model3.make_pred(pred_input=df)



    train['L_pred'] = train['PD_pred'] * \
    train['EAD_pred'] * train['LGD_pred']
    test['L_pred'] = test['PD_pred'] * test['EAD_pred'] * test['LGD_pred']


    df_all = test[['ORIG_DTE', 'AGE', 'dflt_loss_pct', 'L_pred']]
    df_stage1 = test[['ORIG_DTE', 'AGE', 'did_dflt', 'PD_pred']]
    df_stage2 = test[['ORIG_DTE', 'AGE', 'dflt_pct', 'EAD_pred']]
    df_stage3 = test[['ORIG_DTE', 'AGE', 'net_loss_pct', 'LGD_pred']]
    
    for date, dall in df_all.groupby('ORIG_DTE'):
        print('\nGenerating plots for {0}...'.format(date))
        ds = []
        for df_ in [df_stage1, df_stage2, df_stage3]:
            to_append = df_[df_['ORIG_DTE'] == date]
            del to_append['ORIG_DTE']
            ds.append(to_append)
        del dall['ORIG_DTE']
        
        
        fig, axes = plt.subplots(2, 2, figsize=(10, 10))

        # stage 1 roc
        ax, d1 = axes[0, 0], ds[0]
        fpr, tpr = utility.get_roc_curve(train['did_dflt'], train['PD_pred'])
        roc_auc = utility.get_auc(fpr, tpr)
        ax.plot(fpr, tpr, label='Train AUC = {0:.2f}'.format(roc_auc), **PLOT_PARAMS['train roc curve'])

        fpr, tpr = utility.get_roc_curve(d1['did_dflt'], d1['PD_pred'])
        roc_auc = utility.get_auc(fpr, tpr)
        ax.plot(fpr, tpr, label='Test AUC = {0:.2f}'.format(roc_auc), **PLOT_PARAMS['test roc curve'])

        ax.plot([-0.5, 1.5], [-0.5, 1.5], **PLOT_PARAMS['actual line'])
        ax.set_xlim([-0.05, 1.05])
        ax.set_ylim([-0.05, 1.05])
        ax.set_xlabel('False Positive Rate')
        ax.set_ylabel('True Positive Rate')
        ax.set_title('Probability of Default: ROC curve')
        ax.legend(loc="lower right")

        # stage 2 predicted vs. actual
        ax, d2 = axes[0, 1], ds[1]

        ax.plot([-0.5, 1.5], [-0.5, 1.5], **PLOT_PARAMS['actual line'])
        c, d = train['EAD_pred'], train['dflt_pct']
        ax.scatter(c, d, label='Train RMSE: {0:.2E}'.format(((c-d)**2).mean()), **PLOT_PARAMS['train'])
        a, b = d2['EAD_pred'], d2['dflt_pct']
        ax.scatter(a, b, label='Test RMSE: {0:.2E}'.format(((a-b)**2).mean()), **PLOT_PARAMS['test'])
        xymax = min(0.5, max(a.max(), b.max()) * 1.05)
        xymin = max(-0.01, min(a.min(), b.min()) * 0.95)
        ax.set_xlim([xymin, xymax])
        ax.set_ylim([xymin, xymax])
        ax.set_xlabel('Predicted')
        ax.set_ylabel('Actual')
        ax.set_title('Exposure at Default: % balance at default')
        ax.legend(loc="lower right")



        # stage 3 predicted vs. actual
        ax, d3 = axes[1, 0], ds[2]

        ax.plot([-10, 10], [-10, 10], **PLOT_PARAMS['actual line'])
        c, d = train['LGD_pred'], train['net_loss_pct']
        ax.scatter(c, d, label='Train RMSE: {0:.2E}'.format(((c-d)**2).mean()), **PLOT_PARAMS['train'])
        a, b = d3['LGD_pred'], d3['net_loss_pct']
        ax.scatter(a, b, label='Test RMSE: {0:.2E}'.format(((a-b)**2).mean()), **PLOT_PARAMS['test'])

        xymax = min(2, max(a.max(), b.max()) * 1.05)
        xymin = max(-0.5, min(a.min(), b.min()) * 0.95)
        ax.set_xlim([xymin, xymax])
        ax.set_ylim([xymin, xymax])
        ax.set_xlabel('Predicted')
        ax.set_ylabel('Actual')
        ax.set_title('Loss given Default: % lost at default')
        ax.legend(loc="lower right")
        

        

        # plot settings
        plt.tight_layout()
        plotname = '{2}.{1}.{0}.png'.format(date, modelname, dataname)
        plt.savefig(os.path.join(output_dir_path, plotname), dpi=300, bbox_inches='tight')
        plt.show()
        plt.clf()
def main(args):
    ############################################################
    # PATHS
    ############################################################
    BASE_PATH = os.path.join(os.path.dirname(os.path.realpath(__file__)),
                        '../../data')
    # BASE_PATH = os.path.join(os.path.dirname(os.path.realpath(__file__)),
    #                     '../../data')

    DIR_PATH = os.path.join(BASE_PATH, args.dataname)
    DATA_PATH = os.path.join(DIR_PATH, 'vintage_analysis', 'data')
    EXPORT_PATH = os.path.join(DIR_PATH, 'vintage_analysis', 'results')
    ECON_PATH = os.path.join(BASE_PATH, 'economic')
    FILENAME = args.filename

    ############################################################
    # HELPER FXNS
    ############################################################
    def plot_path(fname):
        return os.path.join(EXPORT_PATH, fname)

    ############################################################
    # READ/PROCESS/CLEAN DATA
    ############################################################
    df = pd.read_csv(os.path.join(DATA_PATH, FILENAME),
                     parse_dates=['PRD', 'ORIG_DTE'])

