예제 #1
0
def main():
    monai.config.print_config()
    logging.basicConfig(stream=sys.stdout, level=logging.INFO)

    # create a temporary directory and 40 random image, mask paris
    tempdir = tempfile.mkdtemp()
    print(f"generating synthetic data to {tempdir} (this may take a while)")
    for i in range(40):
        im, seg = create_test_image_3d(128,
                                       128,
                                       128,
                                       num_seg_classes=1,
                                       channel_dim=-1)
        n = nib.Nifti1Image(im, np.eye(4))
        nib.save(n, os.path.join(tempdir, f"img{i:d}.nii.gz"))
        n = nib.Nifti1Image(seg, np.eye(4))
        nib.save(n, os.path.join(tempdir, f"seg{i:d}.nii.gz"))

    images = sorted(glob(os.path.join(tempdir, "img*.nii.gz")))
    segs = sorted(glob(os.path.join(tempdir, "seg*.nii.gz")))
    train_files = [{
        "image": img,
        "label": seg
    } for img, seg in zip(images[:20], segs[:20])]
    val_files = [{
        "image": img,
        "label": seg
    } for img, seg in zip(images[-20:], segs[-20:])]

    # define transforms for image and segmentation
    train_transforms = Compose([
        LoadNiftid(keys=["image", "label"]),
        AsChannelFirstd(keys=["image", "label"], channel_dim=-1),
        ScaleIntensityd(keys=["image", "label"]),
        RandCropByPosNegLabeld(keys=["image", "label"],
                               label_key="label",
                               size=[96, 96, 96],
                               pos=1,
                               neg=1,
                               num_samples=4),
        RandRotate90d(keys=["image", "label"], prob=0.5, spatial_axes=[0, 2]),
        ToTensord(keys=["image", "label"]),
    ])
    val_transforms = Compose([
        LoadNiftid(keys=["image", "label"]),
        AsChannelFirstd(keys=["image", "label"], channel_dim=-1),
        ScaleIntensityd(keys=["image", "label"]),
        ToTensord(keys=["image", "label"]),
    ])

    # create a training data loader
    train_ds = monai.data.CacheDataset(data=train_files,
                                       transform=train_transforms,
                                       cache_rate=0.5)
    # use batch_size=2 to load images and use RandCropByPosNegLabeld to generate 2 x 4 images for network training
    train_loader = monai.data.DataLoader(train_ds,
                                         batch_size=2,
                                         shuffle=True,
                                         num_workers=4)
    # create a validation data loader
    val_ds = monai.data.CacheDataset(data=val_files,
                                     transform=val_transforms,
                                     cache_rate=1.0)
    val_loader = monai.data.DataLoader(val_ds, batch_size=1, num_workers=4)

    # create UNet, DiceLoss and Adam optimizer
    device = torch.device("cuda:0")
    net = monai.networks.nets.UNet(
        dimensions=3,
        in_channels=1,
        out_channels=1,
        channels=(16, 32, 64, 128, 256),
        strides=(2, 2, 2, 2),
        num_res_units=2,
    ).to(device)
    loss = monai.losses.DiceLoss(sigmoid=True)
    opt = torch.optim.Adam(net.parameters(), 1e-3)
    lr_scheduler = torch.optim.lr_scheduler.StepLR(opt, step_size=2, gamma=0.1)

    val_post_transforms = Compose([
        Activationsd(keys="pred", output_postfix="act", sigmoid=True),
        AsDiscreted(keys="pred_act",
                    output_postfix="dis",
                    threshold_values=True),
        KeepLargestConnectedComponentd(keys="pred_act_dis",
                                       applied_values=[1],
                                       output_postfix=None),
    ])
    val_handlers = [
        StatsHandler(output_transform=lambda x: None),
        TensorBoardStatsHandler(log_dir="./runs/",
                                output_transform=lambda x: None),
        TensorBoardImageHandler(
            log_dir="./runs/",
            batch_transform=lambda x: (x["image"], x["label"]),
            output_transform=lambda x: x["pred_act_dis"],
        ),
        CheckpointSaver(save_dir="./runs/",
                        save_dict={"net": net},
                        save_key_metric=True),
    ]

    evaluator = SupervisedEvaluator(
        device=device,
        val_data_loader=val_loader,
        network=net,
        inferer=SlidingWindowInferer(roi_size=(96, 96, 96),
                                     sw_batch_size=4,
                                     overlap=0.5),
        post_transform=val_post_transforms,
        key_val_metric={
            "val_mean_dice":
            MeanDice(include_background=True,
                     output_transform=lambda x:
                     (x["pred_act_dis"], x["label"]))
        },
        additional_metrics={
            "val_acc":
            Accuracy(
                output_transform=lambda x: (x["pred_act_dis"], x["label"]))
        },
        val_handlers=val_handlers,
    )

    train_post_transforms = Compose([
        Activationsd(keys="pred", output_postfix="act", sigmoid=True),
        AsDiscreted(keys="pred_act",
                    output_postfix="dis",
                    threshold_values=True),
        KeepLargestConnectedComponentd(keys="pred_act_dis",
                                       applied_values=[1],
                                       output_postfix=None),
    ])
    train_handlers = [
        LrScheduleHandler(lr_scheduler=lr_scheduler, print_lr=True),
        ValidationHandler(validator=evaluator, interval=2, epoch_level=True),
        StatsHandler(tag_name="train_loss",
                     output_transform=lambda x: x["loss"]),
        TensorBoardStatsHandler(log_dir="./runs/",
                                tag_name="train_loss",
                                output_transform=lambda x: x["loss"]),
        CheckpointSaver(save_dir="./runs/",
                        save_dict={
                            "net": net,
                            "opt": opt
                        },
                        save_interval=2,
                        epoch_level=True),
    ]

    trainer = SupervisedTrainer(
        device=device,
        max_epochs=5,
        train_data_loader=train_loader,
        network=net,
        optimizer=opt,
        loss_function=loss,
        inferer=SimpleInferer(),
        amp=False,
        post_transform=train_post_transforms,
        key_train_metric={
            "train_acc":
            Accuracy(
                output_transform=lambda x: (x["pred_act_dis"], x["label"]))
        },
        train_handlers=train_handlers,
    )
    trainer.run()

    shutil.rmtree(tempdir)
예제 #2
0
def run_training_test(root_dir, device="cuda:0"):
    real_images = sorted(glob(os.path.join(root_dir, "img*.nii.gz")))
    train_files = [{"reals": img} for img in zip(real_images)]

    # prepare real data
    train_transforms = Compose([
        LoadImaged(keys=["reals"]),
        AsChannelFirstd(keys=["reals"]),
        ScaleIntensityd(keys=["reals"]),
        RandFlipd(keys=["reals"], prob=0.5),
        ToTensord(keys=["reals"]),
    ])
    train_ds = monai.data.CacheDataset(data=train_files,
                                       transform=train_transforms,
                                       cache_rate=0.5)
    train_loader = monai.data.DataLoader(train_ds,
                                         batch_size=2,
                                         shuffle=True,
                                         num_workers=4)

    learning_rate = 2e-4
    betas = (0.5, 0.999)
    real_label = 1
    fake_label = 0

    # create discriminator
    disc_net = Discriminator(in_shape=(1, 64, 64),
                             channels=(8, 16, 32, 64, 1),
                             strides=(2, 2, 2, 2, 1),
                             num_res_units=1,
                             kernel_size=5).to(device)
    disc_net.apply(normal_init)
    disc_opt = torch.optim.Adam(disc_net.parameters(),
                                learning_rate,
                                betas=betas)
    disc_loss_criterion = torch.nn.BCELoss()

    def discriminator_loss(gen_images, real_images):
        real = real_images.new_full((real_images.shape[0], 1), real_label)
        gen = gen_images.new_full((gen_images.shape[0], 1), fake_label)
        realloss = disc_loss_criterion(disc_net(real_images), real)
        genloss = disc_loss_criterion(disc_net(gen_images.detach()), gen)
        return torch.div(torch.add(realloss, genloss), 2)

    # create generator
    latent_size = 64
    gen_net = Generator(latent_shape=latent_size,
                        start_shape=(latent_size, 8, 8),
                        channels=[32, 16, 8, 1],
                        strides=[2, 2, 2, 1])
    gen_net.apply(normal_init)
    gen_net.conv.add_module("activation", torch.nn.Sigmoid())
    gen_net = gen_net.to(device)
    gen_opt = torch.optim.Adam(gen_net.parameters(),
                               learning_rate,
                               betas=betas)
    gen_loss_criterion = torch.nn.BCELoss()

    def generator_loss(gen_images):
        output = disc_net(gen_images)
        cats = output.new_full(output.shape, real_label)
        return gen_loss_criterion(output, cats)

    key_train_metric = None

    train_handlers = [
        StatsHandler(name="training_loss",
                     output_transform=lambda x: {
                         Keys.GLOSS: x[Keys.GLOSS],
                         Keys.DLOSS: x[Keys.DLOSS]
                     }),
        TensorBoardStatsHandler(
            log_dir=root_dir,
            tag_name="training_loss",
            output_transform=lambda x: {
                Keys.GLOSS: x[Keys.GLOSS],
                Keys.DLOSS: x[Keys.DLOSS]
            },
        ),
        CheckpointSaver(save_dir=root_dir,
                        save_dict={
                            "g_net": gen_net,
                            "d_net": disc_net
                        },
                        save_interval=2,
                        epoch_level=True),
    ]

    disc_train_steps = 2
    num_epochs = 5

    trainer = GanTrainer(
        device,
        num_epochs,
        train_loader,
        gen_net,
        gen_opt,
        generator_loss,
        disc_net,
        disc_opt,
        discriminator_loss,
        d_train_steps=disc_train_steps,
        latent_shape=latent_size,
        key_train_metric=key_train_metric,
        train_handlers=train_handlers,
    )
    trainer.run()

    return trainer.state
예제 #3
0
def main():
    monai.config.print_config()
    logging.basicConfig(stream=sys.stdout, level=logging.INFO)
    set_determinism(12345)
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

