예제 #1
0
 def flow(self):
     self.ori_embed = speaker_embedding(self.ori_spk,
                                        hp.SPK_NUM,
                                        hp.EMBED_SIZE,
                                        reuse=False)  # [N, 1] -> [N, E]
     self.aim_embed = speaker_embedding(self.aim_spk,
                                        hp.SPK_NUM,
                                        hp.EMBED_SIZE,
                                        reuse=True)  # [N, 1] -> [N, E]
     with tf.variable_scope(self.model_name, reuse=tf.AUTO_REUSE):
         self.ori_out, self.ori_mu, self.ori_log_var = generator(
             self.ori_embed,
             self.ori_feat,
             is_training=self.is_training,
             reuse=False,
             scope_name='generator')
         self.aim_out, self.aim_mu, self.aim_log_var = generator(
             self.aim_embed,
             self.ori_feat,
             is_training=self.is_training,
             reuse=True,
             scope_name='generator')
         self.cycle_ori_out, self.cycle_mu, self.cycle_log_var = generator(
             self.ori_embed,
             self.aim_out,
             is_training=self.is_training,
             reuse=True,
             scope_name='generator')
         self.predict_real_P = discriminator(self.aim_feat,
                                             reuse=False,
                                             scope_name='discriminator')
         self.predict_fake_P = discriminator(self.aim_out,
                                             reuse=True,
                                             scope_name='discriminator')
예제 #2
0
 def _create_GANs(self):
     """
     创建生成器、判别器相应符号
     :return:
     """
     self.fakeA = generator(self.realB_ph, False, name='Gb2a')
     self.fakeB = generator(self.realA_ph, False, name='Ga2b')
     self.cycA = generator(self.fakeB, True, name='Gb2a')
     self.cycB = generator(self.fakeA, True, name='Ga2b')
     self.Da_fake = discriminator(self.fakeA, False, name='Da')
     self.Db_fake = discriminator(self.fakeB, False, name='Db')
     self.Da_real = discriminator(self.realA_ph, True, name='Da')
     self.Db_real = discriminator(self.realB_ph, True, name='Db')
     self.Da_fake_sample = discriminator(self.fakeA_ph, True, name='Da')
     self.Db_fake_sample = discriminator(self.fakeB_ph, True, name='Db')
예제 #3
0
 def inference(self):
     self.ori_mel = tf.placeholder(name='ori_mel', shape=[None, None, hp.CODED_DIM], dtype=tf.float32)
     # self.aim_spk = tf.placeholder(name='aim_spk', shape=[None, None], dtype=tf.int64)
     ### self.flow()
     # self.aim_embed = speaker_embedding(self.aim_spk, hp.SPK_NUM, hp.EMBED_SIZE) # [N, 1] -> [N, E]
     with tf.variable_scope(self.model_name, reuse=tf.AUTO_REUSE):
         self.aim_out, self.aim_mu, self.aim_log_var = generator(self.ori_mel,
                                                                 is_training=self.is_training,
                                                                 scope_name='generator')
예제 #4
0
    def __init__(self, **kwargs):
        # hyperparams
        self.__dict__.update(self.default_hyperparams)
        self.__dict__.update(kwargs)
        # deserialize some hyperparams
        for k in ('image_shape', 'tf_config_proto'):
            self.__dict__[k] = json.loads(self.__dict__[k])
        assert isinstance(self.image_shape, list) and len(self.image_shape)==3
        self.tf_config = tf.ConfigProto(**self.tf_config_proto)

        # instantiate optimizers
        self.disc_optimizer = tf.train.AdamOptimizer(self.disc_learning_rate)
        self.gen_optimizer = tf.train.AdamOptimizer(self.gen_learning_rate)

