def main_arg(x,y,grid_count): print grid_count ofac = 4 #average dt of entire time series diffs = [x[i+1]-x[i] for i in range(len(x)-1)] avgdt = np.average(diffs) #make time start from 0 x_from0 = modules.phase_start_correct(x) periods,mag,ph,fr,fi,amp_corr = modules.take_lomb(x_from0,y,ofac,avgdt) #get mean of values mean_array = np.average(y) #correct magnitude and phase for spectral leakage zoomfact = 1000 half_annual_mag,half_annual_phase = modules.periodic_interp(fr,fi,zoomfact,periods,365.25/2.,len(y),amp_corr) annual_mag,annual_phase = modules.periodic_interp(fr,fi,zoomfact,periods,365.25,len(y),amp_corr) #correct for phase shift as data starts in Oct 2004 n_off = 273.25 if n_off > 365.25/2: n_off = n_off-(365.25/2) offset = ((np.pi*2)/(365.25/2))*n_off half_annual_phase = half_annual_phase + offset if half_annual_phase > np.pi: half_annual_phase = -np.pi + (half_annual_phase - np.pi) n_off = 273.25 offset = ((np.pi*2)/(365.25))*n_off annual_phase = annual_phase + offset if annual_phase > np.pi: annual_phase = -np.pi + (annual_phase - np.pi) #convert phase to time half_annual_phase = modules.convert_phase_units_actual_single(half_annual_phase,6) annual_phase = modules.convert_phase_units_actual_single(annual_phase,12) #np.save('mags_phases/mag_spectrums/%i'%(grid_count),mag) #np.save('mags_phases/phase_spectrums/%i'%(grid_count),ph) #np.save('mags_phases/periods',periods) return (half_annual_mag,half_annual_phase,annual_mag,annual_phase,mean_array)
def run_LSP(valid_times, vals, start_point, end_point, x, time_diff): vals = vals[start_point:end_point] valid_times = valid_times[start_point:end_point] if len(valid_times) > 0: #change times to go from 0 - for accurate phase first_time = valid_times[0] valid_times = valid_times - first_time #window window = np.hamming(len(vals)) mean = np.mean(vals) vals = vals - mean vals = vals * window NOUT = 0.5 * 4 * 1 * len(vals) NOUT = int(NOUT) #take lomb fa, fb, mag, ph = lomb_phase.lomb(valid_times, vals, NOUT) periods = 1. / fa amp_corr = 1. / (sum(window) / len(window)) mag = mag * amp_corr #calculations for mags and phases of key periods closest_daily_period_index = min( range(len(periods)), key=lambda i: abs(periods[i] - daily_period)) daily_mag = mag[closest_daily_period_index] daily_phase = ph[closest_daily_period_index] #adjust daily_phase to solar time correction_f = ((2 * np.pi) / 24) * time_diff daily_phase = daily_phase + (correction_f) if daily_phase < -np.pi: diff = np.abs(daily_phase) - np.pi daily_phase = np.pi - diff if daily_phase > np.pi: diff = np.abs(daily_phase) - np.pi daily_phase = -np.pi + diff #convert phase to hours daily_phase = modules.convert_phase_units_actual_single( daily_phase, 24) else: print 'nan' daily_mag = float('NaN') daily_phase = float('NaN') return (daily_mag, daily_phase, x)
def run_LSP(model_data, x): print obs_refs[x] vals = model_data #check obs vals are valid valid = vals >= 0 vals = vals[valid] model_time_val = model_time[valid] model_date_val = model_date[valid] full_times = modules.date_process(model_date, model_time, start_year) if timeres == 'M': full_times_year = full_times[:12] else: full_times_year = full_times[:8766] full_times_day = full_times[:24] valid_times = modules.date_process(model_date_val, model_time_val, start_year) site_lon = obs_lons[x] #convert site_lon to 0 to 360 degs if site_lon < 0: site_lon = 360 - np.abs(site_lon) #transform from UTC time to solar time sun_time = lon_step_time * site_lon