    # load real data
    mednist_url = "https://www.dropbox.com/s/5wwskxctvcxiuea/MedNIST.tar.gz?dl=1"
    md5_value = "0bc7306e7427e00ad1c5526a6677552d"
    extract_dir = "data"
    tar_save_path = os.path.join(extract_dir, "MedNIST.tar.gz")
    download_and_extract(mednist_url, tar_save_path, extract_dir, md5_value)
    hand_dir = os.path.join(extract_dir, "MedNIST", "Hand")
    real_data = [{
        "hand": os.path.join(hand_dir, filename)
    } for filename in os.listdir(hand_dir)]

    # define real data transforms
    train_transforms = Compose([
        LoadPNGD(keys=["hand"]),
        AddChannelD(keys=["hand"]),
        ScaleIntensityD(keys=["hand"]),
        RandRotateD(keys=["hand"],
                    range_x=np.pi / 12,
                    prob=0.5,
                    keep_size=True),
        RandFlipD(keys=["hand"], spatial_axis=0, prob=0.5),
        RandZoomD(keys=["hand"], min_zoom=0.9, max_zoom=1.1, prob=0.5),
        ToTensorD(keys=["hand"]),
    ])

    # create dataset and dataloader
    real_dataset = CacheDataset(real_data, train_transforms)
    batch_size = 300
    real_dataloader = DataLoader(real_dataset,
                                 batch_size=batch_size,
                                 shuffle=True,
                                 num_workers=10)

    # define function to process batchdata for input into discriminator
    def prepare_batch(batchdata):
        """
        Process Dataloader batchdata dict object and return image tensors for D Inferer
        """
        return batchdata["hand"]

    # define networks
    disc_net = Discriminator(in_shape=(1, 64, 64),
                             channels=(8, 16, 32, 64, 1),
                             strides=(2, 2, 2, 2, 1),
                             num_res_units=1,
                             kernel_size=5).to(device)

    latent_size = 64
    gen_net = Generator(latent_shape=latent_size,
                        start_shape=(latent_size, 8, 8),
                        channels=[32, 16, 8, 1],
                        strides=[2, 2, 2, 1])

    # initialize both networks
    disc_net.apply(normal_init)
    gen_net.apply(normal_init)

    # input images are scaled to [0,1] so enforce the same of generated outputs
    gen_net.conv.add_module("activation", torch.nn.Sigmoid())
    gen_net = gen_net.to(device)

    # create optimizers and loss functions
    learning_rate = 2e-4
    betas = (0.5, 0.999)
    disc_opt = torch.optim.Adam(disc_net.parameters(),
                                learning_rate,
                                betas=betas)
    gen_opt = torch.optim.Adam(gen_net.parameters(),
                               learning_rate,
                               betas=betas)

    disc_loss_criterion = torch.nn.BCELoss()
    gen_loss_criterion = torch.nn.BCELoss()
    real_label = 1
    fake_label = 0

    def discriminator_loss(gen_images, real_images):
        """
        The discriminator loss is calculated by comparing D
        prediction for real and generated images.

        """
        real = real_images.new_full((real_images.shape[0], 1), real_label)
        gen = gen_images.new_full((gen_images.shape[0], 1), fake_label)

        realloss = disc_loss_criterion(disc_net(real_images), real)
        genloss = disc_loss_criterion(disc_net(gen_images.detach()), gen)

        return (genloss + realloss) / 2

    def generator_loss(gen_images):
        """
        The generator loss is calculated by determining how realistic
        the discriminator classifies the generated images.

        """
        output = disc_net(gen_images)
        cats = output.new_full(output.shape, real_label)
        return gen_loss_criterion(output, cats)

    # initialize current run dir
    run_dir = "model_out"
    print("Saving model output to: %s " % run_dir)

    # create workflow handlers
    handlers = [
        StatsHandler(
            name="batch_training_loss",
            output_transform=lambda x: {
                Keys.GLOSS: x[Keys.GLOSS],
                Keys.DLOSS: x[Keys.DLOSS]
            },
        ),
        CheckpointSaver(
            save_dir=run_dir,
            save_dict={
                "g_net": gen_net,
                "d_net": disc_net
            },
            save_interval=10,
            save_final=True,
            epoch_level=True,
        ),
    ]

    # define key metric
    key_train_metric = None

    # create adversarial trainer
    disc_train_steps = 5
    num_epochs = 50

    trainer = GanTrainer(
        device,
        num_epochs,
        real_dataloader,
        gen_net,
        gen_opt,
        generator_loss,
        disc_net,
        disc_opt,
        discriminator_loss,
        d_prepare_batch=prepare_batch,
        d_train_steps=disc_train_steps,
        latent_shape=latent_size,
        key_train_metric=key_train_metric,
        train_handlers=handlers,
    )

    # run GAN training
    trainer.run()

    # Training completed, save a few random generated images.
    print("Saving trained generator sample output.")
    test_img_count = 10
    test_latents = make_latent(test_img_count, latent_size).to(device)
    fakes = gen_net(test_latents)
    for i, image in enumerate(fakes):
        filename = "gen-fake-final-%d.png" % i
        save_path = os.path.join(run_dir, filename)
        img_array = image[0].cpu().data.numpy()
        png_writer.write_png(img_array, save_path, scale=255)
예제 #4
0
def train(data_folder=".", model_folder="runs", continue_training=False):
    """run a training pipeline."""

    #/== files for synthesis
    path_parent = Path(
        '/content/drive/My Drive/Datasets/covid19/COVID-19-20_augs_cea/')
    path_synthesis = Path(
        path_parent /
        'CeA_BASE_grow=1_bg=-1.00_step=-1.0_scale=-1.0_seed=1.0_ch0_1=-1_ch1_16=-1_ali_thr=0.1'
    )
    scans_syns = os.listdir(path_synthesis)
    decreasing_sequence = get_decreasing_sequence(255, splits=20)
    keys2 = ("image", "label", "synthetic_lesion")
    # READ THE SYTHETIC HEALTHY TEXTURE
    path_synthesis_old = '/content/drive/My Drive/Datasets/covid19/results/cea_synthesis/patient0/'
    texture_orig = np.load(f'{path_synthesis_old}texture.npy.npz')
    texture_orig = texture_orig.f.arr_0
    texture = texture_orig + np.abs(np.min(texture_orig)) + .07
    texture = np.pad(texture, ((100, 100), (100, 100)), mode='reflect')
    print(f'type(texture) = {type(texture)}, {np.shape(texture)}')
    #==/

    images = sorted(glob.glob(os.path.join(data_folder,
                                           "*_ct.nii.gz"))[:10])  #OMM
    labels = sorted(glob.glob(os.path.join(data_folder,
                                           "*_seg.nii.gz"))[:10])  #OMM
    logging.info(
        f"training: image/label ({len(images)}) folder: {data_folder}")

    amp = True  # auto. mixed precision
    keys = ("image", "label")
    train_frac, val_frac = 0.8, 0.2
    n_train = int(train_frac * len(images)) + 1
    n_val = min(len(images) - n_train, int(val_frac * len(images)))
    logging.info(
        f"training: train {n_train} val {n_val}, folder: {data_folder}")

    train_files = [{
        keys[0]: img,
        keys[1]: seg
    } for img, seg in zip(images[:n_train], labels[:n_train])]
    val_files = [{
        keys[0]: img,
        keys[1]: seg
    } for img, seg in zip(images[-n_val:], labels[-n_val:])]

    # create a training data loader
    batch_size = 1  # XX was 2
    logging.info(f"batch size {batch_size}")
    train_transforms = get_xforms("synthesis", keys, keys2, path_synthesis,
                                  decreasing_sequence, scans_syns, texture)
    train_ds = monai.data.CacheDataset(data=train_files,
                                       transform=train_transforms)
    train_loader = monai.data.DataLoader(
        train_ds,
        batch_size=batch_size,
        shuffle=True,
        num_workers=2,
        pin_memory=torch.cuda.is_available(),
        # collate_fn=pad_list_data_collate,
    )

    # create a validation data loader
    val_transforms = get_xforms("val", keys)
    val_ds = monai.data.CacheDataset(data=val_files, transform=val_transforms)
    val_loader = monai.data.DataLoader(
        val_ds,
        batch_size=
        1,  # image-level batch to the sliding window method, not the window-level batch
        num_workers=2,
        pin_memory=torch.cuda.is_available(),
    )

    # create BasicUNet, DiceLoss and Adam optimizer
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    net = get_net().to(device)

    # if continue training
    if continue_training:
        ckpts = sorted(glob.glob(os.path.join(model_folder, "*.pt")))
        ckpt = ckpts[-1]
        logging.info(f"continue training using {ckpt}.")
        net.load_state_dict(torch.load(ckpt, map_location=device))

    # max_epochs, lr, momentum = 500, 1e-4, 0.95
    max_epochs, lr, momentum = 20, 1e-4, 0.95  #OMM
    logging.info(f"epochs {max_epochs}, lr {lr}, momentum {momentum}")
    opt = torch.optim.Adam(net.parameters(), lr=lr)

    # create evaluator (to be used to measure model quality during training
    val_post_transform = monai.transforms.Compose([
        AsDiscreted(keys=("pred", "label"),
                    argmax=(True, False),
                    to_onehot=True,
                    n_classes=2)
    ])
    val_handlers = [
        ProgressBar(),
        MetricsSaver(save_dir="./metrics_val", metrics="*"),
        CheckpointSaver(save_dir=model_folder,
                        save_dict={"net": net},
                        save_key_metric=True,
                        key_metric_n_saved=6),
    ]
    evaluator = monai.engines.SupervisedEvaluator(
        device=device,
        val_data_loader=val_loader,
        network=net,
        inferer=get_inferer(),
        post_transform=val_post_transform,
        key_val_metric={
            "val_mean_dice":
            MeanDice(include_background=False,
                     output_transform=lambda x: (x["pred"], x["label"]))
        },
        val_handlers=val_handlers,
        amp=amp,
    )