    # attach econ vars
    df_econ = pd.read_csv(os.path.join(ECON_PATH, 'agg_ntnl_mnthly.csv'),
                          parse_dates=['DATE'])
    df = df.merge(df_econ, how='left', left_on='PRD',
                  right_on='DATE', copy=False)

    # delete unnecessary variables
    del df['DATE'], df['Unnamed: 0']

    # change date format
    df.loc[:, 'PRD'] = df.loc[:, 'PRD'].dt.to_period('m')
    df.loc[:, 'ORIG_DTE'] = df.loc[:, 'ORIG_DTE'].dt.to_period('m')

    # create age and other vars
    df['AGE'] = (df['PRD'] - df['ORIG_DTE']).astype(int)
    df['dflt_pct'] = df['DFLT_AMT'] / df['ORIG_AMT_sum']
    df['min_dflt'] = 1*(df['dflt_pct'] > 0)
    df['net_loss_pct'] = 0
    df.loc[df['min_dflt'] == 1,
           'net_loss_pct'] = df['NET_LOSS_AMT'] / df['DFLT_AMT']

    # what we ultiamtely want to predict
    df['final_loss_pct'] = df['NET_LOSS_AMT'] / df['ORIG_AMT_sum']

    # # create other variables
    # regex = re.compile('_wv$')
    # wghted_cols = [regex.sub('', c) for c in df.columns if regex.search(c)]
    # for col in wghted_cols:
    #     df['{0}_cv'.format(col)] = np.sqrt(
    #         df['{0}_wv'.format(col)])/df['{0}_wm'.format(col)]

    # drop columns with too many NA values
    df = utility.drop_NA_cols(df)

    # remove all NA rows
    a = df.shape
    df.dropna(axis=0, how='any', inplace=True)
    print('Reduced rows from {0} -> {1}'.format(a, df.shape))

    # isolate covariates
    regex = re.compile('^MI_TYPE|^MI_PCT')
    all_vars = [
        v for v in df.columns if v not in MAIN_VARS and not regex.search(v)]

    ############################################################
    # PLOTTING
    ############################################################
    yr2grp = {'00-01': [2000, 2001],
              '02-05': [2002, 2003, 2004, 2005],
              '06-08': [2006, 2007, 2008],
              '09-10': [2009, 2010]}
    grp2yr = {yr: k for k, v in yr2grp.items() for yr in v}
    
    # categorize years by yr2grp
    df['ORIG_YR'] = df.ORIG_DTE.apply(lambda x: x.year)
    df['ORIG_YR_GRP'] = df.ORIG_YR.apply(lambda yr: grp2yr[yr] if yr in grp2yr
                                         else 'OTHER')
    df_pos = df[df['min_dflt'] == 1]
    
    #################### ag vs. dflt ####################
    to_plot = df[['AGE', 'dflt_pct']]

    # find median loss per age
    meds = to_plot.groupby('AGE').median()
    x_uniq, y_median = meds.index, meds.values

    # fit bspline of deg = 3
    sfit = splrep(x=meds.index, y=meds,
                  k=3, t=np.quantile(x_uniq, [0.33,0.66]))
    
    x, y = to_plot['AGE'], to_plot['dflt_pct']
    all_x = np.arange(x.min(), x.max() + 1)
    
    fig, ax = plt.subplots(figsize=(8,8))
    ax.scatter(x=x.values, y=y.values, s=1, c='#F8C471')
    ax.plot(all_x, splev(all_x, sfit), c='r', lw=3,
            label='B-Spline Fit')
    ax.set_xlabel('AGE')
    ax.set_ylabel('dflt_pct')
    ax.legend()
    ax.set_ylim(-0.0003, None)
    fig.suptitle('% Default over the Age of Vintage')
    fig.tight_layout(rect=[0, 0.03, 1, 0.95])
    fig.savefig(plot_path('dflt_age.png'))
    plt.close('all')

    #################### age vs. dflt by year ####################
    fig, ax = plt.subplots(figsize=(8,8))
    ax.scatter(x=df['AGE'].values, y=df['dflt_pct'].values, s=1, c='#F8C471')
    
    for orig_yr, df_yr in df.groupby('ORIG_YR'):
        meds = df_yr.groupby('AGE')['dflt_pct'].median()
        x_uniq, y_median = meds.index, meds.values
        sfit = splrep(x=x_uniq, y=y_median,
                      k=3, t=np.quantile(x_uniq, [0.33,0.66]))
        
        x, y = df_yr['AGE'], df_yr['dflt_pct']
        all_x = np.arange(x.min(), x.max() + 1)

        ax.plot(all_x, splev(all_x, sfit), lw=2,
                label=str(orig_yr))
    ax.set_xlabel('AGE')
    ax.set_ylabel('dflt_pct')
    ax.set_ylim(-0.0003, None)
    ax.legend()
    fig.suptitle('% Default over Age of Vintage by Year')
    fig.tight_layout(rect=[0, 0.03, 1, 0.95])
    fig.savefig(plot_path('dflt_age_by_year.png'))
    plt.close('all')

    #################### age vs. dflt by year up to < 2007 ####################
    df_prerec = df[df.PRD < pd.Period('2007-01', freq='m')]
    
    fig, ax = plt.subplots(figsize=(8,8))
    ax.scatter(x=df_prerec['AGE'].values, y=df_prerec['dflt_pct'].values, s=1,
               c='#F8C471')
    
    for orig_yr, df_yr in df_prerec.groupby('ORIG_YR'):
        meds = df_yr.groupby('AGE')['dflt_pct'].median()
        x_uniq, y_median = meds.index, meds.values
        sfit = splrep(x=x_uniq, y=y_median,
                      k=3, t=np.quantile(x_uniq, [0.33,0.66]))
        
        x, y = df_yr['AGE'], df_yr['dflt_pct']
        all_x = np.arange(x.min(), x.max() + 1)

        ax.plot(all_x, splev(all_x, sfit), lw=2,
                label=str(orig_yr))

    ax.set_xlabel('AGE')
    ax.set_ylabel('dflt_pct')
    ax.set_ylim(-0.0003, None)
    ax.legend()
    fig.suptitle('% Default over the Age of Vintage pre-recession')
    fig.tight_layout(rect=[0, 0.03,1, 0.95])
    fig.savefig(plot_path('dflt_age_by_year_prerec.png'))
    plt.close('all')

