def define_inner_modules(self, name, is_training, activations, filter_shapes, strides, bias_shapes, ksizes, pool_strides): self.layers = {} # first convolutional layer self.layers["conv0"] = mod.ConvolutionalLayerWithBatchNormalizationModule("conv0", bias_shapes[0][-1], is_training, 0.0, 1.0, 0.5, activations[0], filter_shapes[0], strides[0], bias_shapes[0]) # first max-pooling layer self.layers["pool0"] = mod.MaxPoolingModule("pool0", ksizes[0], pool_strides[0]) # second convolutional layer self.layers["conv1"] = mod.ConvolutionalLayerWithBatchNormalizationModule("conv1", bias_shapes[1][-1], is_training, 0.0, 1.0, 0.5, activations[1], filter_shapes[1], strides[1], bias_shapes[1]) # second max-pooling layer self.layers["pool1"] = mod.MaxPoolingModule("pool1", ksizes[0], pool_strides[0]) self.layers["flat_pool1"] = mod.FlattenModule("flat_pool1") # first fully-connected layer self.layers["fc0"] = mod.FullyConnectedLayerWithBatchNormalizationModule("fc0", bias_shapes[2][-1], is_training, 0.0, 1.0, 0.5, activations[2], int(np.prod(np.array(bias_shapes[1]) / np.array(pool_strides[1]))), np.prod(bias_shapes[2])) # second fully-connected layer self.layers["fc1"] = mod.FullyConnectedLayerWithBatchNormalizationModule("fc1", bias_shapes[3][-1], is_training, 0.0, 1.0, 0.5, activations[3], np.prod(bias_shapes[2]), np.prod(bias_shapes[3])) # connections self.layers["pool0"].add_input(self.layers["conv0"]) self.layers["conv1"].add_input(self.layers["pool0"]) self.layers["pool1"].add_input(self.layers["conv1"]) self.layers["flat_pool1"].add_input(self.layers["pool1"]) self.layers["fc0"].add_input(self.layers["flat_pool1"]) self.layers["fc1"].add_input(self.layers["fc0"]) # set input and output self.input_module = self.layers["conv0"] self.output_module = self.layers["fc1"]
def define_inner_modules(self, name, activations, filter_shapes, bias_shapes, ksizes, pool_strides, keep_prob): self.layers = {} # first convolutional layer self.layers["conv0"] = mod.TimeConvolutionalLayerModule( "conv0", activations[0], filter_shapes[0], [1, 1, 1, 1], bias_shapes[0]) lateral_filter_shape = filter_shapes[0] tmp = lateral_filter_shape[2] lateral_filter_shape[2] = lateral_filter_shape[3] lateral_filter_shape[3] = tmp self.layers["lateral0"] = mod.Conv2DModule("lateral0", lateral_filter_shape, [1, 1, 1, 1]) # first max-pooling layer self.layers["pool0"] = mod.MaxPoolingModule("pool0", ksizes[0], pool_strides[0]) # second convolutional layer self.layers["conv1"] = mod.TimeConvolutionalLayerModule( name + "conv1", activations[1], filter_shapes[1], [1, 1, 1, 1], bias_shapes[1]) lateral_filter_shape = filter_shapes[1] tmp = lateral_filter_shape[2] lateral_filter_shape[2] = lateral_filter_shape[3] lateral_filter_shape[3] = tmp self.layers["lateral1"] = mod.Conv2DModule("lateral1", lateral_filter_shape, [1, 1, 1, 1]) # second max-pooling layer self.layers["pool1"] = mod.MaxPoolingModule("pool1", ksizes[0], pool_strides[0]) self.layers["flat_pool1"] = mod.FlattenModule("flat_pool1") # first fully-connected layer self.layers["fc0"] = mod.FullyConnectedLayerModule( "fc0", activations[2], int(np.prod(np.array(bias_shapes[1]) / np.array(pool_strides[1]))), np.prod(bias_shapes[2])) # dropout self.layers["dropout0"] = mod.DropoutModule("dropout0", keep_prob) # second fully-connected layer self.layers["fc1"] = mod.FullyConnectedLayerModule( "fc1", activations[3], np.prod(bias_shapes[2]), np.prod(bias_shapes[3])) # connections self.layers["lateral0"].add_input(self.layers["conv0"].preactivation) self.layers["conv0"].add_input(self.layers["lateral0"], -1) self.layers["pool0"].add_input(self.layers["conv0"]) self.layers["conv1"].add_input(self.layers["pool0"], 0) self.layers["lateral1"].add_input(self.layers["conv1"].preactivation) self.layers["conv1"].add_input(self.layers["lateral1"], -1) self.layers["pool1"].add_input(self.layers["conv1"]) self.layers["flat_pool1"].add_input(self.layers["pool1"]) self.layers["fc0"].add_input(self.layers["flat_pool1"]) self.layers["dropout0"].add_input(self.layers["fc0"]) self.layers["fc1"].add_input(self.layers["dropout0"]) # set input and output self.input_module = self.layers["conv0"] self.output_module = self.layers["fc1"]