    # evaluator as an event handler of the trainer
    train_handlers = [
        ValidationHandler(validator=evaluator, interval=1, epoch_level=True),
        # MetricsSaver(save_dir="./metrics_train", metrics="*"),
        StatsHandler(tag_name="train_loss",
                     output_transform=lambda x: x["loss"]),
    ]
    trainer = monai.engines.SupervisedTrainer(
        device=device,
        max_epochs=max_epochs,
        train_data_loader=train_loader,
        network=net,
        optimizer=opt,
        loss_function=DiceCELoss(),
        inferer=get_inferer(),
        key_train_metric=None,
        train_handlers=train_handlers,
        amp=amp,
    )
    trainer.run()
예제 #5
0
    def configure(self):
        self.set_device()
        network = UNet(
            dimensions=3,
            in_channels=1,
            out_channels=2,
            channels=(16, 32, 64, 128, 256),
            strides=(2, 2, 2, 2),
            num_res_units=2,
            norm=Norm.BATCH,
        ).to(self.device)
        if self.multi_gpu:
            network = DistributedDataParallel(
                module=network,
                device_ids=[self.device],
                find_unused_parameters=False,
            )

        train_transforms = Compose([
            LoadImaged(keys=("image", "label")),
            EnsureChannelFirstd(keys=("image", "label")),
            Spacingd(keys=("image", "label"),
                     pixdim=[1.0, 1.0, 1.0],
                     mode=["bilinear", "nearest"]),
            ScaleIntensityRanged(
                keys="image",
                a_min=-57,
                a_max=164,
                b_min=0.0,
                b_max=1.0,
                clip=True,
            ),
            CropForegroundd(keys=("image", "label"), source_key="image"),
            RandCropByPosNegLabeld(
                keys=("image", "label"),
                label_key="label",
                spatial_size=(96, 96, 96),
                pos=1,
                neg=1,
                num_samples=4,
                image_key="image",
                image_threshold=0,
            ),
            RandShiftIntensityd(keys="image", offsets=0.1, prob=0.5),
            ToTensord(keys=("image", "label")),
        ])
        train_datalist = load_decathlon_datalist(self.data_list_file_path,
                                                 True, "training")
        if self.multi_gpu:
            train_datalist = partition_dataset(
                data=train_datalist,
                shuffle=True,
                num_partitions=dist.get_world_size(),
                even_divisible=True,
            )[dist.get_rank()]
        train_ds = CacheDataset(
            data=train_datalist,
            transform=train_transforms,
            cache_num=32,
            cache_rate=1.0,
            num_workers=4,
        )
        train_data_loader = DataLoader(
            train_ds,
            batch_size=2,
            shuffle=True,
            num_workers=4,
        )
        val_transforms = Compose([
            LoadImaged(keys=("image", "label")),
            EnsureChannelFirstd(keys=("image", "label")),
            ScaleIntensityRanged(
                keys="image",
                a_min=-57,
                a_max=164,
                b_min=0.0,
                b_max=1.0,
                clip=True,
            ),
            CropForegroundd(keys=("image", "label"), source_key="image"),
            ToTensord(keys=("image", "label")),
        ])

        val_datalist = load_decathlon_datalist(self.data_list_file_path, True,
                                               "validation")
        val_ds = CacheDataset(val_datalist, val_transforms, 9, 0.0, 4)
        val_data_loader = DataLoader(
            val_ds,
            batch_size=1,
            shuffle=False,
            num_workers=4,
        )
        post_transform = Compose([
            Activationsd(keys="pred", softmax=True),
            AsDiscreted(
                keys=["pred", "label"],
                argmax=[True, False],
                to_onehot=True,
                n_classes=2,
            ),
        ])
        # metric
        key_val_metric = {
            "val_mean_dice":
            MeanDice(
                include_background=False,
                output_transform=lambda x: (x["pred"], x["label"]),
                device=self.device,
            )
        }
        val_handlers = [
            StatsHandler(output_transform=lambda x: None),
            CheckpointSaver(
                save_dir=self.ckpt_dir,
                save_dict={"model": network},
                save_key_metric=True,
            ),
            TensorBoardStatsHandler(log_dir=self.ckpt_dir,
                                    output_transform=lambda x: None),
        ]
        self.eval_engine = SupervisedEvaluator(
            device=self.device,
            val_data_loader=val_data_loader,
            network=network,
            inferer=SlidingWindowInferer(
                roi_size=[160, 160, 160],
                sw_batch_size=4,
                overlap=0.5,
            ),
            post_transform=post_transform,
            key_val_metric=key_val_metric,
            val_handlers=val_handlers,
            amp=self.amp,
        )

        optimizer = torch.optim.Adam(network.parameters(), self.learning_rate)
        loss_function = DiceLoss(to_onehot_y=True, softmax=True)
        lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer,
                                                       step_size=5000,
                                                       gamma=0.1)
        train_handlers = [
            LrScheduleHandler(lr_scheduler=lr_scheduler, print_lr=True),
            ValidationHandler(validator=self.eval_engine,
                              interval=self.val_interval,
                              epoch_level=True),
            StatsHandler(tag_name="train_loss",
                         output_transform=lambda x: x["loss"]),
            TensorBoardStatsHandler(
                log_dir=self.ckpt_dir,
                tag_name="train_loss",
                output_transform=lambda x: x["loss"],
            ),
        ]

        self.train_engine = SupervisedTrainer(
            device=self.device,
            max_epochs=self.max_epochs,
            train_data_loader=train_data_loader,
            network=network,
            optimizer=optimizer,
            loss_function=loss_function,
            inferer=SimpleInferer(),
            post_transform=post_transform,
            key_train_metric=None,
            train_handlers=train_handlers,
            amp=self.amp,
        )

        if self.local_rank > 0:
            self.train_engine.logger.setLevel(logging.WARNING)
            self.eval_engine.logger.setLevel(logging.WARNING)
예제 #6
0
print(net)

# %%
# create evaluator (to be used to measure model quality during training
model_folder = "runs"
amp = True
val_post_transform = monai.transforms.Compose([
    AsDiscreted(keys=("pred", "label"),
                argmax=(True, False),
                to_onehot=True,
                n_classes=2)
])
val_handlers = [
    ProgressBar(),
    CheckpointSaver(save_dir=model_folder,
                    save_dict={"net": net},
                    save_key_metric=True,
                    key_metric_n_saved=3),
]
evaluator = monai.engines.SupervisedEvaluator(
    device=device,
    val_data_loader=val_loader,
    network=net,
    inferer=get_inferer(),
    post_transform=val_post_transform,
    key_val_metric={
        "val_mean_dice":
        MeanDice(include_background=False,
                 output_transform=lambda x: (x["pred"], x["label"]))
    },
    val_handlers=val_handlers,
    amp=amp,
def train(args):
    if args.local_rank == 0 and not os.path.exists(args.dir):
        # create 40 random image, mask paris for training
        print(
            f"generating synthetic data to {args.dir} (this may take a while)")
        os.makedirs(args.dir)
        # set random seed to generate same random data for every node
        np.random.seed(seed=0)
        for i in range(40):
            im, seg = create_test_image_3d(128,
                                           128,
                                           128,
                                           num_seg_classes=1,
                                           channel_dim=-1)
            n = nib.Nifti1Image(im, np.eye(4))
            nib.save(n, os.path.join(args.dir, f"img{i:d}.nii.gz"))
            n = nib.Nifti1Image(seg, np.eye(4))
            nib.save(n, os.path.join(args.dir, f"seg{i:d}.nii.gz"))

    # initialize the distributed training process, every GPU runs in a process
    dist.init_process_group(backend="nccl", init_method="env://")

    images = sorted(glob(os.path.join(args.dir, "img*.nii.gz")))
    segs = sorted(glob(os.path.join(args.dir, "seg*.nii.gz")))
    train_files = [{
        "image": img,
        "label": seg
    } for img, seg in zip(images, segs)]

    # define transforms for image and segmentation
    train_transforms = Compose([
        LoadImaged(keys=["image", "label"]),
        AsChannelFirstd(keys=["image", "label"], channel_dim=-1),
        ScaleIntensityd(keys="image"),
        RandCropByPosNegLabeld(keys=["image", "label"],
                               label_key="label",
                               spatial_size=[96, 96, 96],
                               pos=1,
                               neg=1,
                               num_samples=4),
        RandRotate90d(keys=["image", "label"], prob=0.5, spatial_axes=[0, 2]),
        ToTensord(keys=["image", "label"]),
    ])

    # create a training data loader
    train_ds = Dataset(data=train_files, transform=train_transforms)
    # create a training data sampler
    train_sampler = DistributedSampler(train_ds)
    # use batch_size=2 to load images and use RandCropByPosNegLabeld to generate 2 x 4 images for network training
    train_loader = DataLoader(
        train_ds,
        batch_size=2,
        shuffle=False,
        num_workers=2,
        pin_memory=True,
        sampler=train_sampler,
    )

    # create UNet, DiceLoss and Adam optimizer
    device = torch.device(f"cuda:{args.local_rank}")
    torch.cuda.set_device(device)
    net = monai.networks.nets.UNet(
        dimensions=3,
        in_channels=1,
        out_channels=1,
        channels=(16, 32, 64, 128, 256),
        strides=(2, 2, 2, 2),
        num_res_units=2,
    ).to(device)
    loss = monai.losses.DiceLoss(sigmoid=True)
    opt = torch.optim.Adam(net.parameters(), 1e-3)
    lr_scheduler = torch.optim.lr_scheduler.StepLR(opt, step_size=2, gamma=0.1)
    # wrap the model with DistributedDataParallel module
    net = DistributedDataParallel(net, device_ids=[device])

    train_post_transforms = Compose([
        Activationsd(keys="pred", sigmoid=True),
        AsDiscreted(keys="pred", threshold_values=True),
        KeepLargestConnectedComponentd(keys="pred", applied_labels=[1]),
    ])
    train_handlers = [
        LrScheduleHandler(lr_scheduler=lr_scheduler, print_lr=True),
    ]
    if dist.get_rank() == 0:
        logging.basicConfig(stream=sys.stdout, level=logging.INFO)
        train_handlers.extend([
            StatsHandler(tag_name="train_loss",
                         output_transform=lambda x: x["loss"]),
            CheckpointSaver(save_dir="./runs/",
                            save_dict={
                                "net": net,
                                "opt": opt
                            },
                            save_interval=2),
        ])

    trainer = SupervisedTrainer(
        device=device,
        max_epochs=5,
        train_data_loader=train_loader,
        network=net,
        optimizer=opt,
        loss_function=loss,
        inferer=SimpleInferer(),
        # if no FP16 support in GPU or PyTorch version < 1.6, will not enable AMP evaluation
        amp=True if monai.config.get_torch_version_tuple() >=
        (1, 6) else False,
        post_transform=train_post_transforms,
        key_train_metric={
            "train_acc":
            Accuracy(output_transform=lambda x: (x["pred"], x["label"]),
                     device=device)
        },
        train_handlers=train_handlers,
    )
    trainer.run()
    dist.destroy_process_group()
예제 #8
0
def train(gpu, args):
    """run a training pipeline."""
    
    
    args.gpu = gpu
    if args.gpu is not None:
        print("Use GPU: {} for training".format(args.gpu))
        
    if args.distributed:
        print('Setting up multiple GPUs')
        if args.dist_url == "env://" and args.rank == -1:
            args.rank = int(os.environ["RANK"])
            
        if args.multiprocessing_distributed:
            # For multiprocessing distributed training, rank needs to be the
            # global rank among all the processes
            args.rank = args.rank * args.ngpus_per_node + gpu
            print(args.rank)
        dist.init_process_group(
            backend=args.dist_backend,
            init_method=args.dist_url,
            world_size=args.world_size,
            rank=args.rank,
        )
        print('Done!')
    

