예제 #1
0
파일: models.py 프로젝트: pc2752/sep_synth
    def model(self):
        """
        The main model function, takes and returns tensors.
        Defined in modules.

        """

        with tf.variable_scope('Singer_Model') as scope:
            self.singer_emb, self.singer_logits = modules.singer_network(self.input_placeholder_singer, self.is_train)
            self.singer_classes = tf.argmax(self.singer_logits, axis=-1)
            self.singer_probs = tf.nn.softmax(self.singer_logits)

        with tf.variable_scope('Phone_Model') as scope:
            self.pho_logits = modules.phone_network(self.input_placeholder, self.is_train)
            self.pho_classes = tf.argmax(self.pho_logits, axis=-1)
            self.pho_probs = tf.nn.softmax(self.pho_logits)

        with tf.variable_scope('F0_Model') as scope:
            self.f0_logits = modules.f0_network(self.input_placeholder, self.is_train)
            self.f0_classes = tf.argmax(self.f0_logits, axis=-1)
            self.f0_probs = tf.nn.softmax(self.f0_logits)

        with tf.variable_scope('Final_Model') as scope:
            self.output = modules.full_network(self.input_placeholder, self.phone_onehot_labels, self.f0_onehot_labels, self.singer_emb, self.is_train)
            # self.output_decoded = tf.nn.sigmoid(self.output)
            # self.output_wav_decoded = tf.nn.sigmoid(self.output_wav)
        with tf.variable_scope('Discriminator') as scope: 
            self.D_real = modules.discriminator((self.output_placeholder-0.5)*2, self.phone_onehot_labels, self.f0_onehot_labels, self.singer_onehot_labels, self.is_train)
            scope.reuse_variables()
            self.D_fake = modules.discriminator(self.output, self.phone_onehot_labels, self.f0_onehot_labels, self.singer_onehot_labels, self.is_train)
예제 #2
0
def synth_file(file_name="nus_MCUR_sing_10.hdf5",
               singer_index=0,
               file_path=config.wav_dir,
               show_plots=True,
               save_file="GBO"):

    stat_file = h5py.File(config.stat_dir + 'stats.hdf5', mode='r')
    max_feat = np.array(stat_file["feats_maximus"])
    min_feat = np.array(stat_file["feats_minimus"])
    with tf.Graph().as_default():

        input_placeholder = tf.placeholder(tf.float32,
                                           shape=(config.batch_size,
                                                  config.max_phr_len, 66),
                                           name='input_placeholder')
        tf.summary.histogram('inputs', input_placeholder)

        output_placeholder = tf.placeholder(tf.float32,
                                            shape=(config.batch_size,
                                                   config.max_phr_len, 64),
                                            name='output_placeholder')

        f0_input_placeholder = tf.placeholder(tf.float32,
                                              shape=(config.batch_size,
                                                     config.max_phr_len, 1),
                                              name='f0_input_placeholder')

        rand_input_placeholder = tf.placeholder(tf.float32,
                                                shape=(config.batch_size,
                                                       config.max_phr_len, 4),
                                                name='rand_input_placeholder')

        prob = tf.placeholder_with_default(1.0, shape=())

        phoneme_labels = tf.placeholder(tf.int32,
                                        shape=(config.batch_size,
                                               config.max_phr_len),
                                        name='phoneme_placeholder')
        phone_onehot_labels = tf.one_hot(indices=tf.cast(
            phoneme_labels, tf.int32),
                                         depth=42)

        phoneme_labels_2 = tf.placeholder(tf.float32,
                                          shape=(config.batch_size,
                                                 config.max_phr_len, 42),
                                          name='phoneme_placeholder_1')
        # phone_onehot_labels = tf.one_hot(indices=tf.cast(phoneme_labels, tf.int32), depth=42)

        singer_labels = tf.placeholder(tf.float32,
                                       shape=(config.batch_size),
                                       name='singer_placeholder')
        singer_onehot_labels = tf.one_hot(indices=tf.cast(
            singer_labels, tf.int32),
                                          depth=12)

        with tf.variable_scope('phone_Model') as scope:
            # regularizer = tf.contrib.layers.l2_regularizer(scale=0.1)
            pho_logits = modules.phone_network(input_placeholder)
            pho_classes = tf.argmax(pho_logits, axis=-1)
            pho_probs = tf.nn.softmax(pho_logits)

        with tf.variable_scope('Final_Model') as scope:
            voc_output = modules.final_net(singer_onehot_labels,
                                           f0_input_placeholder,
                                           phoneme_labels_2)
            voc_output_decoded = tf.nn.sigmoid(voc_output)
            scope.reuse_variables()
            voc_output_3 = modules.final_net(singer_onehot_labels,
                                             f0_input_placeholder, pho_probs)
            voc_output_3_decoded = tf.nn.sigmoid(voc_output_3)