def define_inner_modules(self, name, is_training, activations, filter_shapes, bias_shapes, ksizes, pool_strides, keep_prob): self.layers = {} # first convolutional layer self.layers["conv0"] = mod.TimeConvolutionalLayerWithBatchNormalizationModule("conv0", bias_shapes[0][-1], is_training, 0.0, 1.0, 0.5, activations[0], filter_shapes[0], [1,1,1,1], bias_shapes[0]) lateral_filter_shape = filter_shapes[0] tmp = lateral_filter_shape[2] lateral_filter_shape[2] = lateral_filter_shape[3] lateral_filter_shape[3] = tmp self.layers["lateral0"] = mod.Conv2DModule("lateral0", lateral_filter_shape, [1,1,1,1]) self.layers["lateral0_batchnorm"] = mod.BatchNormalizationModule("lateral0_batchnorm", lateral_filter_shape[-1], is_training, beta_init=0.0, gamma_init=0.1, ema_decay_rate=0.5, moment_axes=[0,1,2], variance_epsilon=1e-3) # first max-pooling layer self.layers["pool0"] = mod.MaxPoolingModule("pool0", ksizes[0], pool_strides[0]) # second convolutional layer self.layers["conv1"] = mod.TimeConvolutionalLayerWithBatchNormalizationModule(name + "conv1", bias_shapes[1][-1], is_training, 0.0, 1.0, 0.5, activations[1], filter_shapes[1], [1,1,1,1], bias_shapes[1]) lateral_filter_shape = filter_shapes[1] tmp = lateral_filter_shape[2] lateral_filter_shape[2] = lateral_filter_shape[3] lateral_filter_shape[3] = tmp self.layers["lateral1"] = mod.Conv2DModule("lateral1", lateral_filter_shape, [1,1,1,1]) self.layers["lateral1_batchnorm"] = mod.BatchNormalizationModule("lateral1_batchnorm", lateral_filter_shape[-1], is_training, beta_init=0.0, gamma_init=0.1, ema_decay_rate=0.5, moment_axes=[0,1,2], variance_epsilon=1e-3) # second max-pooling layer self.layers["pool1"] = mod.MaxPoolingModule("pool1", ksizes[0], pool_strides[0]) self.layers["flat_pool1"] = mod.FlattenModule("flat_pool1") # first fully-connected layer self.layers["fc0"] = mod.FullyConnectedLayerModule("fc0", activations[2], int(np.prod(np.array(bias_shapes[1]) / np.array(pool_strides[1]))), np.prod(bias_shapes[2])) # dropout self.layers["dropout0"] = mod.DropoutModule("dropout0", keep_prob) # second fully-connected layer self.layers["fc1"] = mod.FullyConnectedLayerModule("fc1", activations[3], np.prod(bias_shapes[2]), np.prod(bias_shapes[3])) # connections self.layers["lateral0"].add_input(self.layers["conv0"].preactivation) self.layers["lateral0_batchnorm"].add_input(self.layers["lateral0"]) self.layers["conv0"].add_input(self.layers["lateral0_batchnorm"], -1) self.layers["pool0"].add_input(self.layers["conv0"]) self.layers["conv1"].add_input(self.layers["pool0"], 0) self.layers["lateral1"].add_input(self.layers["conv1"].preactivation) self.layers["lateral1_batchnorm"].add_input(self.layers["lateral1"]) self.layers["conv1"].add_input(self.layers["lateral1_batchnorm"], -1) self.layers["pool1"].add_input(self.layers["conv1"]) self.layers["flat_pool1"].add_input(self.layers["pool1"]) self.layers["fc0"].add_input(self.layers["flat_pool1"]) self.layers["dropout0"].add_input(self.layers["fc0"]) self.layers["fc1"].add_input(self.layers["dropout0"]) # set input and output self.input_module = self.layers["conv0"] self.output_module = self.layers["fc1"]