    #========================================
    images = sorted(glob.glob(os.path.join(args.data_folder, "*_ct.nii.gz")))
    labels = sorted(glob.glob(os.path.join(args.data_folder, "*_seg.nii.gz")))
    logging.info(f"training: image/label ({len(images)}) folder: {args.data_folder}")

    amp = True  # auto. mixed precision
    keys = ("image", "label")
    
    #TODO
    is_one_hot = False  # whether the label has multiple channels to represent  multiple class
    
    train_frac, val_frac = 0.8, 0.2
    n_train = int(train_frac * len(images)) + 1
    n_val = min(len(images) - n_train, int(val_frac * len(images)))
    logging.info(f"training: train {n_train} val {n_val}, folder: {args.data_folder}")

    train_files = [{keys[0]: img, keys[1]: seg} for img, seg in zip(images[:n_train], labels[:n_train])]
    val_files = [{keys[0]: img, keys[1]: seg} for img, seg in zip(images[-n_val:], labels[-n_val:])]

    # create a training data loader
    logging.info(f"batch size {args.batch_size}")
    train_transforms = get_xforms("train", keys)
    train_ds = monai.data.CacheDataset(data=train_files, 
                                       transform=train_transforms, 
                                       cache_rate=args.cache_rate,
                                       num_workers=args.preprocessing_workers)
    if args.distributed:
        train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset,
                                                                        num_replicas=args.world_size,
                                                                        rank=args.rank
        )
        train_loader = monai.data.DataLoader(
            train_ds,
            batch_size=args.batch_size,
            shuffle=True,
            num_workers=args.num_workers,
            pin_memory=torch.cuda.is_available(),
            sampler=train_sampler)    # 
    else:
        train_loader = monai.data.DataLoader(
            train_ds,
            batch_size=args.batch_size,
            shuffle=True,
            num_workers=args.num_workers,
            pin_memory=torch.cuda.is_available())
    
    # create a validation data loader
    val_transforms = get_xforms("val", keys)
    val_ds = monai.data.CacheDataset(data=val_files, transform=val_transforms)
    val_loader = monai.data.DataLoader(
        val_ds,
        batch_size=1,  # image-level batch to the sliding window method, not the window-level batch
        num_workers=args.num_workers,
        pin_memory=torch.cuda.is_available(),
    )

    # create BasicUNet, DiceLoss and Adam optimizer
    if args.distributed:
        print('Setting Up ')
        torch.cuda.set_device(args.gpu)
        device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        
        net.cuda(args.gpu)
        args.batch_size = int(args.batch_size / ngpus_per_node)
        args.val_batch_size = int(args.val_batch_size / ngpus_per_node)
        args.num_workers = int(
            (args.num_workers + ngpus_per_node - 1) / ngpus_per_node
        )
        net = torch.nn.parallel.DistributedDataParallel(
            net, device_ids=[args.gpu]
        )
    else:
        device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        net = get_net().to(device)
        
    logging.info(f"epochs {args.max_epochs}, lr {args.lr}, momentum {args.momentum}")
    opt = torch.optim.Adam(net.parameters(), lr=args.lr)

    # create evaluator (to be used to measure model quality during training
    def pred_transform(y_pred):
        y_sigmoid = torch.sigmoid(y_pred)
        y_sigmoid = (y_sigmoid >= logit_thresh).float()
        return y_sigmoid
    
    logit_thresh = 0.5
    train_metric = MeanDice(
        include_background=False,
        device = device,
        output_transform=lambda x: (pred_transform(x["pred"]), x["label"]),
    )
    
    val_metric = MeanDice(
        include_background=False,
        device = device,
        output_transform=lambda x: (pred_transform(x["pred"]), x["label"]),
    )
    
        
    val_handlers = [
        ProgressBar(),
        CheckpointSaver(save_dir=args.model_folder, save_dict={'net': net, 
                                                               'optimizer': opt},
                        save_key_metric=True, key_metric_n_saved=3),
    ]
    evaluator = monai.engines.SupervisedEvaluator(
        device=device,
        val_data_loader=val_loader,
        network=net,
        inferer=get_inferer(),
        key_val_metric={"val_mean_dice": val_metric},
        val_handlers=val_handlers,
        amp=amp,
    )

    # evaluator as an event handler of the trainer
    train_handlers = [
        ValidationHandler(validator=evaluator, interval=1, epoch_level=True),
        StatsHandler(tag_name="train_loss", output_transform=lambda x: x["loss"]),
        LrScheduleHandler(BoundingExponentialLR(opt, gamma=args.gamma), 
                          print_lr=True, 
                          name='bounding_lr_scheduler', 
                          epoch_level=True,)
    ]
    
    trainer = monai.engines.SupervisedTrainer(
        device=device,
        max_epochs=args.max_epochs,
        train_data_loader=train_loader,
        network=net,
        optimizer=opt,
        loss_function=DiceCELoss(),
        inferer=get_inferer(),
        key_train_metric={'train_mean_dice': train_metric},
        train_handlers=train_handlers,
        amp=amp,
    )
    trainer.run()
예제 #9
0
    def train(index):

        # ---------- Build the nn-Unet network ------------

        if opt.resolution is None:
            sizes, spacings = opt.patch_size, opt.spacing
        else:
            sizes, spacings = opt.patch_size, opt.resolution

        strides, kernels = [], []

        while True:
            spacing_ratio = [sp / min(spacings) for sp in spacings]
            stride = [
                2 if ratio <= 2 and size >= 8 else 1
                for (ratio, size) in zip(spacing_ratio, sizes)
            ]
            kernel = [3 if ratio <= 2 else 1 for ratio in spacing_ratio]
            if all(s == 1 for s in stride):
                break
            sizes = [i / j for i, j in zip(sizes, stride)]
            spacings = [i * j for i, j in zip(spacings, stride)]
            kernels.append(kernel)
            strides.append(stride)
        strides.insert(0, len(spacings) * [1])
        kernels.append(len(spacings) * [3])

        net = monai.networks.nets.DynUNet(
            spatial_dims=3,
            in_channels=opt.in_channels,
            out_channels=opt.out_channels,
            kernel_size=kernels,
            strides=strides,
            upsample_kernel_size=strides[1:],
            res_block=True,
            # act=act_type,
            # norm=Norm.BATCH,
        ).to(device)

        from torch.autograd import Variable
        from torchsummaryX import summary

        data = Variable(
            torch.randn(int(opt.batch_size), int(opt.in_channels),
                        int(opt.patch_size[0]), int(opt.patch_size[1]),
                        int(opt.patch_size[2]))).cuda()

        out = net(data)
        summary(net, data)
        print("out size: {}".format(out.size()))

        # if opt.preload is not None:
        #     net.load_state_dict(torch.load(opt.preload))

        # ---------- ------------------------ ------------

        optim = torch.optim.Adam(net.parameters(), lr=opt.lr)
        lr_scheduler = torch.optim.lr_scheduler.LambdaLR(
            optim, lr_lambda=lambda epoch: (1 - epoch / opt.epochs)**0.9)

        loss_function = monai.losses.DiceCELoss(sigmoid=True)

        val_post_transforms = Compose([
            Activationsd(keys="pred", sigmoid=True),
            AsDiscreted(keys="pred", threshold_values=True),
            # KeepLargestConnectedComponentd(keys="pred", applied_labels=[1])
        ])

        val_handlers = [
            StatsHandler(output_transform=lambda x: None),
            CheckpointSaver(save_dir="./runs/",
                            save_dict={"net": net},
                            save_key_metric=True),
        ]

        evaluator = SupervisedEvaluator(
            device=device,
            val_data_loader=val_loaders[index],
            network=net,
            inferer=SlidingWindowInferer(roi_size=opt.patch_size,
                                         sw_batch_size=opt.batch_size,
                                         overlap=0.5),
            post_transform=val_post_transforms,
            key_val_metric={
                "val_mean_dice":
                MeanDice(
                    include_background=True,
                    output_transform=lambda x: (x["pred"], x["label"]),
                )
            },
            val_handlers=val_handlers)

        train_post_transforms = Compose([
            Activationsd(keys="pred", sigmoid=True),
            AsDiscreted(keys="pred", threshold_values=True),
            # KeepLargestConnectedComponentd(keys="pred", applied_labels=[1]),
        ])

        train_handlers = [
            ValidationHandler(validator=evaluator,
                              interval=5,
                              epoch_level=True),
            LrScheduleHandler(lr_scheduler=lr_scheduler, print_lr=True),
            StatsHandler(tag_name="train_loss",
                         output_transform=lambda x: x["loss"]),
            CheckpointSaver(save_dir="./runs/",
                            save_dict={
                                "net": net,
                                "opt": optim
                            },
                            save_final=True,
                            epoch_level=True),
        ]

        trainer = SupervisedTrainer(
            device=device,
            max_epochs=opt.epochs,
            train_data_loader=train_loaders[index],
            network=net,
            optimizer=optim,
            loss_function=loss_function,
            inferer=SimpleInferer(),
            post_transform=train_post_transforms,
            amp=False,
            train_handlers=train_handlers,
        )
        trainer.run()
        return net
예제 #10
0
def train(args):
    # load hyper parameters
    task_id = args.task_id
    fold = args.fold
    val_output_dir = "./runs_{}_fold{}_{}/".format(task_id, fold,
                                                   args.expr_name)
    log_filename = "nnunet_task{}_fold{}.log".format(task_id, fold)
    log_filename = os.path.join(val_output_dir, log_filename)
    interval = args.interval
    learning_rate = args.learning_rate
    max_epochs = args.max_epochs
    multi_gpu_flag = args.multi_gpu
    amp_flag = args.amp
    lr_decay_flag = args.lr_decay
    sw_batch_size = args.sw_batch_size
    tta_val = args.tta_val
    batch_dice = args.batch_dice
    window_mode = args.window_mode
    eval_overlap = args.eval_overlap
    local_rank = args.local_rank
    determinism_flag = args.determinism_flag
    determinism_seed = args.determinism_seed
    if determinism_flag:
        set_determinism(seed=determinism_seed)
        if local_rank == 0:
            print("Using deterministic training.")

