def define_inner_modules(self, name, is_training, activations, conv_filter_shapes, bias_shapes, ksizes, pool_strides, topdown_filter_shapes, topdown_output_shapes, keep_prob, FLAGS): # create all modules of the network # ----- self.layers = {} with tf.name_scope('input_normalization'): self.layers["inp_norm"] = m.NormalizationModule("inp_norm") with tf.name_scope('convolutional_layer_0'): #self.layers["conv0"] = m.TimeConvolutionalLayerWithBatchNormalizationModule("conv0", bias_shapes[0][-1], is_training, 0.0, 1.0, 0.5, activations[0], [5,5,1,32], [1,1,1,1], [1,28,28,32]) self.layers["conv0"] = m.TimeConvolutionalLayerModule("conv0", activations[0], [3,3,1,32], [1,1,1,1], [1,28,28,32]) with tf.name_scope('pooling_layer_0'): self.layers["pool0"] = m.MaxPoolingModule("pool0", ksizes[0], pool_strides[0]) with tf.name_scope('convolutional_layer_1'): #self.layers["conv1"] = m.TimeConvolutionalLayerWithBatchNormalizationModule("conv1", bias_shapes[1][-1], is_training, 0.0, 1.0, 0.5, activations[1], [5,5,32,64], [1,1,1,1], [1,28,28,64]) self.layers["conv1"] = m.TimeConvolutionalLayerModule("conv1", activations[1], [5,5,32,64], [1,1,1,1], [1,14,14,64]) with tf.name_scope('pooling_layer_1'): self.layers["pool1"] = m.MaxPoolingModule("pool1", ksizes[0], pool_strides[1]) with tf.name_scope('global_average_pooling'): self.layers['gap'] = m.GapModule('gap') with tf.name_scope('fully_connected_layer_0'): self.layers["fc0"] = m.FullyConnectedModule("fc0", bias_shapes[1][-1], np.prod(bias_shapes[2])) # connect all modules of the network in a meaningful way # ----- with tf.name_scope('wiring_of_modules'): self.layers["conv0"].add_input(self.layers["inp_norm"], 0) self.layers["pool0"].add_input(self.layers["conv0"]) self.layers["conv1"].add_input(self.layers["pool0"], 0) self.layers["pool1"].add_input(self.layers["conv1"]) self.layers["gap"].add_input(self.layers["pool1"]) self.layers["fc0"].add_input(self.layers["gap"]) with tf.name_scope('input_output'): self.input_module = self.layers["inp_norm"] self.output_module = self.layers["fc0"]
def define_inner_modules(self, name, is_training, trainable_input, IMAGE_HEIGHT, IMAGE_WIDTH, IMAGE_CHANNELS, keep_prob, FLAGS): # book-keeping of dimensions self.shapes = {} # create all modules of the network # ----- self.layers = {} with tf.name_scope('input_normalization'): self.layers["inp_norm"] = m.NormalizationModule("inp_norm") with tf.name_scope('convolutional_layer_0'): self.layers["conv0"] = m.ConvolutionalLayerWithBatchNormalizationModule("conv0", \ 32, is_training, 0.0, 1.0, 0.5, \ lrn_relu, [4,4,IMAGE_CHANNELS,32], [1,2,2,1], [1, IMAGE_HEIGHT//2, IMAGE_WIDTH//2, 32]) with tf.name_scope('convolutional_layer_1'): self.layers["conv1"] = m.ConvolutionalLayerWithBatchNormalizationModule("conv1", \ 16, is_training, 0.0, 1.0, 0.5, \ lrn_relu, [2,2, 32, 16], [1,2,2,1], [1, IMAGE_HEIGHT//4, IMAGE_WIDTH//4, 16]) with tf.name_scope('convolutional_layer_2'): self.layers["conv2"] = m.ConvolutionalLayerWithBatchNormalizationModule("conv2", \ 4, is_training, 0.0, 1.0, 0.5, \ lrn_relu, [1, 1, 16, 4], [1,1,1,1], [1, IMAGE_HEIGHT//4, IMAGE_HEIGHT//4, 