            # scope.reuse_variables()

            # voc_output_gen = modules.final_net(singer_onehot_labels, f0_input_placeholder, pho_probs)
            # voc_output_decoded_gen = tf.nn.sigmoid(voc_output_gen)

        # with tf.variable_scope('singer_Model') as scope:
        #     singer_embedding, singer_logits = modules.singer_network(input_placeholder, prob)
        #     singer_classes = tf.argmax(singer_logits, axis=-1)
        #     singer_probs = tf.nn.softmax(singer_logits)

        with tf.variable_scope('Generator') as scope:
            voc_output_2 = modules.GAN_generator(singer_onehot_labels,
                                                 phoneme_labels_2,
                                                 f0_input_placeholder,
                                                 rand_input_placeholder)

        with tf.variable_scope('Discriminator') as scope:
            D_fake = modules.GAN_discriminator(voc_output_2,
                                               singer_onehot_labels,
                                               phone_onehot_labels,
                                               f0_input_placeholder)

        saver = tf.train.Saver(max_to_keep=config.max_models_to_keep)

        init_op = tf.group(tf.global_variables_initializer(),
                           tf.local_variables_initializer())
        sess = tf.Session()

        sess.run(init_op)

        ckpt = tf.train.get_checkpoint_state(config.log_dir)

        if ckpt and ckpt.model_checkpoint_path:
            print("Using the model in %s" % ckpt.model_checkpoint_path)
            saver.restore(sess, ckpt.model_checkpoint_path)
        # saver.restore(sess, './log/model.ckpt-3999')

        # import pdb;pdb.set_trace()

        voc_file = h5py.File(config.voice_dir + file_name, "r")

        # speaker_file = h5py.File(config.voice_dir+speaker_file, "r")

        feats = np.array(voc_file['feats'])
        # feats = utils.input_to_feats('./54228_chorus.wav_ori_vocals.wav', mode = 1)

        f0 = feats[:, -2]

        # import pdb;pdb.set_trace()

        med = np.median(f0[f0 > 0])

        f0[f0 == 0] = med

        f0 = f0 - 12

        feats[:, -2] = feats[:, -2] - 12

        f0_nor = (f0 - min_feat[-2]) / (max_feat[-2] - min_feat[-2])

        feats = (feats - min_feat) / (max_feat - min_feat)

        pho_target = np.array(voc_file["phonemes"])

        in_batches_f0, nchunks_in = utils.generate_overlapadd(
            f0_nor.reshape(-1, 1))

        in_batches_pho, nchunks_in_pho = utils.generate_overlapadd(
            pho_target.reshape(-1, 1))

        in_batches_feat, kaka = utils.generate_overlapadd(feats)

        # import pdb;pdb.set_trace()

        out_batches_feats = []

        out_batches_feats_1 = []

        out_batches_feats_gan = []

        for in_batch_f0, in_batch_pho_target, in_batch_feat in zip(
                in_batches_f0, in_batches_pho, in_batches_feat):

            in_batch_f0 = in_batch_f0.reshape(
                [config.batch_size, config.max_phr_len, 1])

            in_batch_pho_target = in_batch_pho_target.reshape(
                [config.batch_size, config.max_phr_len])

            # in_batch_pho_target = sess.run(pho_probs, feed_dict = {input_placeholder: in_batch_feat})

            output_feats, output_feats_1, output_feats_gan = sess.run(
                [voc_output_decoded, voc_output_3_decoded, voc_output_2],
                feed_dict={
                    input_placeholder:
                    in_batch_feat,
                    f0_input_placeholder:
                    in_batch_f0,
                    phoneme_labels_2:
                    in_batch_pho_target,
                    singer_labels:
                    np.ones(30) * singer_index,
                    rand_input_placeholder:
                    np.random.normal(-1.0,
                                     1.0,
                                     size=[30, config.max_phr_len, 4])
                })

            out_batches_feats.append(output_feats)

            out_batches_feats_1.append(output_feats_1)

            out_batches_feats_gan.append(output_feats_gan / 2 + 0.5)