    #################### age vs. dflt by year post rec ####################
    df_postrec = df[df.ORIG_YR >= 2009]
    
    fig, ax = plt.subplots(figsize=(8,8))
    ax.scatter(x=df_postrec['AGE'].values, y=df_postrec['dflt_pct'].values, s=1,
               c='#F8C471')
        
    for orig_yr, df_yr in df_postrec.groupby('ORIG_YR'):
        meds = df_yr.groupby('AGE')['dflt_pct'].median()
        x_uniq, y_median = meds.index, meds.values
        sfit = splrep(x=x_uniq, y=y_median,
                      k=3, t=np.quantile(x_uniq, [0.33,0.66]))

        x, y = df_yr['AGE'], df_yr['dflt_pct']
        all_x = np.arange(x.min(), x.max() + 1)

        ax.plot(all_x, splev(all_x, sfit), lw=2,
                label=str(orig_yr))

    ax.set_xlabel('AGE')
    ax.set_ylabel('dflt_pct')
    ax.set_ylim(-0.0003, None)
    ax.legend()
    fig.suptitle('% Default over the Age of Vintage post-recession')
    fig.tight_layout(rect=[0, 0.03, 1, 0.95])
    fig.savefig(plot_path('dflt_age_by_year_postrec.png'))
    plt.close('all')

    # the dflt curve does peak early and slope down
    # but hard to untangle age effects from recession/macro effects
    
    ############################################################
    # dflt_pct
    ############################################################
    #################### plot distribtiosn ####################
    to_hist, yr_grps = [], []
    for orig_yr_grp, df_yr in df.groupby('ORIG_YR_GRP'):
        data = df_yr['dflt_pct']
        to_hist.append(data)
        yr_grps.append('{0}: {1:.1f}% = no dflt'
                       .format(orig_yr_grp,
                               100 * (data==0).mean()))

    fig, ax = plt.subplots(figsize=(8, 8))
    ax.hist(to_hist, label=yr_grps,
            # normalize the histograms
            density=True)

    ax.set_xlabel('dflt_pct')
    ax.legend(loc='best')
    fig.suptitle('Distribution of % Default per Group')
    fig.tight_layout(rect=[0, 0.03, 1, 0.95])
    fig.savefig(plot_path('dflt_pct dist by grp.png'))
    plt.close('all')

    #################### plot relationships ####################
    to_plot = df[['dflt_pct', 'CSCORE_MN_wm', 'DTI_wm', 'LOAN_ID_count',
                  'ORIG_YR_GRP']]
    sns.pairplot(to_plot, hue='ORIG_YR_GRP', markers='.', height=2)
    plt.tight_layout()
    plt.savefig(plot_path('pairplot of dflt_pct'))

    to_plot = df[['dflt_pct', 'MR', 'rGDP', 'AGE', 'ORIG_YR_GRP']]
    sns.pairplot(to_plot, hue='ORIG_YR_GRP', markers='.', height=2)
    plt.tight_layout()
    plt.savefig(plot_path('pairplot of dflt_pct2'))

    ############################################################
    # net_loss_pct
    ############################################################
    #################### distributions ####################
    fig, ax = plt.subplots(figsize=(8, 8))
    for orig_yr_grp, df_yr in df_pos.groupby('ORIG_YR'):
        ax.hist(df_yr['net_loss_pct'], label=str(orig_yr_grp),
                # normalize the histograms
                alpha=0.5,
                density=True)
    ax.set_xlabel('net_loss_pct')
    ax.legend(loc='best')
    fig.suptitle('Distribution: % of Default Amount Lost per Group')
    fig.tight_layout(rect=[0, 0.03, 1, 0.95])
    fig.savefig(plot_path('net_loss_pct dist by yr'))
    plt.close('all')
    

    #################### relationships ####################
    to_plot = df[['net_loss_pct', 'CSCORE_MN_wm', 'DTI_wm', 'LOAN_ID_count',
                  'ORIG_YR_GRP']]
    sns.pairplot(to_plot, hue='ORIG_YR_GRP', markers='.', height=2)
    plt.tight_layout()
    plt.savefig(plot_path('pairplot of net_loss_pct'))

    to_plot = df[['net_loss_pct', 'MR', 'rGDP', 'AGE', 'ORIG_YR_GRP']]
    sns.pairplot(to_plot, hue='ORIG_YR_GRP', markers='.', height=2)
    plt.tight_layout()
    plt.savefig(plot_path('pairplot of net_loss_pct2'))

    # not as strong of relationship as dflt_pct
    # but still some structue (Ex. MR)

    ############################################################
    # Low default analysis
    ############################################################
    cutoff_date = pd.Period('2009-06-01', freq='m')
    df_low = df[df.ORIG_DTE >= cutoff_date]
    df_high = df[df.ORIG_DTE < cutoff_date]

    fig, ax = plt.subplots(figsize=(8, 8))
    ax.hist([df_low['dflt_pct'],
              df_high['dflt_pct']],
             label=['Low Period', 'High Period'],
            density=True)
    ax.set_xlabel('dflt_pct')
    ax.legend(loc='best')
    fig.suptitle('Distribution: % Default pre- & post- 2009')
    fig.tight_layout(rect=[0, 0.03, 1, 0.95])
    fig.savefig(plot_path('low_dflt histogram'))
    plt.close('all')
    