4]) with tf.name_scope('trainable_input_canvas'): self.layers['bottleneck_switch'] = m.SwitchModule('bottleneck_switch', trainable_input) self.layers['bottleneck_canvas'] = m.BiasModule('bottleneck_canvas', [FLAGS.batchsize,IMAGE_HEIGHT//4, IMAGE_HEIGHT//4, 4]) with tf.name_scope('convolutional_layer_3'): self.layers["conv3"] = m.ConvolutionalLayerWithBatchNormalizationModule("conv3", \ 16, is_training, 0.0, 1.0, 0.5, \ lrn_relu, [1, 1, 4, 16], [1,1,1,1], [1, IMAGE_HEIGHT//4, IMAGE_HEIGHT//4, 16]) with tf.name_scope('convolutional_layer_4'): self.layers["conv4"] = m.ConvolutionalLayerWithBatchNormalizationModule("conv4", \ 32, is_training, 0.0, 1.0, 0.5, \ lrn_relu, [1, 1, 16, 32], [1,1,1,1], [1, IMAGE_HEIGHT//4, IMAGE_HEIGHT//4, 32]) with tf.name_scope('deconvolutional_layer_0'): self.layers["deconv0"] = m.Conv2DTransposeModule("deconv0", \ [4,4,IMAGE_CHANNELS,32], [1,4,4,1], [FLAGS.batchsize,IMAGE_HEIGHT,IMAGE_WIDTH,IMAGE_CHANNELS]) self.layers["deconv0_act"] = m.ActivationModule("deconv0_act", \ lrn_relu) # connect all modules of the network in a meaningful way # ----- with tf.name_scope('wiring_of_modules'): self.layers["conv0"].add_input(self.layers["inp_norm"]) self.layers["conv1"].add_input(self.layers["conv0"]) self.layers["conv2"].add_input(self.layers["conv1"]) self.layers["bottleneck_switch"].add_input(self.layers["conv2"]) self.layers["bottleneck_switch"].add_input(self.layers["bottleneck_canvas"]) self.layers["conv3"].add_input(self.layers["bottleneck_switch"]) self.layers["conv4"].add_input(self.layers["conv3"]) self.layers["deconv0"].add_input(self.layers["conv4"]) self.layers["deconv0_act"].add_input(self.layers["deconv0"]) with tf.name_scope('input_output'): self.input_module = self.layers["inp_norm"] self.output_module = self.layers["deconv0_act"]
def define_inner_modules(self, name, is_training, trainable_input, IMAGE_HEIGHT, IMAGE_WIDTH, IMAGE_CHANNELS, keep_prob, FLAGS): # book-keeping of dimensions self.shapes = {} # create all modules of the network # ----- self.layers = {} with tf.name_scope('input_normalization'): self.layers["inp_norm"] = m.NormalizationModule("inp_norm") with tf.name_scope('convolutional_layer_0'): self.layers["conv0"] = m.ConvolutionalLayerWithBatchNormalizationModule("conv0", \ 32, is_training, 0.0, 1.0, 0.5, \ lrn_relu, [3,3,IMAGE_CHANNELS,32], [1,2,2,1], [1, IMAGE_HEIGHT//2, IMAGE_WIDTH//2, 32]) # self.layers["conv0"] = m.ConvolutionalLayerModule("conv0", \ # lrn_relu, [3,3,IMAGE_CHANNELS,32], [1,2,2,1], [1, IMAGE_HEIGHT//2, IMAGE_WIDTH//2, 32]) # with tf.name_scope('pooling_layer_0'): # self.layers["pool0"] = m.MaxPoolingModule("pool0", [1,2,2,1], [1,2,2,1]) with tf.name_scope('convolutional_layer_1'): self.layers["conv1"] = m.ConvolutionalLayerWithBatchNormalizationModule("conv1", \ 16, is_training, 0.0, 1.0, 0.5, \ lrn_relu, [3, 3, 32, 16], [1,2,2,1], [1, IMAGE_HEIGHT//4, IMAGE_WIDTH//4, 16]) # self.layers["conv1"] = m.ConvolutionalLayerModule("conv1", \ # lrn_relu, [3, 3, 32, 16], [1,2,2,1], [1, IMAGE_HEIGHT//4, IMAGE_WIDTH//4, 16]) # with