x_image = nn_ops.conv2d_transpose(h_conv1 + b_conv1, W_conv1, [class_size,28,28,1], [1,1,1,1]) x_image = tf.nn.relu(x_image) return x_image x_image = rebuild_image() ######## # Do these have to be changed based on class size? error = tf.reduce_sum(tf.pow(tf.reshape(x,[-1]) - tf.reshape(x_image, [-1]), 2)) train_step = tf.train.AdamOptimizer(1e-4).minimize(error) sess.run(tf.initialize_all_variables()) # Put the file names of the images in order image_names = list(map(lambda x: "train_images/" + str(x) + ".gz", range(class_size))) images = np.array(list(map(lambda x: mo.idx_to_array(x), image_names))) images = np.reshape(images, [class_size, 28*28]) #images = np.reshape(np.array([mo.idx_to_array('three.gz')]), [1,-1])/255.0 #oh_encodings = np.array([[1]]) oh_encodings = np.identity(class_size) #fd = {x:three_im} for i in range(iterations): if i % 20 == 0: print("step %d"%(i,)) #print(tf.reduce_max(x_image).eval(feed_dict={y_:[oh_encodings[0]]})) train_accuracy = error.eval(feed_dict={x:images , y_:oh_encodings}) print("CE: %s"%(train_accuracy,)) train_step.run(feed_dict={x:images , y_:oh_encodings}) '''
x_image = rebuild_image() ######## # Do these have to be changed based on class size? error = tf.reduce_sum( tf.pow(tf.reshape(x, [-1]) - tf.reshape(x_image, [-1]), 2)) train_step = tf.train.AdamOptimizer(1e-4).minimize(error) sess.run(tf.initialize_all_variables()) # Put the file names of the images in order image_names = list( map(lambda x: "train_images/" + str(x) + ".gz", range(class_size))) images = np.array(list(map(lambda x: mo.idx_to_array(x), image_names))) images = np.reshape(images, [class_size, 28 * 28]) #images = np.reshape(np.array([mo.idx_to_array('three.gz')]), [1,-1])/255.0 #oh_encodings = np.array([[1]]) oh_encodings = np.identity(class_size) #fd = {x:three_im} for i in range(iterations): if i % 20 == 0: print("step %d" % (i, )) #print(tf.reduce_max(x_image).eval(feed_dict={y_:[oh_encodings[0]]})) train_accuracy = error.eval(feed_dict={x: images, y_: oh_encodings}) print("CE: %s" % (train_accuracy, )) train_step.run(feed_dict={x: images, y_: oh_encodings}) ''' W_fc2 = weight_variable([class_size, fc_size])