            # out_batches_voc_stft_phase.append(output_voc_stft_phase)

        # import pdb;pdb.set_trace()

        out_batches_feats = np.array(out_batches_feats)
        # import pdb;pdb.set_trace()
        out_batches_feats = utils.overlapadd(out_batches_feats, nchunks_in)

        out_batches_feats_1 = np.array(out_batches_feats_1)
        # import pdb;pdb.set_trace()
        out_batches_feats_1 = utils.overlapadd(out_batches_feats_1, nchunks_in)

        out_batches_feats_gan = np.array(out_batches_feats_gan)
        # import pdb;pdb.set_trace()
        out_batches_feats_gan = utils.overlapadd(out_batches_feats_gan,
                                                 nchunks_in)

        feats = feats * (max_feat - min_feat) + min_feat

        out_batches_feats = out_batches_feats * (max_feat[:-2] -
                                                 min_feat[:-2]) + min_feat[:-2]

        out_batches_feats_1 = out_batches_feats_1 * (
            max_feat[:-2] - min_feat[:-2]) + min_feat[:-2]

        out_batches_feats_gan = out_batches_feats_gan * (
            max_feat[:-2] - min_feat[:-2]) + min_feat[:-2]

        out_batches_feats = out_batches_feats[:len(feats)]

        out_batches_feats_1 = out_batches_feats_1[:len(feats)]

        out_batches_feats_gan = out_batches_feats_gan[:len(feats)]

        first_op = np.concatenate([out_batches_feats, feats[:, -2:]], axis=-1)

        pho_op = np.concatenate([out_batches_feats_1, feats[:, -2:]], axis=-1)

        gan_op = np.concatenate([out_batches_feats_gan, feats[:, -2:]],
                                axis=-1)

        # import pdb;pdb.set_trace()
        gan_op = np.ascontiguousarray(gan_op)

        pho_op = np.ascontiguousarray(pho_op)

        first_op = np.ascontiguousarray(first_op)

        if show_plots:

            plt.figure(1)

            ax1 = plt.subplot(311)

            plt.imshow(feats[:, :60].T, aspect='auto', origin='lower')

            ax1.set_title("Ground Truth Vocoder Features", fontsize=10)

            ax2 = plt.subplot(312, sharex=ax1, sharey=ax1)

            plt.imshow(out_batches_feats[:, :60].T,
                       aspect='auto',
                       origin='lower')

            ax2.set_title("Cross Entropy Output Vocoder Features", fontsize=10)

            ax3 = plt.subplot(313, sharex=ax1, sharey=ax1)

            ax3.set_title("GAN Vocoder Output Features", fontsize=10)

            # plt.imshow(out_batches_feats_1[:,:60].T,aspect='auto',origin='lower')
            #
            # plt.subplot(414, sharex = ax1, sharey = ax1)

            plt.imshow(out_batches_feats_gan[:, :60].T,
                       aspect='auto',
                       origin='lower')

            plt.figure(2)

            plt.subplot(211)

            plt.imshow(feats[:, 60:-2].T, aspect='auto', origin='lower')

            plt.subplot(212)

            plt.imshow(out_batches_feats[:, -4:].T,
                       aspect='auto',
                       origin='lower')

            plt.show()

            save_file = input(
                "Which files to synthesise G for GAN, B for Binary Entropy, "
                "O for original, or any combination. Default is None").upper(
                ) or "N"

        else:
            save_file = input(
                "Which files to synthesise G for GAN, B for Binary Entropy, "
                "O for original, or any combination. Default is all (GBO)"
            ).upper() or "GBO"

        if "G" in save_file:

            utils.feats_to_audio(gan_op[:, :], file_name[:-4] + 'gan_op.wav')

            print("GAN file saved to {}".format(
                os.path.join(config.val_dir, file_name[:-4] + 'gan_op.wav')))

        if "O" in save_file:

            utils.feats_to_audio(feats[:, :], file_name[:-4] + 'ori_op.wav')

            print("Originl file, resynthesized via WORLD vocoder saved to {}".
                  format(
                      os.path.join(config.val_dir,
                                   file_name[:-4] + 'ori_op.wav')))
            #
        if "B" in save_file:
            # # utils.feats_to_audio(pho_op[:5000,:],file_name[:-4]+'phoop.wav')
            #
            utils.feats_to_audio(first_op[:, :], file_name[:-4] + 'bce_op.wav')
            print("Binar cross entropy file saved to {}".format(
                os.path.join(config.val_dir, file_name[:-4] + 'bce_op.wav')))
예제 #3
0
def train(_):
    stat_file = h5py.File(config.stat_dir + 'stats.hdf5', mode='r')
    max_feat = np.array(stat_file["feats_maximus"])
    min_feat = np.array(stat_file["feats_minimus"])
    with tf.Graph().as_default():