    #################### plot relationships with dflt_pct ####################
    to_plot = df_low[['dflt_pct', 'CSCORE_MN_wm', 'DTI_wm', 'LOAN_ID_count',
                      'ORIG_YR_GRP']]
    sns.pairplot(to_plot, markers='.', height=2)
    plt.tight_layout()
    plt.savefig(plot_path('low_dflt: pairplot of dflt_pct'))

    to_plot = df[['dflt_pct', 'MR', 'rGDP', 'AGE', 'ORIG_YR_GRP']]
    sns.pairplot(to_plot, markers='.', height=2)
    plt.tight_layout()
    plt.savefig(plot_path('low_dflt: pairplot of dflt_pct2'))

    # fortunately, there is still some relationship btw dflt_pct and vars

    #################### plot relationships with net_loss_pct ####################
    to_plot = df_low[['net_loss_pct', 'CSCORE_MN_wm', 'DTI_wm', 'LOAN_ID_count',
                      'ORIG_YR_GRP']]
    sns.pairplot(to_plot, markers='.', height=2)
    plt.tight_layout()
    plt.savefig(plot_path('low_dflt: pairplot of net_loss_pct'))

    to_plot = df[['net_loss_pct', 'MR', 'rGDP', 'AGE', 'ORIG_YR_GRP']]
    sns.pairplot(to_plot, markers='.', height=2)
    plt.tight_layout()
    plt.savefig(plot_path('low_dflt: pairplot of net_loss_pct2'))

    
    ############################################################
    # MODEL SPECS
    ############################################################
    # Stage 1
    # selected = ['UNEMP', 'HPI', 'rGDP', 'ORIG_AMT_sum', 'ORIG_CHN_R_wv',
    #             'LOAN_ID_count', 'MR', 'LIBOR', 'DTI_wm', 'AGE', 'CPI',
    #             'ORIG_RT_wm', 'ORIG_CHN_R_wm', 'ORIG_RT_wv',
    #             'DTI_wv', 'OCLTV_wv',
    #             'ORIG_CHN_C_wv',
    #             'CSCORE_MN_wv', 'CSCORE_MN_wm']    
    selected = ['CSCORE_MN_wm', 'CSCORE_MN_wv',
                'DTI_wm', 'DTI_wv', 'LOAN_ID_count',
                'OCLTV_wm', 'OCLTV_wv',
                'ORIG_AMT_sum',
                'ORIG_CHN_C_wm',
                'ORIG_CHN_R_wm',
                'ORIG_RT_wm', 'ORIG_RT_wv',
                'PURPOSE_P_wm', 'PURPOSE_P_wv',
                'PURPOSE_R_wm', 'PURPOSE_R_wv',
                'CPI', 'UNEMP', 'HPI', 'rGDP', 'AGE']
    gbm_formula1 = 'min_dflt ~ -1 + {0}'.format(' + '.join(selected))
    kw1 = {'learning_rate': 0.1, 'max_depth': 3, 'max_features': 0.5,
           'min_impurity_decrease': 0.0001, 'n_estimators': 10, 'subsample': 0.1}

    # Stage 2
    rfr_formula2 = ('np.log(dflt_pct) ~ -1 + {0}'
                    .format(' + '.join(selected)))
    kw2 = {'bootstrap': False, 'max_features': 0.333,
           'min_impurity_decrease': 1e-10, 'n_estimators': 20}

    # Stage 3
    rfr_formula3 = ('net_loss_pct ~ -1 + {0}'
                    .format(' + '.join(selected)))
    kw3 = {'n_estimators': 50, 'max_features': 0.1,
           'min_impurity_decrease': 1e-10}

    # define model_choice
    model_specs = [['GBC', gbm_formula1, kw1],
                   ['RFR', rfr_formula2, kw2],
                   ['RFR', rfr_formula3, kw3]]

    # create new folder if not exist
    if not os.path.exists(EXPORT_PATH):
        print('\nCreating results directory...')
        os.makedirs(EXPORT_PATH)
    output_dir_name = '.'.join([m[0] for m in model_specs] +
                               [FILENAME] +
                               [datetime.datetime.now()
                                .strftime("%y%m%d%H%M%S")])
    output_dir_path = os.path.join(EXPORT_PATH, output_dir_name)
    if not os.path.exists(output_dir_path):
        print('\nCreating directory at export location...')
        os.makedirs(output_dir_path)

    for train, test, trial_i in utility.train_test_splitter(df_low,
                                                            0.1, 'ORIG_DTE'):
        train_pos = train[train['dflt_pct'] > 0]

        # stage 1
        train['PD_pred'], test['PD_pred'], model1 = fit_stage1(model_specs[0],
                                                               train, test, True,
                                                               return_model=True)
        # stage 2
        train['EAD_pred'], test['EAD_pred'], model2 = fit_stage2(model_specs[1],
                                                                 train_pos, test,
                                                                 True, train,
                                                                 return_model=True)
        # stage 3
        train['LGD_pred'], test['LGD_pred'], model3 = fit_stage3(model_specs[2],
                                                                 train_pos, test,
                                                                 True, train,
                                                                 return_model=True)