tf.name_scope('pooling_layer_1'): # self.layers["pool1"] = m.MaxPoolingModule("pool1", [1,2,2,1], [1,2,2,1]) with tf.name_scope('convolutional_layer_2'): self.layers["conv2"] = m.ConvolutionalLayerWithBatchNormalizationModule("conv2", \ 4, is_training, 0.0, 1.0, 0.5, \ lrn_relu, [3, 3, 16, 4], [1,2,2,1], [1, np.ceil(IMAGE_HEIGHT/8), np.ceil(IMAGE_WIDTH/8), 4]) # self.layers["conv2"] = m.ConvolutionalLayerModule("conv2", \ # lrn_relu, [3, 3, 16, 8], [1,2,2,1], [1, np.ceil(IMAGE_HEIGHT/8), np.ceil(IMAGE_WIDTH/8), 8]) # with tf.name_scope('pooling_layer_2'): # self.layers["pool2"] = m.MaxPoolingModule("pool2", [1,2,2,1], [1,2,2,1]) with tf.name_scope('trainable_input_canvas'): self.layers['bottleneck_switch'] = m.SwitchModule('bottleneck_switch', trainable_input) self.layers['bottleneck_canvas'] = m.BiasModule('bottleneck_canvas', [FLAGS.batchsize,np.ceil(IMAGE_HEIGHT/8), np.ceil(IMAGE_WIDTH/8), 4]) with tf.name_scope('deconvolutional_layer_0'): self.layers["deconv0"] = m.Conv2DTransposeModule("deconv0", \ [3,3,16,4], [1,2,2,1], [FLAGS.batchsize,IMAGE_HEIGHT//4,IMAGE_WIDTH//4,16]) # self.layers["deconv0_bn"] = m.BatchNormalizationModule("deconv0_batchnorm", \ # 8, is_training, beta_init=0.0, gamma_init=0.1, ema_decay_rate=0.5, moment_axes=[0,1,2], variance_epsilon=1e-3) self.layers["deconv0_act"] = m.ActivationModule("deconv0_act", \ lrn_relu) with tf.name_scope('deconvolutional_layer_1'): self.layers["deconv1"] = m.Conv2DTransposeModule("deconv1", \ [3,3,32,16], [1,2,2,1], [FLAGS.batchsize,IMAGE_HEIGHT//2,IMAGE_WIDTH//2,32]) # self.layers["deconv0_bn"] = m.BatchNormalizationModule("deconv1_batchnorm", \ # 16, is_training, beta_init=0.0, gamma_init=0.1, ema_decay_rate=0.5, moment_axes=[0,1,2], variance_epsilon=1e-3) self.layers["deconv1_act"] = m.ActivationModule("deconv1_act", \ lrn_relu) with tf.name_scope('deconvolutional_layer_2'): self.layers["deconv2"] = m.Conv2DTransposeModule("deconv2", \ [3,3,IMAGE_CHANNELS,32], [1,2,2,1], [FLAGS.batchsize,IMAGE_HEIGHT,IMAGE_WIDTH,IMAGE_CHANNELS]) self.layers["deconv2_act"] = m.ActivationModule("deconv2_act", \ lrn_relu) # connect all modules of the network in a meaningful way # ----- with tf.name_scope('wiring_of_modules'): self.layers["conv0"].add_input(self.layers["inp_norm"]) self.layers["conv1"].add_input(self.layers["conv0"]) self.layers["conv2"].add_input(self.layers["conv1"]) self.layers["bottleneck_switch"].add_input(self.layers["conv2"]) self.layers["bottleneck_switch"].add_input(self.layers["bottleneck_canvas"]) self.layers["deconv0"].add_input(self.layers["bottleneck_switch"]) self.layers["deconv0_act"].add_input(self.layers["deconv0"]) self.layers["deconv1"].add_input(self.layers["deconv0_act"]) self.layers["deconv1_act"].add_input(self.layers["deconv1"]) self.layers["deconv2"].add_input(self.layers["deconv1_act"]) self.layers["deconv2_act"].add_input(self.layers["deconv2"]) with tf.name_scope('input_output'): self.input_module = self.layers["inp_norm"] self.output_module = self.layers["deconv2_act"]