    # transforms
    train_batch_size = data_loader_params[task_id]["batch_size"]
    if multi_gpu_flag:
        dist.init_process_group(backend="nccl", init_method="env://")

        device = torch.device(f"cuda:{local_rank}")
        torch.cuda.set_device(device)
    else:
        device = torch.device("cuda")

    properties, val_loader = get_data(args, mode="validation")
    _, train_loader = get_data(args, batch_size=train_batch_size, mode="train")

    # produce the network
    checkpoint = args.checkpoint
    net = get_network(properties, task_id, val_output_dir, checkpoint)
    net = net.to(device)

    if multi_gpu_flag:
        net = DistributedDataParallel(module=net, device_ids=[device])

    optimizer = torch.optim.SGD(
        net.parameters(),
        lr=learning_rate,
        momentum=0.99,
        weight_decay=3e-5,
        nesterov=True,
    )

    scheduler = torch.optim.lr_scheduler.LambdaLR(
        optimizer, lr_lambda=lambda epoch: (1 - epoch / max_epochs)**0.9)
    # produce evaluator
    val_handlers = [
        StatsHandler(output_transform=lambda x: None),
        CheckpointSaver(save_dir=val_output_dir,
                        save_dict={"net": net},
                        save_key_metric=True),
    ]

    evaluator = DynUNetEvaluator(
        device=device,
        val_data_loader=val_loader,
        network=net,
        num_classes=len(properties["labels"]),
        inferer=SlidingWindowInferer(
            roi_size=patch_size[task_id],
            sw_batch_size=sw_batch_size,
            overlap=eval_overlap,
            mode=window_mode,
        ),
        postprocessing=None,
        key_val_metric={
            "val_mean_dice":
            MeanDice(
                include_background=False,
                output_transform=from_engine(["pred", "label"]),
            )
        },
        val_handlers=val_handlers,
        amp=amp_flag,
        tta_val=tta_val,
    )

    # produce trainer
    loss = DiceCELoss(to_onehot_y=True, softmax=True, batch=batch_dice)
    train_handlers = []
    if lr_decay_flag:
        train_handlers += [
            LrScheduleHandler(lr_scheduler=scheduler, print_lr=True)
        ]

    train_handlers += [
        ValidationHandler(validator=evaluator,
                          interval=interval,
                          epoch_level=True),
        StatsHandler(tag_name="train_loss",
                     output_transform=from_engine(["loss"], first=True)),
    ]

    trainer = DynUNetTrainer(
        device=device,
        max_epochs=max_epochs,
        train_data_loader=train_loader,
        network=net,
        optimizer=optimizer,
        loss_function=loss,
        inferer=SimpleInferer(),
        postprocessing=None,
        key_train_metric=None,
        train_handlers=train_handlers,
        amp=amp_flag,
    )

    if local_rank > 0:
        evaluator.logger.setLevel(logging.WARNING)
        trainer.logger.setLevel(logging.WARNING)

    logger = logging.getLogger()

    formatter = logging.Formatter(
        "%(asctime)s - %(name)s - %(levelname)s - %(message)s")

    # Setup file handler
    fhandler = logging.FileHandler(log_filename)
    fhandler.setLevel(logging.INFO)
    fhandler.setFormatter(formatter)

    logger.addHandler(fhandler)

    chandler = logging.StreamHandler()
    chandler.setLevel(logging.INFO)
    chandler.setFormatter(formatter)
    logger.addHandler(chandler)

    logger.setLevel(logging.INFO)

    trainer.run()
예제 #11
0
def train(args):
    """run a training pipeline."""

    save_args_to_file(args, 'runs/')
    images = sorted(glob.glob(os.path.join(args.data_folder, "*_ct.nii.gz")))
    labels = sorted(glob.glob(os.path.join(args.data_folder, "*_seg.nii.gz")))
    logging.info(
        f"training: image/label ({len(images)}) folder: {args.data_folder}")

    amp = True  # auto. mixed precision
    keys = ("image", "label")

    #TODO
    is_one_hot = False  # whether the label has multiple channels to represent  multiple class

    train_frac, val_frac = 0.8, 0.2
    n_train = int(train_frac * len(images)) + 1
    n_val = min(len(images) - n_train, int(val_frac * len(images)))
    logging.info(
        f"training: train {n_train} val {n_val}, folder: {args.data_folder}")

    train_files = [{
        keys[0]: img,
        keys[1]: seg
    } for img, seg in zip(images[:n_train], labels[:n_train])]
    val_files = [{
        keys[0]: img,
        keys[1]: seg
    } for img, seg in zip(images[-n_val:], labels[-n_val:])]

    # create a training data loader
    logging.info(f"batch size {args.batch_size}")
    train_transforms = get_xforms(args, "train", keys)
    train_ds = monai.data.CacheDataset(data=train_files,
                                       transform=train_transforms,
                                       cache_rate=args.cache_rate,
                                       num_workers=args.preprocessing_workers)
    train_loader = monai.data.DataLoader(
        train_ds,
        batch_size=args.batch_size,
        shuffle=True,
        num_workers=args.num_workers,
        pin_memory=torch.cuda.is_available(),
    )

    # create a validation data loader
    val_transforms = get_xforms(args, "val", keys)
    val_ds = monai.data.CacheDataset(data=val_files, transform=val_transforms)
    val_loader = monai.data.DataLoader(
        val_ds,
        batch_size=
        1,  # image-level batch to the sliding window method, not the window-level batch
        num_workers=args.num_workers,
        pin_memory=torch.cuda.is_available(),
    )

    # create BasicUNet, DiceLoss and Adam optimizer
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    net = get_net(args.n_classes).to(device)

    logging.info(
        f"epochs {args.max_epochs}, lr {args.lr}, momentum {args.momentum}")
    opt = torch.optim.Adam(net.parameters(), lr=args.lr)

    # create evaluator (to be used to measure model quality during training
    def pred_transform(y_pred):
        y_sigmoid = torch.sigmoid(y_pred)
        y_sigmoid = (y_sigmoid >= logit_thresh).float()
        return y_sigmoid

    logit_thresh = 0.5
    train_metric = MeanDice(
        include_background=False,
        device=device,
        output_transform=lambda x: (pred_transform(x["pred"]), x["label"]),
    )

    val_metric = MeanDice(
        include_background=False,
        device=device,
        output_transform=lambda x: (pred_transform(x["pred"]), x["label"]),
    )

    val_handlers = [
        ProgressBar(),
        CheckpointSaver(save_dir=args.model_folder,
                        save_dict={
                            'net': net,
                            'optimizer': opt
                        },
                        save_key_metric=True,
                        key_metric_n_saved=3),
    ]
    evaluator = monai.engines.SupervisedEvaluator(
        device=device,
        val_data_loader=val_loader,
        network=net,
        inferer=get_inferer(args),
        key_val_metric={"val_mean_dice": val_metric},
        val_handlers=val_handlers,
        amp=amp,
    )

    # evaluator as an event handler of the trainer
    train_handlers = [
        ValidationHandler(validator=evaluator, interval=1, epoch_level=True),
        StatsHandler(tag_name="train_loss",
                     output_transform=lambda x: x["loss"]),
        LrScheduleHandler(
            BoundingExponentialLR(opt,
                                  gamma=args.gamma,
                                  min_lr=args.min_lr,
                                  initial_lr=args.lr),
            print_lr=True,
            name='bounding_lr_scheduler',
            epoch_level=True,
        )
    ]

    trainer = monai.engines.SupervisedTrainer(
        device=device,
        max_epochs=args.max_epochs,
        train_data_loader=train_loader,
        network=net,
        optimizer=opt,
        loss_function=DiceCELoss(),
        inferer=get_inferer(args),
        key_train_metric={'train_mean_dice': train_metric},
        train_handlers=train_handlers,
        amp=amp,
    )
    trainer.run()
예제 #12
0
def train(cfg):
    log_dir = create_log_dir(cfg)
    device = set_device(cfg)
    # --------------------------------------------------------------------------
    # Data Loading and Preprocessing
    # --------------------------------------------------------------------------
    # __________________________________________________________________________
    # Build MONAI preprocessing
    train_preprocess = Compose([
        ToTensorD(keys="image"),
        TorchVisionD(keys="image",
                     name="ColorJitter",
                     brightness=64.0 / 255.0,
                     contrast=0.75,
                     saturation=0.25,
                     hue=0.04),
        ToNumpyD(keys="image"),
        RandFlipD(keys="image", prob=0.5),
        RandRotate90D(keys="image", prob=0.5),
        CastToTypeD(keys="image", dtype=np.float32),
        RandZoomD(keys="image", prob=0.5, min_zoom=0.9, max_zoom=1.1),
        ScaleIntensityRangeD(keys="image",
                             a_min=0.0,
                             a_max=255.0,
                             b_min=-1.0,
                             b_max=1.0),
        ToTensorD(keys=("image", "label")),
    ])
    valid_preprocess = Compose([
        CastToTypeD(keys="image", dtype=np.float32),
        ScaleIntensityRangeD(keys="image",
                             a_min=0.0,
                             a_max=255.0,
                             b_min=-1.0,
                             b_max=1.0),
        ToTensorD(keys=("image", "label")),
    ])
    # __________________________________________________________________________
    # Create MONAI dataset
    train_json_info_list = load_decathlon_datalist(
        data_list_file_path=cfg["dataset_json"],
        data_list_key="training",
        base_dir=cfg["data_root"],
    )
    valid_json_info_list = load_decathlon_datalist(
        data_list_file_path=cfg["dataset_json"],
        data_list_key="validation",
        base_dir=cfg["data_root"],
    )

    train_dataset = PatchWSIDataset(
        train_json_info_list,
        cfg["region_size"],
        cfg["grid_shape"],
        cfg["patch_size"],
        train_preprocess,
        image_reader_name="openslide" if cfg["use_openslide"] else "cuCIM",
    )
    valid_dataset = PatchWSIDataset(
        valid_json_info_list,
        cfg["region_size"],
        cfg["grid_shape"],
        cfg["patch_size"],
        valid_preprocess,
        image_reader_name="openslide" if cfg["use_openslide"] else "cuCIM",
    )