        # plot model summaries (just the first 10 most important)
        print('\nGenerating summary plot...')
        summ1 = model1.summary()[:10]
        summ2 = model2.summary()[:10]
        summ3 = model3.summary()[:10]
        
        fig, axes = plt.subplots(2, 2, figsize=(8, 8))
        
        ax = axes[0, 0]
        ax.bar(summ1['Name'], summ1['Importance'])
        ax.set_xticklabels(summ1['Name'], rotation=90)
        ax.set_ylabel('Feature Importance')        
        ax.set_title('GBC model for Probability of Default')

        ax = axes[0, 1]
        ax.bar(summ2['Name'], summ2['Importance'],
               yerr=summ2['Std'])
        ax.set_xticklabels(summ3['Name'], rotation=90)
        ax.set_ylabel('Feature Importance')        
        ax.set_title('RFR model for Exposure at Default')

        ax = axes[1, 0]
        ax.bar(summ3['Name'], summ3['Importance'],
               yerr=summ3['Std'])
        ax.set_xticklabels(summ3['Name'], rotation=90)
        ax.set_ylabel('Feature Importance')        
        ax.set_title('RFR model for Loss given Default')

        ax = axes[1, 1]
        ax.set_axis_off()
        # make a dataframe of parameters for each model
        param_list = [pd.DataFrame(
            {'Model': '{0}{1}'
             .format(model.__class__.__name__, i+1),
             'Param':
             list(model.params().keys()),
             'Value':
             list(model.params().values()),
            })
            for i, model in
                      enumerate([model1, model2, model3])]

        num_rows = 5
        param_df = pd.concat([df[:num_rows] for df in param_list])
        colors = [['#F4D03F'] * 3] * num_rows +\
            [['#F1948A'] * 3] * num_rows +\
            [['#7DCEA0'] * 3] * num_rows
        tab = ax.table(cellText=param_df.values,
                       bbox=[0,0,1,1.05],
                       cellColours=colors,
                       colLabels=param_df.columns,
                       colWidths=[0.05, 0.1, 0.1])
        tab.auto_set_font_size(False)
        tab.set_fontsize(9)

        fig.tight_layout()
        plotname = '{0}.model summary.png'.format(trial_i)
        fig.savefig(os.path.join(output_dir_path,
                                 plotname))                    
        plt.close('all')

        # bootstrapping
        train['L_pred'] = train['PD_pred'] * \
            train['EAD_pred'] * train['LGD_pred']
        test['L_pred'] = test['PD_pred'] * test['EAD_pred'] * test['LGD_pred']
        test_pos = test[test['dflt_pct'] > 0]

        # get bootstraps
        print('\nRunning bootstraps...')
        btstrp_size = 30
        btstrp_3stage = bootstrap.get_btstrp(fit_3stages, model_specs,
                                             train, test, btstrp_size)
        # stage 1 bootstraps
        btstrp_stage1 = bootstrap.get_btstrp(fit_stage1, model_specs[0],
                                             train, test, btstrp_size)
        # stage 2 bootstraps
        btstrp_stage2 = bootstrap.get_btstrp(fit_stage2, model_specs[1],
                                             train_pos, test_pos, btstrp_size)
        # stage 2 bootstraps
        btstrp_stage3 = bootstrap.get_btstrp(fit_stage3, model_specs[2],
                                             train_pos, test_pos, btstrp_size)

        vin_id, x, lo_name, hi_name = 'ORIG_DTE', 'AGE', '2.5%', '97.5%'

        # compile bootstrapped data for each stages
        df_all = pd.concat([test[[vin_id, x, 'final_loss_pct', 'L_pred']],
                            btstrp_3stage], axis=1)
        df_stage1 = pd.concat([test[[vin_id, x, 'min_dflt', 'PD_pred']],
                               btstrp_stage1], axis=1)
        df_stage2 = pd.concat([test_pos[[vin_id, x, 'dflt_pct', 'EAD_pred']],
                               btstrp_stage2], axis=1)
        df_stage3 = pd.concat([test_pos[[vin_id, x,
                                         'net_loss_pct', 'LGD_pred']],
                               btstrp_stage3], axis=1)

        
        for date, dall in df_all.groupby(vin_id):
            print('\nGenerating plots for {0}...'.format(date))
            ds = []
            for df_ in [df_stage1, df_stage2, df_stage3]:
                to_append = df_[df_[vin_id] == date]
                # remove vin_id column
                del to_append[vin_id]
                ds.append(to_append)
            del dall[vin_id]

            fig, axes = plt.subplots(2, 2, figsize=(10, 10))

            # stage 1 roc
            ax, d1 = axes[0, 0], ds[0]
            fpr, tpr = utility.get_roc_curve(train['min_dflt'], train['PD_pred'])
            roc_auc = utility.get_auc(fpr, tpr)
            ax.plot(fpr, tpr, label='Train AUC = {0:.2f}'.format(roc_auc),
                    **PLOT_PARAMS['train roc curve'])

            fpr, tpr = utility.get_roc_curve(d1['min_dflt'], d1['PD_pred'])
            roc_auc = utility.get_auc(fpr, tpr)
            ax.plot(fpr, tpr, label='Test AUC = {0:.2f}'.format(roc_auc),
                    **PLOT_PARAMS['test roc curve'])

            ax.plot([-0.5, 1.5], [-0.5, 1.5], **PLOT_PARAMS['actual line'])
            ax.set_xlim([-0.05, 1.05])
            ax.set_ylim([-0.05, 1.05])
            ax.set_xlabel('False Positive Rate')
            ax.set_ylabel('True Positive Rate')
            ax.set_title('Probability of Default: ROC curve')
            ax.legend(loc="lower right")

            # stage 2 predicted vs. actual
            ax, d2 = axes[0, 1], ds[1]

            ax.plot([-0.5, 1.5], [-0.5, 1.5], **PLOT_PARAMS['actual line'])
            c, d = train['EAD_pred'], train['dflt_pct']
            ax.scatter(c, d,
                       label='Train RMSE: {0:.2E}'.format(((c-d)**2).mean()),
                       **PLOT_PARAMS['train'])
            a, b = d2['EAD_pred'], d2['dflt_pct']
            ax.scatter(a, b,
                       label='Test RMSE: {0:.2E}'.format(((a-b)**2).mean()),
                       **PLOT_PARAMS['test'])
            xymax = min(0.5, max(a.max(), b.max()) * 1.05)
            xymin = max(-0.01, min(a.min(), b.min()) * 0.95)
            ax.set_xlim([xymin, xymax])
            ax.set_ylim([xymin, xymax])
            ax.set_xlabel('Predicted')
            ax.set_ylabel('Actual')
            ax.set_title('Exposure at Default: % balance at default')
            ax.legend(loc="lower right")