time_diff = sun_time - 0 if time_diff > 12: time_diff = time_diff - 24 #make time start from 0 valid_times_from0 = modules.phase_start_correct(valid_times) periodic_periods = [ 1. / 4., 1. / 3., 1. / 2., 1., 365.25 / 4., 365.25 / 3., 365.25 / 2., 365.25 ] periods, mag, ph, fr, fi = modules.take_lomb_spec( valid_times_from0, vals, w=True, key_periods=periodic_periods) #get mean of values mean_array = np.average(vals) #correct all phases for start point (not actually being from 0 - just corrected to be) ph = modules.phase_start_point_correct_all(periodic_periods, ph, valid_times) key_diurnal_periods = [1. / 4., 1. / 3., 1. / 2., 1.] key_seasonal_periods = [365.25 / 4., 365.25 / 3., 365.25 / 2., 365.25] diurnal_mags = mag[:4] seasonal_mags = mag[4:] seasonal_phs = ph[4:] #get individual mags and phases daily_h3_mag = mag[0] daily_h2_mag = mag[1] daily_h1_mag = mag[2] orig_daily_mag = mag[3] daily_h3_ph = ph[0] daily_h2_ph = ph[1] daily_h1_ph = ph[2] orig_daily_ph = ph[3] seasonal_h3_mag = mag[4] seasonal_h2_mag = mag[5] seasonal_h1_mag = mag[6] annual_mag = mag[7] seasonal_h3_ph = ph[4] seasonal_h2_ph = ph[5] seasonal_h1_ph = ph[6] annual_ph = ph[7] #convert sub diurnal phases from UTC to solar time daily_h3_ph = modules.solar_time_phase_corrector(daily_h3_ph, 6, time_diff) daily_h2_ph = modules.solar_time_phase_corrector(daily_h2_ph, 24. / 3., time_diff) daily_h1_ph = modules.solar_time_phase_corrector(daily_h1_ph, 12, time_diff) orig_daily_ph = modules.solar_time_phase_corrector(orig_daily_ph, 24, time_diff) diurnal_phs = [daily_h3_ph, daily_h2_ph, daily_h1_ph, orig_daily_ph] #convolve annual cycle and harmonics to seasonal waveform for 1 year seasonal_mag, seasonal_min_ph, seasonal_max_ph, seasonal_waveform, seasonal_ff = modules.period_convolution( key_seasonal_periods, full_times_year, seasonal_mags, seasonal_phs, mean_array) #convolve diurnal cycle and harmonics to diurnal waveform for 1 day diurnal_mag, diurnal_min_ph, diurnal_max_ph, diurnal_waveform, diurnal_ff = modules.period_convolution( key_diurnal_periods, full_times_day, diurnal_mags, diurnal_phs, mean_array) #convolve all full_mag, full_min_ph, full_max_ph, full_waveform, full_ff = modules.period_convolution( periodic_periods, full_times, mag, ph, mean_array) #convert phase to time daily_h3_ph = modules.convert_phase_units_actual_single(daily_h3_ph, 6.) daily_h2_ph = modules.convert_phase_units_actual_single( daily_h2_ph, 24. / 3.) daily_h1_ph = modules.convert_phase_units_actual_single(daily_h1_ph, 12.) orig_daily_ph = modules.convert_phase_units_actual_single( orig_daily_ph, 24.) diurnal_min_ph = modules.convert_phase_units_actual_single( diurnal_min_ph, 24.) diurnal_max_ph = modules.convert_phase_units_actual_single( diurnal_max_ph, 24.) seasonal_h3_ph = modules.convert_phase_units_actual_single( seasonal_h3_ph, 3.) seasonal_h2_ph = modules.convert_phase_units_actual_single( seasonal_h2_ph, 4.) seasonal_h1_ph = modules.convert_phase_units_actual_single( seasonal_h1_ph, 6.) annual_ph = modules.convert_phase_units_actual_single(annual_ph, 12.) seasonal_min_ph = modules.convert_phase_units_actual_single( seasonal_min_ph, 12.) seasonal_max_ph = modules.convert_phase_units_actual_single( seasonal_max_ph, 12.) return (x, daily_h3_mag, daily_h3_ph, daily_h2_mag, daily_h2_ph, daily_h1_mag, daily_h1_ph, orig_daily_mag, orig_daily_ph, diurnal_mag, diurnal_min_ph, diurnal_max_ph, seasonal_h3_mag, seasonal_h3_ph, seasonal_h2_mag, seasonal_h2_ph, seasonal_h1_mag, seasonal_h1_ph, annual_mag, annual_ph, seasonal_mag, seasonal_min_ph, seasonal_max_ph, mean_array, diurnal_waveform, seasonal_waveform, full_waveform)