    # __________________________________________________________________________
    # DataLoaders
    train_dataloader = DataLoader(train_dataset,
                                  num_workers=cfg["num_workers"],
                                  batch_size=cfg["batch_size"],
                                  pin_memory=True)
    valid_dataloader = DataLoader(valid_dataset,
                                  num_workers=cfg["num_workers"],
                                  batch_size=cfg["batch_size"],
                                  pin_memory=True)

    # __________________________________________________________________________
    # Get sample batch and some info
    first_sample = first(train_dataloader)
    if first_sample is None:
        raise ValueError("Fist sample is None!")

    print("image: ")
    print("    shape", first_sample["image"].shape)
    print("    type: ", type(first_sample["image"]))
    print("    dtype: ", first_sample["image"].dtype)
    print("labels: ")
    print("    shape", first_sample["label"].shape)
    print("    type: ", type(first_sample["label"]))
    print("    dtype: ", first_sample["label"].dtype)
    print(f"batch size: {cfg['batch_size']}")
    print(f"train number of batches: {len(train_dataloader)}")
    print(f"valid number of batches: {len(valid_dataloader)}")

    # --------------------------------------------------------------------------
    # Deep Learning Classification Model
    # --------------------------------------------------------------------------
    # __________________________________________________________________________
    # initialize model
    model = TorchVisionFCModel("resnet18",
                               num_classes=1,
                               use_conv=True,
                               pretrained=cfg["pretrain"])
    model = model.to(device)

    # loss function
    loss_func = torch.nn.BCEWithLogitsLoss()
    loss_func = loss_func.to(device)

    # optimizer
    if cfg["novograd"]:
        optimizer = Novograd(model.parameters(), cfg["lr"])
    else:
        optimizer = SGD(model.parameters(), lr=cfg["lr"], momentum=0.9)

    # AMP scaler
    if cfg["amp"]:
        cfg["amp"] = True if monai.utils.get_torch_version_tuple() >= (
            1, 6) else False
    else:
        cfg["amp"] = False

    scheduler = lr_scheduler.CosineAnnealingLR(optimizer,
                                               T_max=cfg["n_epochs"])

    # --------------------------------------------
    # Ignite Trainer/Evaluator
    # --------------------------------------------
    # Evaluator
    val_handlers = [
        CheckpointSaver(save_dir=log_dir,
                        save_dict={"net": model},
                        save_key_metric=True),
        StatsHandler(output_transform=lambda x: None),
        TensorBoardStatsHandler(log_dir=log_dir,
                                output_transform=lambda x: None),
    ]
    val_postprocessing = Compose([
        ActivationsD(keys="pred", sigmoid=True),
        AsDiscreteD(keys="pred", threshold=0.5)
    ])
    evaluator = SupervisedEvaluator(
        device=device,
        val_data_loader=valid_dataloader,
        network=model,
        postprocessing=val_postprocessing,
        key_val_metric={
            "val_acc":
            Accuracy(output_transform=from_engine(["pred", "label"]))
        },
        val_handlers=val_handlers,
        amp=cfg["amp"],
    )

    # Trainer
    train_handlers = [
        LrScheduleHandler(lr_scheduler=scheduler, print_lr=True),
        CheckpointSaver(save_dir=cfg["logdir"],
                        save_dict={
                            "net": model,
                            "opt": optimizer
                        },
                        save_interval=1,
                        epoch_level=True),
        StatsHandler(tag_name="train_loss",
                     output_transform=from_engine(["loss"], first=True)),
        ValidationHandler(validator=evaluator, interval=1, epoch_level=True),
        TensorBoardStatsHandler(log_dir=cfg["logdir"],
                                tag_name="train_loss",
                                output_transform=from_engine(["loss"],
                                                             first=True)),
    ]
    train_postprocessing = Compose([
        ActivationsD(keys="pred", sigmoid=True),
        AsDiscreteD(keys="pred", threshold=0.5)
    ])

    trainer = SupervisedTrainer(
        device=device,
        max_epochs=cfg["n_epochs"],
        train_data_loader=train_dataloader,
        network=model,
        optimizer=optimizer,
        loss_function=loss_func,
        postprocessing=train_postprocessing,
        key_train_metric={
            "train_acc":
            Accuracy(output_transform=from_engine(["pred", "label"]))
        },
        train_handlers=train_handlers,
        amp=cfg["amp"],
    )
    trainer.run()
예제 #13
0
파일: main2.py 프로젝트: hugowww/CodeExp
def main(tempdir):
    monai.config.print_config()
    logging.basicConfig(stream=sys.stdout, level=logging.INFO)

    ################################ DATASET ################################
    # get dataset
    train_ds = CacheDataset(data=train_files,
                            transform=train_transforms,
                            cache_rate=0.5)
    train_loader = DataLoader(train_ds,
                              batch_size=2,
                              shuffle=True,
                              num_workers=4)
    val_ds = CacheDataset(data=val_files,
                          transform=val_transforms,
                          cache_rate=1.0)
    val_loader = DataLoader(val_ds, batch_size=1, num_workers=4)
    ################################ DATASET ################################

    ################################ NETWORK ################################
    # create UNet, DiceLoss and Adam optimizer
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    net = monai.networks.nets.UNet(
        dimensions=3,
        in_channels=1,
        out_channels=1,
        channels=(16, 32, 64, 128, 256),
        strides=(2, 2, 2, 2),
        num_res_units=2,
    ).to(device)
    ################################ NETWORK ################################

    ################################ LOSS ################################
    loss = monai.losses.DiceLoss(sigmoid=True)
    ################################ LOSS ################################

    ################################ OPT ################################
    opt = torch.optim.Adam(net.parameters(), 1e-3)
    ################################ OPT ################################

    ################################ LR ################################
    lr_scheduler = torch.optim.lr_scheduler.StepLR(opt, step_size=2, gamma=0.1)
    ################################ LR ################################

    ################################ Evalutaion ################################
    val_post_transforms = ...
    val_handlers = ...
    evaluator = ...

    train_post_transforms = Compose([
        Activationsd(keys="pred", sigmoid=True),
        AsDiscreted(keys="pred", threshold_values=True),
        KeepLargestConnectedComponentd(keys="pred", applied_labels=[1]),
    ])
    train_handlers = [
        LrScheduleHandler(lr_scheduler=lr_scheduler, print_lr=True),
        ValidationHandler(validator=evaluator, interval=2, epoch_level=True),
        StatsHandler(tag_name="train_loss",
                     output_transform=lambda x: x["loss"]),
        TensorBoardStatsHandler(log_dir="./runs/",
                                tag_name="train_loss",
                                output_transform=lambda x: x["loss"]),
        CheckpointSaver(save_dir="./runs/",
                        save_dict={
                            "net": net,
                            "opt": opt
                        },
                        save_interval=2,
                        epoch_level=True),
    ]

    trainer = SupervisedTrainer(
        device=device,
        max_epochs=5,
        train_data_loader=train_loader,
        network=net,
        optimizer=opt,
        loss_function=loss,
        inferer=SimpleInferer(),
        post_transform=train_post_transforms,
        key_train_metric={
            "train_acc":
            Accuracy(output_transform=lambda x: (x["pred"], x["label"]))
        },
        train_handlers=train_handlers,
        # if no FP16 support in GPU or PyTorch version < 1.6, will not enable AMP training
        amp=True if monai.utils.get_torch_version_tuple() >= (1, 6) else False,
    )
    trainer.run()
def run_training_test(root_dir, device="cuda:0", amp=False, num_workers=4):
    images = sorted(glob(os.path.join(root_dir, "img*.nii.gz")))
    segs = sorted(glob(os.path.join(root_dir, "seg*.nii.gz")))
    train_files = [{"image": img, "label": seg} for img, seg in zip(images[:20], segs[:20])]
    val_files = [{"image": img, "label": seg} for img, seg in zip(images[-20:], segs[-20:])]

    # define transforms for image and segmentation
    train_transforms = Compose(
        [
            LoadImaged(keys=["image", "label"]),
            AsChannelFirstd(keys=["image", "label"], channel_dim=-1),
            ScaleIntensityd(keys=["image", "label"]),
            RandCropByPosNegLabeld(
                keys=["image", "label"], label_key="label", spatial_size=[96, 96, 96], pos=1, neg=1, num_samples=4
            ),
            RandRotate90d(keys=["image", "label"], prob=0.5, spatial_axes=[0, 2]),
            ToTensord(keys=["image", "label"]),
        ]
    )
    val_transforms = Compose(
        [
            LoadImaged(keys=["image", "label"]),
            AsChannelFirstd(keys=["image", "label"], channel_dim=-1),
            ScaleIntensityd(keys=["image", "label"]),
            ToTensord(keys=["image", "label"]),
        ]
    )