            # # stage 2 bootstrap actual vs. predicted
            # ax, d2 = axes[0, 1], ds[1]
            # bootstrap.plot_btstrp(d2, 'dflt_pct', 'dflt_pct', 'EAD_pred',
            #                       lo_name, hi_name, ax=ax)
            # ax.set_xlabel('Actual')
            # ax.set_ylabel('Predicted')
            # ax.set_title('Exposure at Default: % balance at default')
            # ax.legend(loc="lower right")

            # stage 3 predicted vs. actual
            ax, d3 = axes[1, 0], ds[2]

            ax.plot([-10, 10], [-10, 10], **PLOT_PARAMS['actual line'])
            c, d = train['LGD_pred'], train['net_loss_pct']
            ax.scatter(c, d,
                       label='Train RMSE: {0:.2E}'.format(((c-d)**2).mean()),
                       **PLOT_PARAMS['train'])
            a, b = d3['LGD_pred'], d3['net_loss_pct']
            ax.scatter(a, b,
                       label='Test RMSE: {0:.2E}'.format(((a-b)**2).mean()),
                       **PLOT_PARAMS['test'])

            xymax = min(2, max(a.max(), b.max()) * 1.05)
            xymin = max(-0.5, min(a.min(), b.min()) * 0.95)
            ax.set_xlim([xymin, xymax])
            ax.set_ylim([xymin, xymax])
            ax.set_xlabel('Predicted')
            ax.set_ylabel('Actual')
            ax.set_title('Loss given Default: % lost at default')
            ax.legend(loc="lower right")

            # # stage 3 bootstrap actual vs. predicted
            # ax, d3 = axes[1, 0], ds[2]
            # bootstrap.plot_btstrp(d3, 'net_loss_pct', 'net_loss_pct', 'LGD_pred',
            #                       lo_name, hi_name, ax=ax)
            # ax.set_xlabel('Actual')
            # ax.set_ylabel('Predicted')
            # ax.set_title('Loss given Default: % lost at default')
            # ax.legend(loc="lower right")

            # 3 stage bootstrap cumulative
            ax = axes[1, 1]
            cumsum = dall.set_index(x).cumsum()
            bootstrap.plot_btstrp(cumsum.reset_index(), x, 'final_loss_pct',
                                  'L_pred', lo_name, hi_name, ax=ax)
            ax.set_xlabel('Age of loan')
            ax.set_ylabel('% of ORIG_AMT lost')
            loan_count = test.loc[test.ORIG_DTE ==
                                  date, 'LOAN_ID_count'].values[0]
            ax.set_title(
                'Projected Loss: {0} loans from {1}'.format(loan_count, date))
            ax.legend(loc="lower right")
            # plot settings
            plt.tight_layout()
            plotname = '{2}.{1}.{0}.png'.format(loan_count, date, trial_i)
            plt.savefig(os.path.join(output_dir_path, plotname),
                        dpi=300, bbox_inches='tight')
            # plt.show()
            plt.close('all')
예제 #4
0
def main(args):
    ############################################################
    # READ/PROCESS/CLEAN DATA
    ############################################################

    BASE_PATH = os.path.join(ROOT_PATH, 'data')
    DIR_PATH = os.path.join(BASE_PATH, args.dataname)
    DATA_PATH = os.path.join(DIR_PATH, 'vintage_analysis', 'data')
    EXPORT_PATH = os.path.join(DIR_PATH, 'vintage_analysis', 'results')
    ECON_PATH = os.path.join(BASE_PATH, 'economic')
    FILENAME = args.filename
    savemodel = args.DO_SAVE

    df = pd.read_csv(os.path.join(DATA_PATH, FILENAME),
                     parse_dates=['PRD', 'ORIG_DTE'])

    # attach econ vars
    df_econ = pd.read_csv(os.path.join(ECON_PATH, 'agg_ntnl_mnthly.csv'),
                          parse_dates=['DATE'])
    df = df.merge(df_econ,
                  how='left',
                  left_on='PRD',
                  right_on='DATE',
                  copy=False)

    # delete unnecessary variables
    del df['DATE'], df['Unnamed: 0']

    # change date format
    df.loc[:, 'PRD'] = df.loc[:, 'PRD'].dt.to_period('m')
    df.loc[:, 'ORIG_DTE'] = df.loc[:, 'ORIG_DTE'].dt.to_period('m')

    # create age and other vars
    df['AGE'] = (df['PRD'] - df['ORIG_DTE']).astype(int)
    df['dflt_pct'] = df['DFLT_AMT'] / df['ORIG_AMT_sum']
    df['did_dflt'] = 1 * (df['dflt_pct'] > 0)
    df['net_loss_pct'] = 0
    df.loc[df['did_dflt'] == 1,
           'net_loss_pct'] = df['NET_LOSS_AMT'] / df['DFLT_AMT']

    # what we ultiamtely want to predict
    df['dflt_loss_pct'] = df['NET_LOSS_AMT'] / df['ORIG_AMT_sum']

    # create other variables
    regex = re.compile('_wv$')
    wghted_cols = [regex.sub('', c) for c in df.columns if regex.search(c)]
    for col in wghted_cols:
        df['{0}_cv'.format(col)] = np.sqrt(
            df['{0}_wv'.format(col)]) / df['{0}_wm'.format(col)]

    # drop columns with too many NA values
    df = utility.drop_NA_cols(df)

    # remove all NA rows
    a = df.shape
    df.dropna(axis=0, how='any', inplace=True)
    print('Reduced rows from {0} -> {1}'.format(a, df.shape))

    # isolate covariates
    regex = re.compile('^MI_TYPE|^MI_PCT')
    all_vars = [
        v for v in df.columns if v not in MAIN_VARS and not regex.search(v)
    ]