        input_placeholder = tf.placeholder(tf.float32,
                                           shape=(config.batch_size,
                                                  config.max_phr_len, 66),
                                           name='input_placeholder')
        tf.summary.histogram('inputs', input_placeholder)

        output_placeholder = tf.placeholder(tf.float32,
                                            shape=(config.batch_size,
                                                   config.max_phr_len, 64),
                                            name='output_placeholder')

        f0_input_placeholder = tf.placeholder(tf.float32,
                                              shape=(config.batch_size,
                                                     config.max_phr_len, 1),
                                              name='f0_input_placeholder')

        rand_input_placeholder = tf.placeholder(tf.float32,
                                                shape=(config.batch_size,
                                                       config.max_phr_len, 4),
                                                name='rand_input_placeholder')

        # pho_input_placeholder = tf.placeholder(tf.float32, shape=(config.batch_size,config.max_phr_len, 42),name='pho_input_placeholder')

        prob = tf.placeholder_with_default(1.0, shape=())

        phoneme_labels = tf.placeholder(tf.int32,
                                        shape=(config.batch_size,
                                               config.max_phr_len),
                                        name='phoneme_placeholder')
        phone_onehot_labels = tf.one_hot(indices=tf.cast(
            phoneme_labels, tf.int32),
                                         depth=42)

        singer_labels = tf.placeholder(tf.float32,
                                       shape=(config.batch_size),
                                       name='singer_placeholder')
        singer_onehot_labels = tf.one_hot(indices=tf.cast(
            singer_labels, tf.int32),
                                          depth=12)

        phoneme_labels_shuffled = tf.placeholder(tf.int32,
                                                 shape=(config.batch_size,
                                                        config.max_phr_len),
                                                 name='phoneme_placeholder_s')
        phone_onehot_labels_shuffled = tf.one_hot(indices=tf.cast(
            phoneme_labels_shuffled, tf.int32),
                                                  depth=42)

        singer_labels_shuffled = tf.placeholder(tf.float32,
                                                shape=(config.batch_size),
                                                name='singer_placeholder_s')
        singer_onehot_labels_shuffled = tf.one_hot(indices=tf.cast(
            singer_labels_shuffled, tf.int32),
                                                   depth=12)

        with tf.variable_scope('phone_Model') as scope:
            # regularizer = tf.contrib.layers.l2_regularizer(scale=0.1)
            pho_logits = modules.phone_network(input_placeholder)
            pho_classes = tf.argmax(pho_logits, axis=-1)
            pho_probs = tf.nn.softmax(pho_logits)

        with tf.variable_scope('Final_Model') as scope:
            voc_output = modules.final_net(singer_onehot_labels,
                                           f0_input_placeholder,
                                           phone_onehot_labels)
            voc_output_decoded = tf.nn.sigmoid(voc_output)
            scope.reuse_variables()
            voc_output_3 = modules.final_net(singer_onehot_labels,
                                             f0_input_placeholder, pho_probs)
            voc_output_3_decoded = tf.nn.sigmoid(voc_output_3)

        # with tf.variable_scope('singer_Model') as scope:
        #     singer_embedding, singer_logits = modules.singer_network(input_placeholder, prob)
        #     singer_classes = tf.argmax(singer_logits, axis=-1)
        #     singer_probs = tf.nn.softmax(singer_logits)

        with tf.variable_scope('Generator') as scope:
            voc_output_2 = modules.GAN_generator(singer_onehot_labels,
                                                 phone_onehot_labels,
                                                 f0_input_placeholder,
                                                 rand_input_placeholder)
            # scope.reuse_variables()
            # voc_output_2_2 = modules.GAN_generator(voc_output_3_decoded, singer_onehot_labels, phone_onehot_labels, f0_input_placeholder, rand_input_placeholder)

        with tf.variable_scope('Discriminator') as scope:
            D_real = modules.GAN_discriminator(
                (output_placeholder - 0.5) * 2, singer_onehot_labels,
                phone_onehot_labels, f0_input_placeholder)
            scope.reuse_variables()
            D_fake = modules.GAN_discriminator(voc_output_2,
                                               singer_onehot_labels,
                                               phone_onehot_labels,
                                               f0_input_placeholder)
            # scope.reuse_variables()
            # epsilon = tf.random_uniform([], 0.0, 1.0)
            # x_hat = (output_placeholder-0.5)*2*epsilon + (1-epsilon)* voc_output_2
            # d_hat = modules.GAN_discriminator(x_hat, singer_onehot_labels, phone_onehot_labels, f0_input_placeholder)
            # scope.reuse_variables()
            # D_fake_2 = modules.GAN_discriminator(voc_output_2_2, singer_onehot_labels, phone_onehot_labels, f0_input_placeholder)
            scope.reuse_variables()
            D_fake_real = modules.GAN_discriminator(
                (voc_output_decoded - 0.5) * 2, singer_onehot_labels,
                phone_onehot_labels, f0_input_placeholder)
        # import pdb;pdb.set_trace()