def run_LSP(obs_time,site_lon,x): data_valid = True #print 'lev %s'%(x) full_times_year = np.arange(0,365,1.) #check obs vals are valid valid = vals >= 0 vals = vals[valid] valid_times = obs_time[valid] #if length of vals is zero then class as invalid immediately if len(vals) == 0: data_valid = False else: #test if there if data is valid to process at each height for each site #data should not have gaps > 1 year or time_gaps = np.diff(valid_times) inv_count = 0 max_count = round(n_years/2.) for i in time_gaps: if i > 90: inv_count+=1 if inv_count >= max_count: data_valid = False print 'Persisent Data gap > 3 months' break if i > 365: data_valid = False print 'Data gap > 1 Year' break if data_valid == True: #convert site_lon to 0 to 360 degs if site_lon < 0: site_lon = 360-np.abs(site_lon) #make time start from 0 valid_times_from0 = modules.phase_start_correct(valid_times) periodic_periods = [365.25/4.,365.25/3.,365.25/2.,365.25] periods,mag,ph,fr,fi = modules.take_lomb_spec(valid_times_from0,vals,w=True,key_periods=periodic_periods) #get mean of values mean_array = np.average(vals) #correct all phases for start point (not actually being from 0 - just corrected to be) ph = modules.phase_start_point_correct_all(periodic_periods,ph,valid_times) key_seasonal_periods = [365.25/4.,365.25/3.,365.25/2.,365.25] seasonal_mags = mag[:] seasonal_phs = ph[:] seasonal_h3_mag = mag[0] seasonal_h2_mag = mag[1] seasonal_h1_mag = mag[2] annual_mag = mag[3] seasonal_h3_ph = ph[0] seasonal_h2_ph = ph[1] seasonal_h1_ph = ph[2] annual_ph = ph[3] #convolve annual cycle and harmonics to seasonal waveform for 1 year seasonal_mag,seasonal_min_ph,seasonal_max_ph,seasonal_waveform,seasonal_ff = modules.period_convolution(key_seasonal_periods,full_times_year,seasonal_mags,seasonal_phs,mean_array) #convert phase to time seasonal_h3_ph = modules.convert_phase_units_actual_single(seasonal_h3_ph,3.) seasonal_h2_ph = modules.convert_phase_units_actual_single(seasonal_h2_ph,4.) seasonal_h1_ph = modules.convert_phase_units_actual_single(seasonal_h1_ph,6.) annual_ph = modules.convert_phase_units_actual_single(annual_ph,12.) seasonal_min_ph = modules.convert_phase_units_actual_single(seasonal_min_ph,12.) seasonal_max_ph = modules.convert_phase_units_actual_single(seasonal_max_ph,12.) else: seasonal_h3_mag = -99999 seasonal_h2_mag = -99999 seasonal_h1_mag = -99999 annual_mag = -99999 seasonal_mag = -99999 seasonal_h3_ph = -99999 seasonal_h2_ph = -99999 seasonal_h1_ph = -99999 annual_ph = -99999 seasonal_max_ph = -99999 seasonal_min_ph = -99999 seasonal_waveform = np.array([-99999]*len(full_times_year)) mean_array = -99999 return x,seasonal_h3_mag,seasonal_h3_ph,seasonal_h2_mag,seasonal_h2_ph,seasonal_h1_mag,seasonal_h1_ph,annual_mag,annual_ph,seasonal_mag,seasonal_max_ph,seasonal_min_ph,seasonal_waveform,mean_array