        # instantiate models
        self.discriminator_A = modules.discriminator(input_shape=self.image_shape)
        self.discriminator_B = modules.discriminator(input_shape=self.image_shape)
        self.generator_A2B = modules.generator(input_shape=self.image_shape,
            n_resnet_blocks=self.generator_n_resnet_blocks)
        self.generator_B2A = modules.generator(input_shape=self.image_shape,
            n_resnet_blocks=self.generator_n_resnet_blocks)
        for model in (self.discriminator_A, self.discriminator_B, self.generator_A2B, self.generator_B2A):
            # 'sgd' and 'mse' are not actually used, just placeholders for compiling
            model.compile('sgd', 'mse')
예제 #5
0
    def flow(self):
        # 不需要embeding了
        # self.ori_embed = speaker_embedding(self.ori_spk, hp.SPK_NUM, hp.EMBED_SIZE, reuse=False) # [N, 1] -> [N, E]
        # self.aim_embed = speaker_embedding(self.aim_spk, hp.SPK_NUM, hp.EMBED_SIZE, reuse=True) # [N, 1] -> [N, E]
        with tf.variable_scope(self.model_name, reuse=tf.AUTO_REUSE):
            # self.ori_out, self.ori_mu, self.ori_log_var = generator(self.ori_mel,
            #                                                         is_training=self.is_training,
            #                                                         reuse=False,
            #                                                         scope_name='generator')
            # # 没有自己变自己的需求了

            self.aim_out, self.aim_mu, self.aim_log_var = generator(self.ori_mel,
                                                                    is_training=self.is_training,
                                                                    reuse=tf.AUTO_REUSE,
                                                                    scope_name='generator')
예제 #6
0
    def __init__(self, args, config):
        self.args = args

        model_name = config.get('config', 'experiment')
        task_channel = config.getint('task', 'channel')
        task_module_type = config.get('task', 'classifier_type')
        image_fc = config.getint('task', 'image_fc')
        measurement_fc = config.getint('task', 'measurement_fc')
        branch_fc = config.getint('task', 'branch_fc')

        self.source_only = config.getboolean('config', 'source_only')
        self.t2s_task = config.getboolean('config', 't2s_task')
        self.style_weights = config.getlist('discriminator', 'style_weights')

        self.share_all_image = config.getboolean('generator',
                                                 'share_all_image')

        if not self.source_only:
            discriminator_channel = config.getint('discriminator', 'channel')
            self.discriminator_dropout_prob = config.getfloat(
                'discriminator', 'dropout_prob')
            self.patch = config.getboolean('discriminator', 'patch')
            self.generator_type = config.get('generator', 'type')
            generator_channel = config.getint('generator', 'channel')
            self.generator_out_channel = config.getint('generator',
                                                       'out_channel')
            self.generator = modules.generator(generator_channel, config, args)
            self.discriminator = modules.discriminator(discriminator_channel,
                                                       group_size=1)
        # List of 4 branch modules
        self.task = modules.task(task_channel,
                                 image_fc,
                                 measurement_fc,
                                 branch_fc,
                                 self.args.training,
                                 classifier_type=task_module_type)

        self.summary = dict()
예제 #7
0
파일: pixel_da.py 프로젝트: yjhong89/DA_CIL
    def __init__(self, args, config):
        self.args = args

        model_name = config.get('config', 'experiment') 
        discriminator_channel = config.getint('discriminator', 'channel')
        generator_channel = config.getint('generator', 'channel')
        classifier_channel = config.getint('task', 'channel')

        self.generator_type = config.get('generator', 'type')
        self.generator_out_channel = config.getint('generator', 'out_channel')
        self.generator = modules.generator(generator_channel, config, self.args)
        self.discriminator = modules.discriminator(discriminator_channel, group_size=self.args.batch_size)
        self.patch = config.getboolean('discriminator', 'patch')
        self.discriminator_dropout_prob = config.getfloat('discriminator', 'dropout_prob')    
        self.t2s_task = config.getboolean('config', 't2s_task')            

        self.style_weights = config.getlist('discriminator', 'style_weights')

        self.transferred_classifier = modules.task_classifier(classifier_channel, num_classes=3, training=self.args.training) 

        self.transferred_task_weight = config.getfloat(model_name, 'task_weight')
        self.t2s_task_weight = config.getfloat(model_name, 't2s_task_weight')

        self.summary = dict()