    # create a training data loader
    train_ds = monai.data.CacheDataset(data=train_files, transform=train_transforms, cache_rate=0.5)
    # use batch_size=2 to load images and use RandCropByPosNegLabeld to generate 2 x 4 images for network training
    train_loader = monai.data.DataLoader(train_ds, batch_size=2, shuffle=True, num_workers=num_workers)
    # create a validation data loader
    val_ds = monai.data.CacheDataset(data=val_files, transform=val_transforms, cache_rate=1.0)
    val_loader = monai.data.DataLoader(val_ds, batch_size=1, num_workers=num_workers)

    # create UNet, DiceLoss and Adam optimizer
    net = monai.networks.nets.UNet(
        spatial_dims=3,
        in_channels=1,
        out_channels=1,
        channels=(16, 32, 64, 128, 256),
        strides=(2, 2, 2, 2),
        num_res_units=2,
    ).to(device)
    loss = monai.losses.DiceLoss(sigmoid=True)
    opt = torch.optim.Adam(net.parameters(), 1e-3)
    lr_scheduler = torch.optim.lr_scheduler.StepLR(opt, step_size=2, gamma=0.1)
    summary_writer = SummaryWriter(log_dir=root_dir)

    val_postprocessing = Compose(
        [
            ToTensord(keys=["pred", "label"]),
            Activationsd(keys="pred", sigmoid=True),
            AsDiscreted(keys="pred", threshold=0.5),
            KeepLargestConnectedComponentd(keys="pred", applied_labels=[1]),
        ]
    )

    class _TestEvalIterEvents:
        def attach(self, engine):
            engine.add_event_handler(IterationEvents.FORWARD_COMPLETED, self._forward_completed)

        def _forward_completed(self, engine):
            pass

    val_handlers = [
        StatsHandler(iteration_log=False),
        TensorBoardStatsHandler(summary_writer=summary_writer, iteration_log=False),
        TensorBoardImageHandler(
            log_dir=root_dir, batch_transform=from_engine(["image", "label"]), output_transform=from_engine("pred")
        ),
        CheckpointSaver(save_dir=root_dir, save_dict={"net": net}, save_key_metric=True),
        _TestEvalIterEvents(),
    ]

    evaluator = SupervisedEvaluator(
        device=device,
        val_data_loader=val_loader,
        network=net,
        inferer=SlidingWindowInferer(roi_size=(96, 96, 96), sw_batch_size=4, overlap=0.5),
        postprocessing=val_postprocessing,
        key_val_metric={
            "val_mean_dice": MeanDice(include_background=True, output_transform=from_engine(["pred", "label"]))
        },
        additional_metrics={"val_acc": Accuracy(output_transform=from_engine(["pred", "label"]))},
        metric_cmp_fn=lambda cur, prev: cur >= prev,  # if greater or equal, treat as new best metric
        val_handlers=val_handlers,
        amp=bool(amp),
        to_kwargs={"memory_format": torch.preserve_format},
        amp_kwargs={"dtype": torch.float16 if bool(amp) else torch.float32},
    )

    train_postprocessing = Compose(
        [
            ToTensord(keys=["pred", "label"]),
            Activationsd(keys="pred", sigmoid=True),
            AsDiscreted(keys="pred", threshold=0.5),
            KeepLargestConnectedComponentd(keys="pred", applied_labels=[1]),
        ]
    )

    class _TestTrainIterEvents:
        def attach(self, engine):
            engine.add_event_handler(IterationEvents.FORWARD_COMPLETED, self._forward_completed)
            engine.add_event_handler(IterationEvents.LOSS_COMPLETED, self._loss_completed)
            engine.add_event_handler(IterationEvents.BACKWARD_COMPLETED, self._backward_completed)
            engine.add_event_handler(IterationEvents.MODEL_COMPLETED, self._model_completed)

        def _forward_completed(self, engine):
            pass

        def _loss_completed(self, engine):
            pass

        def _backward_completed(self, engine):
            pass

        def _model_completed(self, engine):
            pass

    train_handlers = [
        LrScheduleHandler(lr_scheduler=lr_scheduler, print_lr=True),
        ValidationHandler(validator=evaluator, interval=2, epoch_level=True),
        StatsHandler(tag_name="train_loss", output_transform=from_engine("loss", first=True)),
        TensorBoardStatsHandler(
            summary_writer=summary_writer, tag_name="train_loss", output_transform=from_engine("loss", first=True)
        ),
        CheckpointSaver(save_dir=root_dir, save_dict={"net": net, "opt": opt}, save_interval=2, epoch_level=True),
        _TestTrainIterEvents(),
    ]

    trainer = SupervisedTrainer(
        device=device,
        max_epochs=5,
        train_data_loader=train_loader,
        network=net,
        optimizer=opt,
        loss_function=loss,
        inferer=SimpleInferer(),
        postprocessing=train_postprocessing,
        key_train_metric={"train_acc": Accuracy(output_transform=from_engine(["pred", "label"]))},
        train_handlers=train_handlers,
        amp=bool(amp),
        optim_set_to_none=True,
        to_kwargs={"memory_format": torch.preserve_format},
        amp_kwargs={"dtype": torch.float16 if bool(amp) else torch.float32},
    )
    trainer.run()

    return evaluator.state.best_metric
예제 #15
0
def run_training_test(root_dir, device="cuda:0", amp=False):
    images = sorted(glob(os.path.join(root_dir, "img*.nii.gz")))
    segs = sorted(glob(os.path.join(root_dir, "seg*.nii.gz")))
    train_files = [{
        "image": img,
        "label": seg
    } for img, seg in zip(images[:20], segs[:20])]
    val_files = [{
        "image": img,
        "label": seg
    } for img, seg in zip(images[-20:], segs[-20:])]

    # define transforms for image and segmentation
    train_transforms = Compose([
        LoadNiftid(keys=["image", "label"]),
        AsChannelFirstd(keys=["image", "label"], channel_dim=-1),
        ScaleIntensityd(keys=["image", "label"]),
        RandCropByPosNegLabeld(keys=["image", "label"],
                               label_key="label",
                               spatial_size=[96, 96, 96],
                               pos=1,
                               neg=1,
                               num_samples=4),
        RandRotate90d(keys=["image", "label"], prob=0.5, spatial_axes=[0, 2]),
        ToTensord(keys=["image", "label"]),
    ])
    val_transforms = Compose([
        LoadNiftid(keys=["image", "label"]),
        AsChannelFirstd(keys=["image", "label"], channel_dim=-1),
        ScaleIntensityd(keys=["image", "label"]),
        ToTensord(keys=["image", "label"]),
    ])

    # create a training data loader
    train_ds = monai.data.CacheDataset(data=train_files,
                                       transform=train_transforms,
                                       cache_rate=0.5)
    # use batch_size=2 to load images and use RandCropByPosNegLabeld to generate 2 x 4 images for network training
    train_loader = monai.data.DataLoader(train_ds,
                                         batch_size=2,
                                         shuffle=True,
                                         num_workers=4)
    # create a validation data loader
    val_ds = monai.data.CacheDataset(data=val_files,
                                     transform=val_transforms,
                                     cache_rate=1.0)
    val_loader = monai.data.DataLoader(val_ds, batch_size=1, num_workers=4)

    # create UNet, DiceLoss and Adam optimizer
    net = monai.networks.nets.UNet(
        dimensions=3,
        in_channels=1,
        out_channels=1,
        channels=(16, 32, 64, 128, 256),
        strides=(2, 2, 2, 2),
        num_res_units=2,
    ).to(device)
    loss = monai.losses.DiceLoss(sigmoid=True)
    opt = torch.optim.Adam(net.parameters(), 1e-3)
    lr_scheduler = torch.optim.lr_scheduler.StepLR(opt, step_size=2, gamma=0.1)

    val_post_transforms = Compose([
        Activationsd(keys="pred", sigmoid=True),
        AsDiscreted(keys="pred", threshold_values=True),
        KeepLargestConnectedComponentd(keys="pred", applied_labels=[1]),
    ])
    val_handlers = [
        StatsHandler(output_transform=lambda x: None),
        TensorBoardStatsHandler(log_dir=root_dir,
                                output_transform=lambda x: None),
        TensorBoardImageHandler(log_dir=root_dir,
                                batch_transform=lambda x:
                                (x["image"], x["label"]),
                                output_transform=lambda x: x["pred"]),
        CheckpointSaver(save_dir=root_dir,
                        save_dict={"net": net},
                        save_key_metric=True),
    ]

    evaluator = SupervisedEvaluator(
        device=device,
        val_data_loader=val_loader,
        network=net,
        inferer=SlidingWindowInferer(roi_size=(96, 96, 96),
                                     sw_batch_size=4,
                                     overlap=0.5),
        post_transform=val_post_transforms,
        key_val_metric={
            "val_mean_dice":
            MeanDice(include_background=True,
                     output_transform=lambda x: (x["pred"], x["label"]))
        },
        additional_metrics={
            "val_acc":
            Accuracy(output_transform=lambda x: (x["pred"], x["label"]))
        },
        val_handlers=val_handlers,
        amp=True if amp else False,
    )

    train_post_transforms = Compose([
        Activationsd(keys="pred", sigmoid=True),
        AsDiscreted(keys="pred", threshold_values=True),
        KeepLargestConnectedComponentd(keys="pred", applied_labels=[1]),
    ])
    train_handlers = [
        LrScheduleHandler(lr_scheduler=lr_scheduler, print_lr=True),
        ValidationHandler(validator=evaluator, interval=2, epoch_level=True),
        StatsHandler(tag_name="train_loss",
                     output_transform=lambda x: x["loss"]),
        TensorBoardStatsHandler(log_dir=root_dir,
                                tag_name="train_loss",
                                output_transform=lambda x: x["loss"]),
        CheckpointSaver(save_dir=root_dir,
                        save_dict={
                            "net": net,
                            "opt": opt
                        },
                        save_interval=2,
                        epoch_level=True),
    ]

    trainer = SupervisedTrainer(
        device=device,
        max_epochs=5,
        train_data_loader=train_loader,
        network=net,
        optimizer=opt,
        loss_function=loss,
        inferer=SimpleInferer(),
        post_transform=train_post_transforms,
        key_train_metric={
            "train_acc":
            Accuracy(output_transform=lambda x: (x["pred"], x["label"]))
        },
        train_handlers=train_handlers,
        amp=True if amp else False,
    )
    trainer.run()

    return evaluator.state.best_metric
예제 #16
0
def create_trainer(args):
    set_determinism(seed=args.seed)

    multi_gpu = args.multi_gpu
    local_rank = args.local_rank
    if multi_gpu:
        dist.init_process_group(backend="nccl", init_method="env://")
        device = torch.device("cuda:{}".format(local_rank))
        torch.cuda.set_device(device)
    else:
        device = torch.device("cuda" if args.use_gpu else "cpu")

    pre_transforms = get_pre_transforms(args.roi_size, args.model_size,
                                        args.dimensions)
    click_transforms = get_click_transforms()
    post_transform = get_post_transforms()

    train_loader, val_loader = get_loaders(args, pre_transforms)