    ############################################################
    # MODEL SPECS
    ############################################################
    # Stage 1
    selected = ['UNEMP', 'HPI', 'rGDP', 'ORIG_AMT_sum']
    gbm_formula1 = 'did_dflt ~ -1 + {0}'.format(' + '.join(selected))
    kw1 = {
        'learning_rate': 0.1,
        'max_depth': 3,
        'max_features': 0.5,
        'min_impurity_decrease': 0.0001,
        'n_estimators': 10,
        'subsample': 0.1
    }

    # Stage 2
    # selected2 = ['np.log(ORIG_AMT_sum)*cr(AGE, df=5)', 'PROP_TYP_MH_wm*DTI_wm',
    #              'LIBOR', 'ORIG_TRM_cv', 'ORIG_RT_wm*MR',
    #              'ORIG_CHN_C_wm*np.log(ORIG_AMT_sum)', 'DTI_wm*UNEMP',
    #              '(OCC_STAT_P_wm+OCC_STAT_S_wm)', '(PURPOSE_P_wm+PURPOSE_R_wm)',
    #              '(ORIG_CHN_C_wm+ORIG_CHN_R_wm)',
    #              '(PROP_TYP_CP_wm+PROP_TYP_MH_wm+PROP_TYP_PU_wm+PROP_TYP_SF_wm)']
    # gam_formula2 = ('np.log(dflt_pct) ~ {0}'.format(' + '.join(selected2)))
    rfr_formula2 = ('np.log(dflt_pct) ~ -1 + {0}'.format(' + '.join(all_vars)))
    kw2 = {
        'bootstrap': False,
        'max_features': 0.333,
        'min_impurity_decrease': 1e-10,
        'n_estimators': 20
    }

    # Stage 3
    # selected3 = ['AGE*(UNEMP + MR)', '(DTI_wm + DTI_wv) * UNEMP', 'HPI', 'LIBOR',
    #              'PROP_TYP_CP_wm + PROP_TYP_MH_wm', 'np.sqrt(LOAN_ID_count)']
    # gam_formula3 = ('net_loss_pct ~ {0}'.format(' + '.join(selected3)))
    rfr_formula3 = ('net_loss_pct ~ -1 + {0}'.format(' + '.join(all_vars)))
    kw3 = {
        'n_estimators': 50,
        'max_features': 0.1,
        'min_impurity_decrease': 1e-10
    }

    # define model_choice
    model_specs = [['GBC', gbm_formula1, kw1], ['RFR', rfr_formula2, kw2],
                   ['RFR', rfr_formula3, kw3]]

    # create new folder if not exist
    if not os.path.exists(EXPORT_PATH):
        print('\nCreating results directory...')
        os.makedirs(EXPORT_PATH)
    output_dir_name = '.'.join(
        [m[0] for m in model_specs] + [FILENAME] +
        [datetime.datetime.now().strftime("%y%m%d%H%M%S")])
    output_dir_path = os.path.join(EXPORT_PATH, output_dir_name)
    if not os.path.exists(output_dir_path):
        print('\nCreating directory at export location...')
        os.makedirs(output_dir_path)

    path_index = 1
    for train, test, trial_i in utility.train_test_splitter(
            df, 0.1, 'ORIG_DTE'):
        train_pos = train[train['dflt_pct'] > 0]

        # stage 1
        train['PD_pred'], test['PD_pred'] = fit_stage1(model_specs[0], train,
                                                       test, True)

        # model 1
        model1 = get_fitted_model(train, test, model_specs[0])

        # stage 2
        train['EAD_pred'], test['EAD_pred'] = fit_stage2(
            model_specs[1], train_pos, test, True, train)
        # model 2
        model2 = get_fitted_model(train_pos, test, model_specs[1])

        # stage 3
        train['LGD_pred'], test['LGD_pred'] = fit_stage3(
            model_specs[2], train_pos, test, True, train)
        # model 3
        model3 = get_fitted_model(train_pos, test, model_specs[2])



        train['L_pred'] = train['PD_pred'] * \
            train['EAD_pred'] * train['LGD_pred']
        test['L_pred'] = test['PD_pred'] * test['EAD_pred'] * test['LGD_pred']
        test_pos = test[test['dflt_pct'] > 0]

        pathname = str(path_index)

        train.to_csv(pathname)

        if savemodel == True:
            utility.save_3stages(model1, model2, model3, pathname)

        path_index += 1

        # get bootstraps
        print('\nRunning bootstraps...')
        btstrp_size = 4
        btstrp_3stage = bootstrap.get_btstrp(fit_3stages, model_specs, train,
                                             test, btstrp_size)
        # stage 1 bootstraps
        btstrp_stage1 = bootstrap.get_btstrp(fit_stage1, model_specs[0], train,
                                             test, 1)
        # stage 2 bootstraps
        btstrp_stage2 = bootstrap.get_btstrp(fit_stage2, model_specs[1],
                                             train_pos, test_pos, 1)
        # stage 2 bootstraps
        btstrp_stage3 = bootstrap.get_btstrp(fit_stage3, model_specs[2],
                                             train_pos, test_pos, 1)

        vin_id, x, lo_name, hi_name = 'ORIG_DTE', 'AGE', '2.5%', '97.5%'

        # compile bootstrapped data for each stages
        df_all = pd.concat(
            [test[[vin_id, x, 'dflt_loss_pct', 'L_pred']], btstrp_3stage],
            axis=1)
        df_stage1 = pd.concat(
            [test[[vin_id, x, 'did_dflt', 'PD_pred']], btstrp_stage1], axis=1)
        df_stage2 = pd.concat(
            [test_pos[[vin_id, x, 'dflt_pct', 'EAD_pred']], btstrp_stage2],
            axis=1)
        df_stage3 = pd.concat(
            [test_pos[[vin_id, x, 'net_loss_pct', 'LGD_pred']], btstrp_stage3],
            axis=1)

        for date, dall in df_all.groupby(vin_id):
            print('\nGenerating plots for {0}...'.format(date))
            ds = []
            for df_ in [df_stage1, df_stage2, df_stage3]:
                to_append = df_[df_[vin_id] == date]
                # remove vin_id column
                del to_append[vin_id]
                ds.append(to_append)
            del dall[vin_id]

            fig, axes = plt.subplots(2, 2, figsize=(10, 10))

