def test_transform(self): a = EncodedAngle() a.fit([METHANE]) # This is a cheap test to prevent needing all the values here expected_results = numpy.array([ 0.116708, # mean 0.450738, # std 0., # min 3.043729, # max ]) try: m = a.fit_transform([METHANE]) assert_close_statistics(m, expected_results) except AssertionError as e: self.fail(e)
def test_small_to_large_transform(self): a = EncodedAngle() a.fit([METHANE]) # This is a cheap test to prevent needing all the values here expected_results = numpy.array([ 0.018603, # mean 0.130329, # std 0., # min 1.568823, # max ]) try: m = a.transform([MID]) assert_close_statistics(m, expected_results) except AssertionError as e: self.fail(e)
def test_add_unknown(self): a = EncodedAngle(add_unknown=True) a.fit([METHANE]) # This is a cheap test to prevent needing all the values here expected_results = numpy.array([ 0.117057, # mean 0.510819, # std 0., # min 6.343512, # max ]) try: m = a.transform([MID]) self.assertEqual(m.shape, (1, 200)) assert_close_statistics(m, expected_results) except AssertionError as e: self.fail(e)
def test_fit(self): a = EncodedAngle() a.fit(ALL_DATA) expected = set([('C', 'N', 'C'), ('C', 'C', 'C'), ('H', 'H', 'H'), ('H', 'O', 'O'), ('O', 'N', 'O'), ('H', 'N', 'N'), ('C', 'H', 'H'), ('C', 'O', 'H'), ('C', 'H', 'C'), ('N', 'C', 'N'), ('O', 'O', 'O'), ('H', 'O', 'N'), ('H', 'N', 'O'), ('O', 'H', 'O'), ('H', 'H', 'N'), ('C', 'C', 'N'), ('H', 'N', 'H'), ('C', 'H', 'N'), ('H', 'C', 'O'), ('N', 'O', 'O'), ('N', 'N', 'N'), ('C', 'C', 'H'), ('C', 'O', 'O'), ('C', 'N', 'N'), ('H', 'O', 'H'), ('H', 'H', 'O'), ('C', 'C', 'O'), ('N', 'H', 'N'), ('C', 'H', 'O'), ('O', 'C', 'O'), ('H', 'C', 'N'), ('C', 'O', 'C'), ('N', 'O', 'N'), ('N', 'N', 'O'), ('C', 'N', 'O'), ('C', 'O', 'N'), ('H', 'C', 'H'), ('C', 'N', 'H'), ('N', 'H', 'O'), ('N', 'C', 'O')]) self.assertEqual(a._groups, expected)