        # Get network parameters

        final_params = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES,
                                         scope="Final_Model")

        g_params = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES,
                                     scope="Generator")

        d_params = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES,
                                     scope="Discriminator")

        phone_params = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES,
                                         scope="phone_Model")

        # Phoneme network loss and summary

        pho_weights = tf.reduce_sum(config.phonemas_weights *
                                    phone_onehot_labels,
                                    axis=-1)

        unweighted_losses = tf.nn.softmax_cross_entropy_with_logits(
            labels=phone_onehot_labels, logits=pho_logits)

        weighted_losses = unweighted_losses * pho_weights

        pho_loss = tf.reduce_mean(weighted_losses)
        # +tf.reduce_sum(tf.nn.sigmoid_cross_entropy_with_logits(labels= output_placeholder, logits=voc_output_3))*0.001

        # reconstruct_loss_pho = tf.reduce_sum(tf.nn.sigmoid_cross_entropy_with_logits(labels = output_placeholder, logits=voc_output_decoded_gen)) *0.00001

        # pho_loss+=reconstruct_loss_pho

        pho_acc = tf.metrics.accuracy(labels=phoneme_labels,
                                      predictions=pho_classes)

        pho_summary = tf.summary.scalar('pho_loss', pho_loss)

        pho_acc_summary = tf.summary.scalar('pho_accuracy', pho_acc[0])

        # Discriminator Loss

        # D_loss_real = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(labels = tf.ones_like(D_real) , logits=D_real+1e-12))
        # D_loss_fake = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(labels = tf.zeros_like(D_fake) , logits=D_fake+1e-12)) + tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(labels = tf.zeros_like(D_fake_2) , logits=D_fake_2+1e-12)) *0.5
        # D_loss_fake_real = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(labels = tf.zeros_like(D_fake_real) , logits=D_fake_real+1e-12))

        # D_loss_real = tf.reduce_mean(D_real+1e-12)
        # D_loss_fake = - tf.reduce_mean(D_fake+1e-12)
        # D_loss_fake_real = - tf.reduce_mean(D_fake_real+1e-12)

        # gradients = tf.gradients(d_hat, x_hat)[0] + 1e-6
        # slopes = tf.sqrt(tf.reduce_sum(tf.square(gradients), reduction_indices=[1]))
        # gradient_penalty = tf.reduce_mean((slopes-1.0)**2)
        # errD += gradient_penalty
        # D_loss_fake_real = - tf.reduce_mean(D_fake_real)

        D_correct_pred = tf.equal(tf.round(tf.sigmoid(D_real)),
                                  tf.ones_like(D_real))

        D_correct_pred_fake = tf.equal(tf.round(tf.sigmoid(D_fake_real)),
                                       tf.ones_like(D_fake_real))

        D_accuracy = tf.reduce_mean(tf.cast(D_correct_pred, tf.float32))

        D_accuracy_fake = tf.reduce_mean(
            tf.cast(D_correct_pred_fake, tf.float32))

        D_loss = tf.reduce_mean(D_real + 1e-12) - tf.reduce_mean(D_fake +
                                                                 1e-12)
        # -tf.reduce_mean(D_fake_real+1e-12)*0.001

        dis_summary = tf.summary.scalar('dis_loss', D_loss)

        dis_acc_summary = tf.summary.scalar('dis_acc', D_accuracy)

        dis_acc_fake_summary = tf.summary.scalar('dis_acc_fake',
                                                 D_accuracy_fake)

        #Final net loss

        # G_loss_GAN = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(labels= tf.ones_like(D_real), logits=D_fake+1e-12)) + tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(labels= tf.ones_like(D_fake_2), logits=D_fake_2+1e-12))
        # + tf.reduce_sum(tf.abs(output_placeholder- (voc_output_2/2+0.5))*(1-input_placeholder[:,:,-1:])) *0.00001

        G_loss_GAN = tf.reduce_mean(D_fake + 1e-12) + tf.reduce_sum(
            tf.abs(output_placeholder - (voc_output_2 / 2 + 0.5))) * 0.00005
        # + tf.reduce_sum(tf.nn.sigmoid_cross_entropy_with_logits(labels= output_placeholder, logits=voc_output)) *0.000005
        #