def define_inner_modules(self, name, is_training, activations, conv_filter_shapes, bias_shapes, ksizes, pool_strides, topdown_filter_shapes, topdown_output_shapes, keep_prob, FLAGS): # create all modules of the network # ----- self.layers = {} with tf.name_scope('input_normalization'): self.layers["inp_norm"] = m.NormalizationModule("inp_norm") with tf.name_scope('convolutional_layer_0'): if FLAGS.batchnorm: self.layers["conv0"] = m.TimeConvolutionalLayerWithBatchNormalizationModule("conv0", bias_shapes[0][-1], is_training, 0.0, 1.0, 0.5, activations[0], conv_filter_shapes[0], [1,1,1,1], bias_shapes[0]) else: self.layers["conv0"] = m.TimeConvolutionalLayerModule("conv0", activations[0], conv_filter_shapes[0], [1,1,1,1], bias_shapes[0]) with tf.name_scope('lateral_layer_0'): lateral_filter_shape = conv_filter_shapes[0] tmp = lateral_filter_shape[2] lateral_filter_shape[2] = lateral_filter_shape[3] lateral_filter_shape[3] = tmp self.layers["lateral0"] = m.Conv2DModule("lateral0", lateral_filter_shape, [1,1,1,1]) self.layers["lateral0_batchnorm"] = m.BatchNormalizationModule("lateral0_batchnorm", lateral_filter_shape[-1], is_training, beta_init=0.0, gamma_init=0.1, ema_decay_rate=0.5, moment_axes=[0,1,2], variance_epsilon=1e-3) with tf.name_scope('pooling_layer_0'): self.layers["pool0"] = m.MaxPoolingWithArgmaxModule("pool0", ksizes[0], pool_strides[0]) with tf.name_scope('dropout_layer_0'): self.layers['dropoutc0'] = m.DropoutModule('dropoutc0', keep_prob=keep_prob) with tf.name_scope('convolutional_layer_1'): if FLAGS.batchnorm: self.layers["conv1"] = m.TimeConvolutionalLayerWithBatchNormalizationModule("conv1", bias_shapes[1][-1], is_training, 0.0, 1.0, 0.5, activations[1], conv_filter_shapes[1], [1,1,1,1], bias_shapes[1]) else: self.layers["conv1"] = m.TimeConvolutionalLayerModule("conv1", activations[1], conv_filter_shapes[1], [1,1,1,1], bias_shapes[1]) with tf.name_scope('topdown_layer_0'): self.layers["topdown0"] = m.Conv2DTransposeModule("topdown0", topdown_filter_shapes[0], [1,2,2,1], topdown_output_shapes[0]) self.layers["topdown0_batchnorm"] = m.BatchNormalizationModule("topdown0_batchnorm",topdown_output_shapes[0][-1], is_training, beta_init=0.0, gamma_init=0.1, ema_decay_rate=0.5, moment_axes=[0,1,2], variance_epsilon=1e-3) with tf.name_scope('lateral_layer_1'): lateral_filter_shape = conv_filter_shapes[1] tmp = lateral_filter_shape[2] lateral_filter_shape[2] = lateral_filter_shape[3] lateral_filter_shape[3] = tmp self.layers["lateral1"] = m.Conv2DModule("lateral1", lateral_filter_shape, [1,1,1,1]) self.layers["lateral1_batchnorm"] = m.BatchNormalizationModule("lateral1_batchnorm", lateral_filter_shape[-1], is_training, beta_init=0.0, gamma_init=0.1, ema_decay_rate=0.5, moment_axes=[0,1,2], variance_epsilon=1e-3) with tf.name_scope('pooling_layer_1'): self.layers["pool1"] = m.MaxPoolingWithArgmaxModule("pool1", ksizes[0], pool_strides[1]) self.layers["flatpool1"] = m.FlattenModule("flatpool1") with tf.name_scope('dropout_layer_1'): self.layers['dropoutc1'] = m.DropoutModule('dropoutc1', keep_prob=keep_prob) with tf.name_scope('fully_connected_layer_0'): if FLAGS.batchnorm: self.layers["fc0"] = m.FullyConnectedLayerWithBatchNormalizationModule("fc0", bias_shapes[-1][-1], is_training, 