def run_LSP(vals, x): print obs_refs[x] #check obs vals are valid valid = vals >= 0 vals = vals[valid] valid_times = obs_ref_time[valid] if timeres == 'H': full_times_year = obs_ref_time[:8766] elif timeres == 'D': full_times_year = obs_ref_time[:365] elif timeres == 'M': full_times_year = obs_ref_time[:12] full_times_day = obs_ref_time[:24] site_lon = obs_lons[x] #convert site_lon to 0 to 360 degs if site_lon < 0: site_lon = 360-np.abs(site_lon) #transform from UTC time to solar time sun_time = lon_step_time*site_lon time_diff = sun_time - 0 if time_diff > 12: time_diff = time_diff-24 #make time start from 0 valid_times_from0 = modules.phase_start_correct(valid_times) print valid_times_from0 periodic_periods = [1./4.,1./3.,1./2.,1.,365.25/4.,365.25/3.,365.25/2.,365.25] periods,mag,ph,fr,fi = modules.take_lomb_spec(valid_times_from0,vals,w=True,key_periods=periodic_periods) #get mean of values mean_array = np.average(vals) #correct all phases for start point (not actually being from 0 - just corrected to be) ph = modules.phase_start_point_correct_all(periodic_periods,ph,valid_times) key_diurnal_periods = [1./4.,1./3.,1./2.,1.] key_seasonal_periods = [365.25/4.,365.25/3.,365.25/2.,365.25] diurnal_mags = mag[:4] seasonal_mags = mag[4:] seasonal_phs = ph[4:] #get individual mags and phases daily_h3_mag = mag[0] daily_h2_mag = mag[1] daily_h1_mag = mag[2] orig_daily_mag = mag[3] daily_h3_ph = ph[0] daily_h2_ph = ph[1] daily_h1_ph = ph[2] orig_daily_ph = ph[3] seasonal_h3_mag = mag[4] seasonal_h2_mag = mag[5] seasonal_h1_mag = mag[6] annual_mag = mag[7] seasonal_h3_ph = ph[4] seasonal_h2_ph = ph[5] seasonal_h1_ph = ph[6] annual_ph = ph[7] #convert sub diurnal phases from UTC to solar time daily_h3_ph = modules.solar_time_phase_corrector(daily_h3_ph,6,time_diff) daily_h2_ph = modules.solar_time_phase_corrector(daily_h2_ph,24./3.,time_diff) daily_h1_ph = modules.solar_time_phase_corrector(daily_h1_ph,12,time_diff) orig_daily_ph = modules.solar_time_phase_corrector(orig_daily_ph,24,time_diff) diurnal_phs = [daily_h3_ph,daily_h2_ph,daily_h1_ph,orig_daily_ph] #convolve annual cycle and harmonics to seasonal waveform for 1 year seasonal_mag,seasonal_min_ph,seasonal_max_ph,seasonal_waveform,seasonal_ff = modules.period_convolution(key_seasonal_periods,full_times_year,seasonal_mags,seasonal_phs,mean_array) #convolve diurnal cycle and harmonics to diurnal waveform for 1 day diurnal_mag,diurnal_min_ph,diurnal_max_ph,diurnal_waveform,diurnal_ff = modules.period_convolution(key_diurnal_periods,full_times_day,diurnal_mags,diurnal_phs,mean_array) #convolve all full_mag,full_min_ph,full_max_ph,full_waveform,full_ff = modules.period_convolution(periodic_periods,obs_ref_time,mag,ph,mean_array) #convert phase to time daily_h3_ph = modules.convert_phase_units_actual_single(daily_h3_ph,6.) daily_h2_ph = modules.convert_phase_units_actual_single(daily_h2_ph,24./3.) daily_h1_ph = modules.convert_phase_units_actual_single(daily_h1_ph,12.) orig_daily_ph = modules.convert_phase_units_actual_single(orig_daily_ph,24.) diurnal_min_ph = modules.convert_phase_units_actual_single(diurnal_min_ph,24.) diurnal_max_ph = modules.convert_phase_units_actual_single(diurnal_max_ph,24.) seasonal_h3_ph = modules.convert_phase_units_actual_single(seasonal_h3_ph,3.) seasonal_h2_ph = modules.convert_phase_units_actual_single(seasonal_h2_ph,4.) seasonal_h1_ph = modules.convert_phase_units_actual_single(seasonal_h1_ph,6.) annual_ph = modules.convert_phase_units_actual_single(annual_ph,12.) seasonal_min_ph = modules.convert_phase_units_actual_single(seasonal_min_ph,12.) seasonal_max_ph = modules.convert_phase_units_actual_single(seasonal_max_ph,12.) return (x,daily_h3_mag,daily_h3_ph,daily_h2_mag,daily_h2_ph,daily_h1_mag,daily_h1_ph,orig_daily_mag,orig_daily_ph,diurnal_mag,diurnal_min_ph,diurnal_max_ph,seasonal_h3_mag,seasonal_h3_ph,seasonal_h2_mag,seasonal_h2_ph,seasonal_h1_mag,seasonal_h1_ph,annual_mag,annual_ph,seasonal_mag,seasonal_min_ph,seasonal_max_ph,mean_array,diurnal_waveform,seasonal_waveform,full_waveform,diurnal_ff,seasonal_ff,full_ff)