        G_correct_pred = tf.equal(tf.round(tf.sigmoid(D_fake)),
                                  tf.ones_like(D_real))

        # G_correct_pred_2 = tf.equal(tf.round(tf.sigmoid(D_fake_2)), tf.ones_like(D_real))

        G_accuracy = tf.reduce_mean(tf.cast(G_correct_pred, tf.float32))

        gen_summary = tf.summary.scalar('gen_loss', G_loss_GAN)

        gen_acc_summary = tf.summary.scalar('gen_acc', G_accuracy)

        final_loss = tf.reduce_sum(tf.nn.sigmoid_cross_entropy_with_logits(labels= output_placeholder, logits=voc_output)) \
                           # +tf.reduce_sum(tf.nn.sigmoid_cross_entropy_with_logits(labels= output_placeholder, logits=voc_output_3))*0.5

        # reconstruct_loss = tf.reduce_sum(tf.abs(output_placeholder- (voc_output_2/2+0.5)))

        final_summary = tf.summary.scalar('final_loss', final_loss)

        summary = tf.summary.merge_all()

        # summary_val = tf.summary.merge([f0_summary_midi, pho_summary, singer_summary, reconstruct_summary, pho_acc_summary_val,  f0_acc_summary_midi_val, singer_acc_summary_val ])

        # vuv_summary = tf.summary.scalar('vuv_loss', vuv_loss)

        # loss_summary = tf.summary.scalar('total_loss', loss)

        #Global steps

        global_step = tf.Variable(0, name='global_step', trainable=False)

        global_step_re = tf.Variable(0, name='global_step_re', trainable=False)

        global_step_dis = tf.Variable(0,
                                      name='global_step_dis',
                                      trainable=False)

        global_step_gen = tf.Variable(0,
                                      name='global_step_gen',
                                      trainable=False)

        #Optimizers

        pho_optimizer = tf.train.AdamOptimizer(learning_rate=config.init_lr)

        re_optimizer = tf.train.AdamOptimizer(learning_rate=config.init_lr)

        dis_optimizer = tf.train.RMSPropOptimizer(learning_rate=5e-5)

        gen_optimizer = tf.train.RMSPropOptimizer(learning_rate=5e-5)
        # GradientDescentOptimizer

        # update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)

        # Training functions
        pho_train_function = pho_optimizer.minimize(pho_loss,
                                                    global_step=global_step,
                                                    var_list=phone_params)

        # with tf.control_dependencies(update_ops):
        re_train_function = re_optimizer.minimize(final_loss,
                                                  global_step=global_step_re,
                                                  var_list=final_params)

        dis_train_function = dis_optimizer.minimize(
            D_loss, global_step=global_step_dis, var_list=d_params)

        gen_train_function = gen_optimizer.minimize(
            G_loss_GAN, global_step=global_step_gen, var_list=g_params)

        clip_discriminator_var_op = [
            var.assign(tf.clip_by_value(var, -0.01, 0.01)) for var in d_params
        ]

        init_op = tf.group(tf.global_variables_initializer(),
                           tf.local_variables_initializer())
        saver = tf.train.Saver(max_to_keep=config.max_models_to_keep)
        sess = tf.Session()

        sess.run(init_op)

        ckpt = tf.train.get_checkpoint_state(config.log_dir)

        if ckpt and ckpt.model_checkpoint_path:
            print("Using the model in %s" % ckpt.model_checkpoint_path)
            saver.restore(sess, ckpt.model_checkpoint_path)

        train_summary_writer = tf.summary.FileWriter(config.log_dir + 'train/',
                                                     sess.graph)
        val_summary_writer = tf.summary.FileWriter(config.log_dir + 'val/',
                                                   sess.graph)

        start_epoch = int(
            sess.run(tf.train.get_global_step()) /
            (config.batches_per_epoch_train))

        print("Start from: %d" % start_epoch)

        for epoch in xrange(start_epoch, config.num_epochs):

            if epoch < 25 or epoch % 100 == 0:
                n_critic = 25
            else:
                n_critic = 5

            data_generator = data_gen(sec_mode=0)
            start_time = time.time()

            val_generator = data_gen(mode='val')

            batch_num = 0

            epoch_pho_loss = 0
            epoch_gen_loss = 0
            epoch_re_loss = 0
            epoch_dis_loss = 0

            epoch_pho_acc = 0
            epoch_gen_acc = 0
            epoch_dis_acc = 0
            epoch_dis_acc_fake = 0

            val_epoch_pho_loss = 0
            val_epoch_gen_loss = 0
            val_epoch_dis_loss = 0

            val_epoch_pho_acc = 0
            val_epoch_gen_acc = 0
            val_epoch_dis_acc = 0
            val_epoch_dis_acc_fake = 0

            with tf.variable_scope('Training'):

                for feats, f0, phos, singer_ids in data_generator:

                    # plt.imshow(feats.reshape(-1,66).T,aspect = 'auto', origin ='lower')

                    # plt.show()

                    # import pdb;pdb.set_trace()

                    pho_one_hot = one_hotize(phos, max_index=42)

                    f0 = f0.reshape([config.batch_size, config.max_phr_len, 1])

                    sing_id_shu = np.copy(singer_ids)

                    phos_shu = np.copy(phos)

                    np.random.shuffle(sing_id_shu)

                    np.random.shuffle(phos_shu)

                    for critic_itr in range(n_critic):
                        feed_dict = {
                            input_placeholder:
                            feats,
                            output_placeholder:
                            feats[:, :, :-2],
                            f0_input_placeholder:
                            f0,
                            rand_input_placeholder:
                            np.random.uniform(-1.0,
                                              1.0,
                                              size=[30, config.max_phr_len,
                                                    4]),
                            phoneme_labels:
                            phos,
                            singer_labels:
                            singer_ids,
                            phoneme_labels_shuffled:
                            phos_shu,
                            singer_labels_shuffled:
                            sing_id_shu
                        }
                        sess.run(dis_train_function, feed_dict=feed_dict)
                        sess.run(clip_discriminator_var_op,
                                 feed_dict=feed_dict)

                    feed_dict = {
                        input_placeholder:
                        feats,
                        output_placeholder:
                        feats[:, :, :-2],
                        f0_input_placeholder:
                        f0,
                        rand_input_placeholder:
                        np.random.uniform(-1.0,
                                          1.0,
                                          size=[30, config.max_phr_len, 4]),
                        phoneme_labels:
                        phos,
                        singer_labels:
                        singer_ids,
                        phoneme_labels_shuffled:
                        phos_shu,
                        singer_labels_shuffled:
                        sing_id_shu
                    }

                    _, _, step_re_loss, step_gen_loss, step_gen_acc = sess.run(
                        [
                            re_train_function, gen_train_function, final_loss,
                            G_loss_GAN, G_accuracy
                        ],
                        feed_dict=feed_dict)
                    # if step_gen_acc>0.3:
                    step_dis_loss, step_dis_acc, step_dis_acc_fake = sess.run(
                        [D_loss, D_accuracy, D_accuracy_fake],
                        feed_dict=feed_dict)
                    _, step_pho_loss, step_pho_acc = sess.run(
                        [pho_train_function, pho_loss, pho_acc],
                        feed_dict=feed_dict)
                    # else:
                    # step_dis_loss, step_dis_acc = sess.run([D_loss, D_accuracy], feed_dict = feed_dict)

                    epoch_pho_loss += step_pho_loss
                    epoch_re_loss += step_re_loss
                    epoch_gen_loss += step_gen_loss
                    epoch_dis_loss += step_dis_loss

                    epoch_pho_acc += step_pho_acc[0]
                    epoch_gen_acc += step_gen_acc
                    epoch_dis_acc += step_dis_acc
                    epoch_dis_acc_fake += step_dis_acc_fake

                    utils.progress(batch_num,
                                   config.batches_per_epoch_train,
                                   suffix='training done')
                    batch_num += 1

                epoch_pho_loss = epoch_pho_loss / config.batches_per_epoch_train
                epoch_re_loss = epoch_re_loss / config.batches_per_epoch_train
                epoch_gen_loss = epoch_gen_loss / config.batches_per_epoch_train
                epoch_dis_loss = epoch_dis_loss / config.batches_per_epoch_train
                epoch_dis_acc_fake = epoch_dis_acc_fake / config.batches_per_epoch_train

                epoch_pho_acc = epoch_pho_acc / config.batches_per_epoch_train
                epoch_gen_acc = epoch_gen_acc / config.batches_per_epoch_train
                epoch_dis_acc = epoch_dis_acc / config.batches_per_epoch_train
                summary_str = sess.run(summary, feed_dict=feed_dict)
                # import pdb;pdb.set_trace()
                train_summary_writer.add_summary(summary_str, epoch)
                # # summary_writer.add_summary(summary_str_val, epoch)
                train_summary_writer.flush()

            with tf.variable_scope('Validation'):

                for feats, f0, phos, singer_ids in val_generator:

                    pho_one_hot = one_hotize(phos, max_index=42)