            # stage 1 roc
            ax, d1 = axes[0, 0], ds[0]
            fpr, tpr = utility.get_roc_curve(train['did_dflt'],
                                             train['PD_pred'])
            roc_auc = utility.get_auc(fpr, tpr)
            ax.plot(fpr,
                    tpr,
                    label='Train AUC = {0:.2f}'.format(roc_auc),
                    **PLOT_PARAMS['train roc curve'])

            fpr, tpr = utility.get_roc_curve(d1['did_dflt'], d1['PD_pred'])
            roc_auc = utility.get_auc(fpr, tpr)
            ax.plot(fpr,
                    tpr,
                    label='Test AUC = {0:.2f}'.format(roc_auc),
                    **PLOT_PARAMS['test roc curve'])

            ax.plot([-0.5, 1.5], [-0.5, 1.5], **PLOT_PARAMS['actual line'])
            ax.set_xlim([-0.05, 1.05])
            ax.set_ylim([-0.05, 1.05])
            ax.set_xlabel('False Positive Rate')
            ax.set_ylabel('True Positive Rate')
            ax.set_title('Probability of Default: ROC curve')
            ax.legend(loc="lower right")

            # stage 2 predicted vs. actual
            ax, d2 = axes[0, 1], ds[1]

            ax.plot([-0.5, 1.5], [-0.5, 1.5], **PLOT_PARAMS['actual line'])
            c, d = train['EAD_pred'], train['dflt_pct']
            ax.scatter(c,
                       d,
                       label='Train RMSE: {0:.2E}'.format(((c - d)**2).mean()),
                       **PLOT_PARAMS['train'])
            a, b = d2['EAD_pred'], d2['dflt_pct']
            ax.scatter(a,
                       b,
                       label='Test RMSE: {0:.2E}'.format(((a - b)**2).mean()),
                       **PLOT_PARAMS['test'])
            xymax = min(0.5, max(a.max(), b.max()) * 1.05)
            xymin = max(-0.01, min(a.min(), b.min()) * 0.95)
            ax.set_xlim([xymin, xymax])
            ax.set_ylim([xymin, xymax])
            ax.set_xlabel('Predicted')
            ax.set_ylabel('Actual')
            ax.set_title('Exposure at Default: % balance at default')
            ax.legend(loc="lower right")

            # # stage 2 bootstrap actual vs. predicted
            # ax, d2 = axes[0, 1], ds[1]
            # bootstrap.plot_btstrp(d2, 'dflt_pct', 'dflt_pct', 'EAD_pred',
            #                       lo_name, hi_name, ax=ax)
            # ax.set_xlabel('Actual')
            # ax.set_ylabel('Predicted')
            # ax.set_title('Exposure at Default: % balance at default')
            # ax.legend(loc="lower right")

            # stage 3 predicted vs. actual
            ax, d3 = axes[1, 0], ds[2]

            ax.plot([-10, 10], [-10, 10], **PLOT_PARAMS['actual line'])
            c, d = train['LGD_pred'], train['net_loss_pct']
            ax.scatter(c,
                       d,
                       label='Train RMSE: {0:.2E}'.format(((c - d)**2).mean()),
                       **PLOT_PARAMS['train'])
            a, b = d3['LGD_pred'], d3['net_loss_pct']
            ax.scatter(a,
                       b,
                       label='Test RMSE: {0:.2E}'.format(((a - b)**2).mean()),
                       **PLOT_PARAMS['test'])

            xymax = min(2, max(a.max(), b.max()) * 1.05)
            xymin = max(-0.5, min(a.min(), b.min()) * 0.95)
            ax.set_xlim([xymin, xymax])
            ax.set_ylim([xymin, xymax])
            ax.set_xlabel('Predicted')
            ax.set_ylabel('Actual')
            ax.set_title('Loss given Default: % lost at default')
            ax.legend(loc="lower right")

            # # stage 3 bootstrap actual vs. predicted
            # ax, d3 = axes[1, 0], ds[2]
            # bootstrap.plot_btstrp(d3, 'net_loss_pct', 'net_loss_pct', 'LGD_pred',
            #                       lo_name, hi_name, ax=ax)
            # ax.set_xlabel('Actual')
            # ax.set_ylabel('Predicted')
            # ax.set_title('Loss given Default: % lost at default')
            # ax.legend(loc="lower right")

            # 3 stage bootstrap cumulative
            ax = axes[1, 1]
            cumsum = dall.set_index(x).cumsum()
            bootstrap.plot_btstrp(cumsum.reset_index(),
                                  x,
                                  'dflt_loss_pct',
                                  'L_pred',
                                  lo_name,
                                  hi_name,
                                  ax=ax)
            ax.set_xlabel('Age of loan')
            ax.set_ylabel('% of ORIG_AMT lost')
            loan_count = test.loc[test.ORIG_DTE == date,
                                  'LOAN_ID_count'].values[0]
            ax.set_title('Projected Loss: {0} loans from {1}'.format(
                loan_count, date))
            ax.legend(loc="lower right")
            # plot settings
            plt.tight_layout()
            plotname = '{2}.{1}.{0}.png'.format(loan_count, date, trial_i)
            plt.savefig(os.path.join(output_dir_path, plotname),
                        dpi=300,
                        bbox_inches='tight')
            plt.show()
            plt.clf()