daily_model_mag,daily_model_phase = modules.periodic_interp(model_fr,model_fi,zoomfact,model_periods,1.,len(model_var),model_amp_corr) ha_obs_mag,ha_obs_phase = modules.periodic_interp(obs_fr,obs_fi,zoomfact,obs_periods,(365.25/2.),len(obs_var),obs_amp_corr) ha_model_mag,ha_model_phase = modules.periodic_interp(model_fr,model_fi,zoomfact,model_periods,(365.25/2.),len(model_var),model_amp_corr) annual_obs_mag,annual_obs_phase = modules.periodic_interp(obs_fr,obs_fi,zoomfact,obs_periods,365.25,len(obs_var),obs_amp_corr) annual_model_mag,annual_model_phase = modules.periodic_interp(model_fr,model_fi,zoomfact,model_periods,365.25,len(model_var),model_amp_corr) #correct for phase shift from sites where raw times do not start from 0 daily_obs_phase = modules.phase_start_point_correct(1.,daily_obs_phase,obs_time) daily_model_phase = modules.phase_start_point_correct(1.,daily_model_phase,model_time) ha_obs_phase = modules.phase_start_point_correct((365.25/2.),ha_obs_phase,obs_time) ha_model_phase = modules.phase_start_point_correct((365.25/2.),ha_model_phase,model_time) annual_obs_phase = modules.phase_start_point_correct(365.25,annual_obs_phase,obs_time) annual_model_phase = modules.phase_start_point_correct(365.25,annual_model_phase,model_time) #convert phase to time daily_obs_phase = modules.convert_phase_units_actual_single(daily_obs_phase,24) daily_model_phase = modules.convert_phase_units_actual_single(daily_model_phase,24) ha_obs_phase = modules.convert_phase_units_actual_single(ha_obs_phase,6) ha_model_phase = modules.convert_phase_units_actual_single(ha_model_phase,6) annual_obs_phase = modules.convert_phase_units_actual_single(annual_obs_phase,12) annual_model_phase = modules.convert_phase_units_actual_single(annual_model_phase,12) #Maske daily phase SolaR time from UTC daily_obs_phase = daily_obs_phase + time_diff daily_model_phase = daily_model_phase + time_diff if daily_obs_phase >= 24: daily_obs_phase = daily_obs_phase-24 if daily_obs_phase < 0:
periods = 1. / fa amp_corr = 1. / (sum(window) / len(window)) mag = mag * amp_corr closest_daily_period_index = min( range(len(periods)), key=lambda i: abs(periods[i] - daily_period)) daily_mag = mag[closest_daily_period_index] daily_phase = ph[closest_daily_period_index] print np.min(ph) print np.max(ph) #print vals print 'daily phase = ', daily_phase print 'daily phase = ', modules.convert_phase_units_actual_single( daily_phase, 24) #daily_phase = modules.correct_select_daily_phase_actual_single(daily_phase,lon_c,lat_c,lon_e,lat_e, site_lon) #daily_phase = modules.convert_phase_units_actual_single(daily_phase,24) print 'sun time =', sun_time print 'time diff = ', time_diff #adjust daily_phase to solar time correction_f = ((2 * np.pi) / 24) * time_diff daily_phase = daily_phase + (correction_f) if daily_phase < -np.pi: diff = np.abs(daily_phase) - np.pi daily_phase = np.pi - diff if daily_phase > np.pi: diff = np.abs(daily_phase) - np.pi