                    f0 = f0.reshape([config.batch_size, config.max_phr_len, 1])

                    sing_id_shu = np.copy(singer_ids)

                    phos_shu = np.copy(phos)

                    np.random.shuffle(sing_id_shu)

                    np.random.shuffle(phos_shu)

                    feed_dict = {
                        input_placeholder:
                        feats,
                        output_placeholder:
                        feats[:, :, :-2],
                        f0_input_placeholder:
                        f0,
                        rand_input_placeholder:
                        np.random.uniform(-1.0,
                                          1.0,
                                          size=[30, config.max_phr_len, 4]),
                        phoneme_labels:
                        phos,
                        singer_labels:
                        singer_ids,
                        phoneme_labels_shuffled:
                        phos_shu,
                        singer_labels_shuffled:
                        sing_id_shu
                    }

                    step_pho_loss, step_pho_acc = sess.run([pho_loss, pho_acc],
                                                           feed_dict=feed_dict)
                    step_gen_loss, step_gen_acc = sess.run(
                        [final_loss, G_accuracy], feed_dict=feed_dict)
                    step_dis_loss, step_dis_acc, step_dis_acc_fake = sess.run(
                        [D_loss, D_accuracy, D_accuracy_fake],
                        feed_dict=feed_dict)

                    val_epoch_pho_loss += step_pho_loss
                    val_epoch_gen_loss += step_gen_loss
                    val_epoch_dis_loss += step_dis_loss

                    val_epoch_pho_acc += step_pho_acc[0]
                    val_epoch_gen_acc += step_gen_acc
                    val_epoch_dis_acc += step_dis_acc
                    val_epoch_dis_acc_fake += step_dis_acc_fake

                    utils.progress(batch_num,
                                   config.batches_per_epoch_train,
                                   suffix='training done')
                    batch_num += 1

                val_epoch_pho_loss = val_epoch_pho_loss / config.batches_per_epoch_val
                val_epoch_gen_loss = val_epoch_gen_loss / config.batches_per_epoch_val
                val_epoch_dis_loss = val_epoch_dis_loss / config.batches_per_epoch_val

                val_epoch_pho_acc = val_epoch_pho_acc / config.batches_per_epoch_val
                val_epoch_gen_acc = val_epoch_gen_acc / config.batches_per_epoch_val
                val_epoch_dis_acc = val_epoch_dis_acc / config.batches_per_epoch_val
                val_epoch_dis_acc_fake = val_epoch_dis_acc_fake / config.batches_per_epoch_val

                summary_str = sess.run(summary, feed_dict=feed_dict)
                # import pdb;pdb.set_trace()
                val_summary_writer.add_summary(summary_str, epoch)
                # # summary_writer.add_summary(summary_str_val, epoch)
                val_summary_writer.flush()
            duration = time.time() - start_time

            # np.save('./ikala_eval/accuracies', f0_accs)

            if (epoch + 1) % config.print_every == 0:
                print('epoch %d: Phone Loss = %.10f (%.3f sec)' %
                      (epoch + 1, epoch_pho_loss, duration))
                print('        : Phone Accuracy = %.10f ' % (epoch_pho_acc))
                print('        : Recon Loss = %.10f ' % (epoch_re_loss))
                print('        : Gen Loss = %.10f ' % (epoch_gen_loss))
                print('        : Gen Accuracy = %.10f ' % (epoch_gen_acc))
                print('        : Dis Loss = %.10f ' % (epoch_dis_loss))
                print('        : Dis Accuracy = %.10f ' % (epoch_dis_acc))
                print('        : Dis Accuracy Fake = %.10f ' %
                      (epoch_dis_acc_fake))
                print('        : Val Phone Accuracy = %.10f ' %
                      (val_epoch_pho_acc))
                print('        : Val Gen Loss = %.10f ' % (val_epoch_gen_loss))
                print('        : Val Gen Accuracy = %.10f ' %
                      (val_epoch_gen_acc))
                print('        : Val Dis Loss = %.10f ' % (val_epoch_dis_loss))
                print('        : Val Dis Accuracy = %.10f ' %
                      (val_epoch_dis_acc))
                print('        : Val Dis Accuracy Fake = %.10f ' %
                      (val_epoch_dis_acc_fake))

            if (epoch + 1) % config.save_every == 0 or (
                    epoch + 1) == config.num_epochs:
                # utils.list_to_file(val_f0_accs,'./ikala_eval/accuracies_'+str(epoch+1)+'.txt')
                checkpoint_file = os.path.join(config.log_dir, 'model.ckpt')
                saver.save(sess, checkpoint_file, global_step=epoch)