def define_inner_modules(self, name, is_training, activations, conv_filter_shapes, bias_shapes, ksizes, pool_strides, topdown_filter_shapes, topdown_output_shapes, keep_prob, FLAGS): # create all modules of the network # ----- self.layers = {} with tf.name_scope('input_normalization'): self.layers["inp_norm"] = m.NormalizationModule("inp_norm") with tf.name_scope('convolutional_layer_0'): #self.layers["conv0"] = m.TimeConvolutionalLayerWithBatchNormalizationModule("conv0", bias_shapes[0][-1], is_training, 0.0, 1.0, 0.5, activations[0], [5,5,1,32], [1,1,1,1], [1,28,28,32]) self.layers["conv0"] = m.TimeConvolutionalLayerModule("conv0", activations[0], [3,3,1,32], [1,1,1,1], [1,28,28,32]) with tf.name_scope('pooling_layer_0'): self.layers["pool0"] = m.MaxPoolingModule("pool0", ksizes[0], pool_strides[0]) with tf.name_scope('convolutional_layer_1'): #self.layers["conv1"] = m.TimeConvolutionalLayerWithBatchNormalizationModule("conv1", bias_shapes[1][-1], is_training, 0.0, 1.0, 0.5, activations[1], [5,5,32,64], [1,1,1,1], [1,28,28,64]) self.layers["conv1"] = m.TimeConvolutionalLayerModule("conv1", activations[1], [5,5,32,64], [1,1,1,1], [1,14,14,64]) with tf.name_scope('pooling_layer_1'): self.layers["pool1"] = m.MaxPoolingModule("pool1", ksizes[0], pool_strides[1]) with tf.name_scope('global_average_pooling'): self.layers['gap'] = m.GapModule('gap') with tf.name_scope('fully_connected_layer_0'): self.layers["fc0"] = m.FullyConnectedModule("fc0", bias_shapes[1][-1], np.prod(bias_shapes[2])) # connect all modules of the network in a meaningful way # ----- with tf.name_scope('wiring_of_modules'): self.layers["conv0"].add_input(self.layers["inp_norm"], 0) self.layers["pool0"].add_input(self.layers["conv0"]) self.layers["conv1"].add_input(self.layers["pool0"], 0) self.layers["pool1"].add_input(self.layers["conv1"]) self.layers["gap"].add_input(self.layers["pool1"]) self.layers["fc0"].add_input(self.layers["gap"]) with tf.name_scope('input_output'): self.input_module = self.layers["inp_norm"] self.output_module = self.layers["fc0"]
def define_inner_modules(self, name, is_training, activations, conv_filter_shapes, bias_shapes, ksizes, pool_strides, topdown_filter_shapes, topdown_output_shapes, keep_prob, FLAGS): # create all modules of the network # ----- self.layers = {} with tf.name_scope('input_normalization'): self.layers["inp_norm"] = m.NormalizationModule("inp_norm") with tf.name_scope('convolutional_layer_0'): if FLAGS.batchnorm: self.layers["conv0"] = m.TimeConvolutionalLayerWithBatchNormalizationModule("conv0", bias_shapes[0][-1], is_training, 0.0, 1.0, 0.5, activations[0], conv_filter_shapes[0], [1,1,1,1], bias_shapes[0]) else: self.layers["conv0"] = m.TimeConvolutionalLayerModule("conv0", activations[0], conv_filter_shapes[0], [1,1,1,1], bias_shapes[0]) with tf.name_scope('lateral_layer_0'): lateral_filter_shape = conv_filter_shapes[0] tmp = lateral_filter_shape[2] lateral_filter_shape[2] = lateral_filter_shape[3] lateral_filter_shape[3] = tmp self.layers["lateral0"] = m.Conv2DModule("lateral0", lateral_filter_shape, [1,1,1,1]) self.layers["lateral0_batchnorm"] = m.BatchNormalizationModule("lateral0_batchnorm", lateral_filter_shape[-1], is_training, beta_init=0.0, gamma_init=0.1, ema_decay_rate=0.5, moment_axes=[0,1,2], variance_epsilon=1e-3) with tf.name_scope('pooling_layer_0'): self.layers["pool0"] = m.MaxPoolingModule("pool0", ksizes[0], pool_strides[0]) with tf.name_scope('dropout_layer_0'): self.layers['dropoutc0'] = m.DropoutModule('dropoutc0', keep_prob=keep_prob) with tf.name_scope('convolutional_layer_1'): if FLAGS.batchnorm: self.layers["conv1"] = m.TimeConvolutionalLayerWithBatchNormalizationModule("conv1", bias_shapes[1][-1], is_training, 