#transform from UTC time to solar time sun_time = lon_step_time * obs_lon time_diff = sun_time - 0 if time_diff > 12: time_diff = time_diff - 24 #convert daily phase from UTC to solar time daily_phase = daily_phase + ((pi2 / 24.) * time_diff) if daily_phase >= np.pi: daily_phase = -np.pi + (daily_phase - np.pi) if daily_phase < -np.pi: daily_phase = np.pi - (np.abs(daily_phase) - np.pi) #convert phase to time daily_phase_time = modules.convert_phase_units_actual_single(daily_phase, 24) ha_phase_time = modules.convert_phase_units_actual_single(ha_phase, 6) annual_phase_time = modules.convert_phase_units_actual_single(annual_phase, 12) daily_wave = daily_amp * (np.cos((pi2 * obs_times_full / 1.) - (daily_phase))) ha_wave = ha_amp * (np.cos((pi2 * obs_times_full / (365.25 / 2.)) - (ha_phase))) annual_wave = annual_amp * (np.cos((pi2 * obs_times_full / 365.25) - (annual_phase))) big_wave = daily_wave + ha_wave + annual_wave big_wave = big_wave + obs_ave daily_wave = daily_wave + obs_ave ha_wave = ha_wave + obs_ave annual_wave = annual_wave + obs_ave
def main_arg(x, y, grid_count): print grid_count ofac = 4 orig_len = len(y) print np.min(y) #cut valid data x = x[~np.isnan(y)] y = y[~np.isnan(y)] if len(y) > (orig_len / 2): #average dt of entire time series diffs = [x[i + 1] - x[i] for i in range(len(x) - 1)] avgdt = np.average(diffs) #make time start from 0 x_from0 = modules.phase_start_correct(x) periods, mag, ph, fr, fi, amp_corr = modules.take_lomb( x_from0, y, ofac, avgdt) #get mean of values mean_array = np.average(y) #correct magnitude and phase for spectral leakage zoomfact = 1000 half_annual_mag, half_annual_phase = modules.periodic_interp( fr, fi, zoomfact, periods, 365.25 / 2., len(y), amp_corr) annual_mag, annual_phase = modules.periodic_interp( fr, fi, zoomfact, periods, 365.25, len(y), amp_corr) #correct for phase shift as data starts in Oct 2004 n_off = 273.25 if n_off > 365.25 / 2: n_off = n_off - (365.25 / 2) offset = ((np.pi * 2) / (365.25 / 2)) * n_off half_annual_phase = half_annual_phase + offset if half_annual_phase > np.pi: half_annual_phase = -np.pi + (half_annual_phase - np.pi) n_off = 273.25 offset = ((np.pi * 2) / (365.25)) * n_off annual_phase = annual_phase + offset if annual_phase > np.pi: annual_phase = -np.pi + (annual_phase - np.pi) #convert phase to time half_annual_phase = modules.convert_phase_units_actual_single( half_annual_phase, 6) annual_phase = modules.convert_phase_units_actual_single( annual_phase, 12) else: half_annual_mag = -99999 half_annual_phase = -99999 annual_mag = -99999 annual_phase = -99999 mean_array = -99999 #np.save('mags_phases/mag_spectrums/%i'%(grid_count),mag) #np.save('mags_phases/phase_spectrums/%i'%(grid_count),ph) #np.save('mags_phases/periods',periods) return (half_annual_mag, half_annual_phase, annual_mag, annual_phase, mean_array)
ax2.xaxis.set_major_formatter(dt.DateFormatter('%d/%m/%Y')) ax2.plot(obs_datetimes, obs_var, color='black', alpha=0.3) ax2.plot(model_datetimes, model_var, color='red', alpha=0.3) ax2.plot(model_datetimes, obs_wave, color='black', label='Obs. Sinusoidal Waveform', linewidth=2) ax2.plot(model_datetimes, model_wave, color='red', label='GEOS 2x2.5 Sinusoidal Waveform', linewidth=2) #convert phase to time obs_phase = modules.convert_phase_units_actual_single(obs_annual_phase, 12) model_phase = modules.convert_phase_units_actual_single(model_annual_phase, 12) print obs_phase print model_phase ax2.grid(True) leg = ax2.legend(loc=1, prop={'size': 21}) leg.get_frame().set_alpha(0.4) ax2.set_xlabel('Time', fontsize=21) ax2.set_ylabel('Concentration (ppb)', fontsize=21) #ax.set_title(r'Time Series of Surface $O_3$ at %s, for Obs. & Model'%(site),fontsize=18) ax.tick_params(axis='both', which='major', labelsize=18) ax2.tick_params(axis='both', which='major', labelsize=18) #for tick in ax.get_xaxis().get_major_ticks():