0.0, 1.0, 0.5, activations[2], int(np.prod(np.array(bias_shapes[1]) / np.array(pool_strides[1]))), np.prod(bias_shapes[2])) else: self.layers["fc0"] = m.FullyConnectedLayerModule("fc0", activations[2], int(np.prod(np.array(bias_shapes[1]) / np.array(pool_strides[1]))), np.prod(bias_shapes[2])) with tf.name_scope('unpooling_layer_1'): self.layers["unpool1"] = m.UnpoolingModule("unpool1", ksizes[0], pool_strides[0]) with tf.name_scope('unconvolution_layer_1'): self.layers["unconv1"] = m.UnConvolutionModule("unconv1", conv_filter_shapes[1],[1,1,1,1], topdown_output_shapes[0][:1]+ bias_shapes[1][1:]) with tf.name_scope('unpooling_layer_0'): self.layers["unpool0"] = m.UnpoolingModule("unpool0", ksizes[0], pool_strides[0]) with tf.name_scope('unconvolution_layer_0'): self.layers["unconv0"] = m.UnConvolutionModule("unconv0", conv_filter_shapes[0],[1,1,1,1],topdown_output_shapes[0]) # connect all modules of the network in a meaningful way # ----- with tf.name_scope('wiring_of_modules'): self.layers["conv0"].add_input(self.layers["inp_norm"], 0) self.layers["pool0"].add_input(self.layers["conv0"]) self.layers["dropoutc0"].add_input(self.layers["pool0"]) self.layers["conv1"].add_input(self.layers["dropoutc0"], 0) self.layers["pool1"].add_input(self.layers["conv1"]) self.layers["dropoutc1"].add_input(self.layers["pool1"]) self.layers["flatpool1"].add_input(self.layers["dropoutc1"]) self.layers["fc0"].add_input(self.layers["flatpool1"]) #try out unpooling self.layers["unpool1"].add_input(self.layers["pool1"]) self.layers["unconv1"].add_input(self.layers["unpool1"]) self.layers["unconv1"].add_input(self.layers["conv1"]) self.layers["unpool0"].add_input(self.layers["unconv1"]) self.layers["unpool0"].add_input(self.layers["pool0"]) self.layers["unconv0"].add_input(self.layers["unpool0"]) self.layers["unconv0"].add_input(self.layers["conv0"]) if "L" in FLAGS.architecture: if FLAGS.batchnorm: self.layers["lateral0"].add_input(self.layers["conv0"].preactivation) self.layers["lateral0_batchnorm"].add_input(self.layers["lateral0"]) self.layers["conv0"].add_input(self.layers["lateral0_batchnorm"], -1) self.layers["lateral1"].add_input(self.layers["conv1"].preactivation) self.layers["lateral1_batchnorm"].add_input(self.layers["lateral1"]) self.layers["conv1"].add_input(self.layers["lateral1_batchnorm"], -1) else: self.layers["lateral0"].add_input(self.layers["conv0"].preactivation) self.layers["conv0"].add_input(self.layers["lateral0"], -1) self.layers["lateral1"].add_input(self.layers["conv1"].preactivation) self.layers["conv1"].add_input(self.layers["lateral1"], -1) if "T" in FLAGS.architecture: if FLAGS.batchnorm: self.layers["topdown0_batchnorm"].add_input(self.layers["topdown0"]) self.layers["conv0"].add_input(self.layers["topdown0_batchnorm"], -1) self.layers["topdown0"].add_input(self.layers["conv1"].preactivation) else: self.layers["conv0"].add_input(self.layers["topdown0"], -1) self.layers["topdown0"].add_input(self.layers["conv1"].preactivation) with tf.name_scope('input_output'): self.input_module = self.layers["inp_norm"] self.output_module = self.layers["fc0"]