0.0, 1.0, 0.5, activations[1], conv_filter_shapes[1], [1,1,1,1], bias_shapes[1]) else: self.layers["conv1"] = m.TimeConvolutionalLayerModule("conv1", activations[1], conv_filter_shapes[1], [1,1,1,1], bias_shapes[1]) with tf.name_scope('topdown_layer_0'): self.layers["topdown0"] = m.Conv2DTransposeModule("topdown0", topdown_filter_shapes[0], [1,2,2,1], topdown_output_shapes[0]) self.layers["topdown0_batchnorm"] = m.BatchNormalizationModule("topdown0_batchnorm",topdown_output_shapes[0][-1], is_training, beta_init=0.0, gamma_init=0.1, ema_decay_rate=0.5, moment_axes=[0,1,2], variance_epsilon=1e-3) with tf.name_scope('lateral_layer_1'): lateral_filter_shape = conv_filter_shapes[1] tmp = lateral_filter_shape[2] lateral_filter_shape[2] = lateral_filter_shape[3] lateral_filter_shape[3] = tmp self.layers["lateral1"] = m.Conv2DModule("lateral1", lateral_filter_shape, [1,1,1,1]) self.layers["lateral1_batchnorm"] = m.BatchNormalizationModule("lateral1_batchnorm", lateral_filter_shape[-1], is_training, beta_init=0.0, gamma_init=0.1, ema_decay_rate=0.5, moment_axes=[0,1,2], variance_epsilon=1e-3) with tf.name_scope('pooling_layer_1'): self.layers["pool1"] = m.MaxPoolingModule("pool1", ksizes[0], pool_strides[1]) self.layers["flatpool1"] = m.FlattenModule("flatpool1") with tf.name_scope('dropout_layer_1'): self.layers['dropoutc1'] = m.DropoutModule('dropoutc1', keep_prob=keep_prob) with tf.name_scope('fully_connected_layer_0'): if FLAGS.batchnorm: self.layers["fc0"] = m.FullyConnectedLayerWithBatchNormalizationModule("fc0", bias_shapes[-1][-1], is_training, 0.0, 1.0, 0.5, activations[2], int(np.prod(np.array(bias_shapes[1]) / np.array(pool_strides[1]))), np.prod(bias_shapes[2])) else: self.layers["fc0"] = m.FullyConnectedLayerModule("fc0", activations[2], int(np.prod(np.array(bias_shapes[1]) / np.array(pool_strides[1]))), np.prod(bias_shapes[2])) # connect all modules of the network in a meaningful way # ----- with tf.name_scope('wiring_of_modules'): self.layers["conv0"].add_input(self.layers["inp_norm"], 0) self.layers["pool0"].add_input(self.layers["conv0"]) self.layers["dropoutc0"].add_input(self.layers["pool0"]) self.layers["conv1"].add_input(self.layers["dropoutc0"], 0) self.layers["pool1"].add_input(self.layers["conv1"]) self.layers["dropoutc1"].add_input(self.layers["pool1"]) self.layers["flatpool1"].add_input(self.layers["dropoutc1"]) self.layers["fc0"].add_input(self.layers["flatpool1"]) if "L" in FLAGS.architecture: if FLAGS.batchnorm: self.layers["lateral0"].add_input(self.layers["conv0"].preactivation) self.layers["lateral0_batchnorm"].add_input(self.layers["lateral0"]) self.layers["conv0"].add_input(self.layers["lateral0_batchnorm"], -1) self.layers["lateral1"].add_input(self.layers["conv1"].preactivation) self.layers["lateral1_batchnorm"].add_input(self.layers["lateral1"]) self.layers["conv1"].add_input(self.layers["lateral1_batchnorm"], -1) else: self.layers["lateral0"].add_input(self.layers["conv0"].preactivation) self.layers["conv0"].add_input(self.layers["lateral0"], -1) self.layers["lateral1"].add_input(self.layers["conv1"].preactivation) self.layers["conv1"].add_input(self.layers["lateral1"], -1) if "T" in FLAGS.architecture: if FLAGS.batchnorm: self.layers["topdown0_batchnorm"].add_input(self.layers["topdown0"]) self.layers["conv0"].add_input(self.layers["topdown0_batchnorm"], -1) self.layers["topdown0"].add_input(self.layers["conv1"].preactivation) else: self.layers["conv0"].add_input(self.layers["topdown0"], -1) self.layers["topdown0"].add_input(self.layers["conv1"].preactivation) with tf.name_scope('input_output'): self.input_module = self.layers["inp_norm"] self.output_module = self.layers["fc0"]