    # define training components
    network = get_network(args.network, args.channels,
                          args.dimensions).to(device)
    if multi_gpu:
        network = torch.nn.parallel.DistributedDataParallel(
            network, device_ids=[local_rank], output_device=local_rank)

    if args.resume:
        logging.info('{}:: Loading Network...'.format(local_rank))
        map_location = {"cuda:0": "cuda:{}".format(local_rank)}
        network.load_state_dict(
            torch.load(args.model_filepath, map_location=map_location))

    # define event-handlers for engine
    val_handlers = [
        StatsHandler(output_transform=lambda x: None),
        TensorBoardStatsHandler(log_dir=args.output,
                                output_transform=lambda x: None),
        DeepgrowStatsHandler(log_dir=args.output,
                             tag_name='val_dice',
                             image_interval=args.image_interval),
        CheckpointSaver(save_dir=args.output,
                        save_dict={"net": network},
                        save_key_metric=True,
                        save_final=True,
                        save_interval=args.save_interval,
                        final_filename='model.pt')
    ]
    val_handlers = val_handlers if local_rank == 0 else None

    evaluator = SupervisedEvaluator(
        device=device,
        val_data_loader=val_loader,
        network=network,
        iteration_update=Interaction(
            transforms=click_transforms,
            max_interactions=args.max_val_interactions,
            key_probability='probability',
            train=False),
        inferer=SimpleInferer(),
        post_transform=post_transform,
        key_val_metric={
            "val_dice":
            MeanDice(include_background=False,
                     output_transform=lambda x: (x["pred"], x["label"]))
        },
        val_handlers=val_handlers)

    loss_function = DiceLoss(sigmoid=True, squared_pred=True)
    optimizer = torch.optim.Adam(network.parameters(), args.learning_rate)
    lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer,
                                                   step_size=5000,
                                                   gamma=0.1)

    train_handlers = [
        LrScheduleHandler(lr_scheduler=lr_scheduler, print_lr=True),
        ValidationHandler(validator=evaluator,
                          interval=args.val_freq,
                          epoch_level=True),
        StatsHandler(tag_name="train_loss",
                     output_transform=lambda x: x["loss"]),
        TensorBoardStatsHandler(log_dir=args.output,
                                tag_name="train_loss",
                                output_transform=lambda x: x["loss"]),
        CheckpointSaver(save_dir=args.output,
                        save_dict={
                            "net": network,
                            "opt": optimizer,
                            "lr": lr_scheduler
                        },
                        save_interval=args.save_interval * 2,
                        save_final=True,
                        final_filename='checkpoint.pt'),
    ]
    train_handlers = train_handlers if local_rank == 0 else train_handlers[:2]

    trainer = SupervisedTrainer(
        device=device,
        max_epochs=args.epochs,
        train_data_loader=train_loader,
        network=network,
        iteration_update=Interaction(
            transforms=click_transforms,
            max_interactions=args.max_train_interactions,
            key_probability='probability',
            train=True),
        optimizer=optimizer,
        loss_function=loss_function,
        inferer=SimpleInferer(),
        post_transform=post_transform,
        amp=args.amp,
        key_train_metric={
            "train_dice":
            MeanDice(include_background=False,
                     output_transform=lambda x: (x["pred"], x["label"]))
        },
        train_handlers=train_handlers,
    )
    return trainer
예제 #17
0
def train(data_folder=".", model_folder="runs"):
    """run a training pipeline."""

    images = sorted(glob.glob(os.path.join(data_folder, "*_ct.nii.gz")))
    labels = sorted(glob.glob(os.path.join(data_folder, "*_seg.nii.gz")))
    logging.info(
        f"training: image/label ({len(images)}) folder: {data_folder}")

    amp = True  # auto. mixed precision
    keys = ("image", "label")
    train_frac, val_frac = 0.8, 0.2
    n_train = int(train_frac * len(images)) + 1
    n_val = min(len(images) - n_train, int(val_frac * len(images)))
    logging.info(
        f"training: train {n_train} val {n_val}, folder: {data_folder}")

    train_files = [{
        keys[0]: img,
        keys[1]: seg
    } for img, seg in zip(images[:n_train], labels[:n_train])]
    val_files = [{
        keys[0]: img,
        keys[1]: seg
    } for img, seg in zip(images[-n_val:], labels[-n_val:])]

    # create a training data loader
    batch_size = 8
    logging.info(f"batch size {batch_size}")
    train_transforms = get_xforms("train", keys)
    train_ds = monai.data.CacheDataset(data=train_files,
                                       transform=train_transforms)
    train_loader = monai.data.DataLoader(
        train_ds,
        batch_size=batch_size,
        shuffle=True,
        num_workers=2,
        pin_memory=torch.cuda.is_available(),
    )

    # create a validation data loader
    val_transforms = get_xforms("val", keys)
    val_ds = monai.data.CacheDataset(data=val_files, transform=val_transforms)
    val_loader = monai.data.DataLoader(
        val_ds,
        batch_size=
        1,  # image-level batch to the sliding window method, not the window-level batch
        num_workers=2,
        pin_memory=torch.cuda.is_available(),
    )

    # create BasicUNet, DiceLoss and Adam optimizer
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    net = get_net().to(device)
    max_epochs, lr, momentum = 500, 1e-3, 0.99
    logging.info(f"epochs {max_epochs}, lr {lr}, momentum {momentum}")
    opt = torch.optim.Adam(net.parameters(), lr=lr)

    # create evaluator (to be used to measure model quality during training
    val_post_transform = monai.transforms.Compose([
        AsDiscreted(keys=("pred", "label"),
                    argmax=(True, False),
                    to_onehot=True,
                    n_classes=2)
    ])
    val_handlers = [
        ProgressBar(),
        CheckpointSaver(save_dir=model_folder,
                        save_dict={"net": net},
                        save_key_metric=True,
                        key_metric_n_saved=3),
    ]
    evaluator = monai.engines.SupervisedEvaluator(
        device=device,
        val_data_loader=val_loader,
        network=net,
        inferer=get_inferer(),
        post_transform=val_post_transform,
        key_val_metric={
            "val_mean_dice":
            MeanDice(include_background=False,
                     output_transform=lambda x: (x["pred"], x["label"]))
        },
        val_handlers=val_handlers,
        amp=amp,
    )

    # evaluator as an event handler of the trainer
    train_handlers = [
        ValidationHandler(validator=evaluator, interval=1, epoch_level=True),
        StatsHandler(tag_name="train_loss",
                     output_transform=lambda x: x["loss"]),
    ]
    trainer = monai.engines.SupervisedTrainer(
        device=device,
        max_epochs=max_epochs,
        train_data_loader=train_loader,
        network=net,
        optimizer=opt,
        loss_function=DiceCELoss(),
        inferer=get_inferer(),
        key_train_metric=None,
        train_handlers=train_handlers,
        amp=amp,
    )
    trainer.run()
def main(config):
    now = datetime.now().strftime("%Y%m%d-%H:%M:%S")

    # path
    csv_path = config['path']['csv_path']

    trained_model_path = config['path'][
        'trained_model_path']  # if None, trained from scratch
    training_model_folder = os.path.join(
        config['path']['training_model_folder'], now)  # '/path/to/folder'
    if not os.path.exists(training_model_folder):
        os.makedirs(training_model_folder)
    logdir = os.path.join(training_model_folder, 'logs')
    if not os.path.exists(logdir):
        os.makedirs(logdir)

    # PET CT scan params
    image_shape = tuple(config['preprocessing']['image_shape'])  # (x, y, z)
    in_channels = config['preprocessing']['in_channels']
    voxel_spacing = tuple(
        config['preprocessing']
        ['voxel_spacing'])  # (4.8, 4.8, 4.8)  # in millimeter, (x, y, z)
    data_augment = config['preprocessing'][
        'data_augment']  # True  # for training dataset only
    resize = config['preprocessing']['resize']  # True  # not use yet
    origin = config['preprocessing']['origin']  # how to set the new origin
    normalize = config['preprocessing'][
        'normalize']  # True  # whether or not to normalize the inputs
    number_class = config['preprocessing']['number_class']  # 2

    # CNN params
    architecture = config['model']['architecture']  # 'unet' or 'vnet'

    cnn_params = config['model'][architecture]['cnn_params']
    # transform list to tuple
    for key, value in cnn_params.items():
        if isinstance(value, list):
            cnn_params[key] = tuple(value)

    # Training params
    epochs = config['training']['epochs']
    batch_size = config['training']['batch_size']
    shuffle = config['training']['shuffle']
    opt_params = config['training']["optimizer"]["opt_params"]

    # Get Data
    DM = DataManager(csv_path=csv_path)
    train_images_paths, val_images_paths, test_images_paths = DM.get_train_val_test(
        wrap_with_dict=True)

    # Input preprocessing
    # use data augmentation for training
    train_transforms = Compose([  # read img + meta info
        LoadNifti(keys=["pet_img", "ct_img", "mask_img"]),
        Roi2Mask(keys=['pet_img', 'mask_img'],
                 method='otsu',
                 tval=0.0,
                 idx_channel=0),
        ResampleReshapeAlign(target_shape=image_shape,
                             target_voxel_spacing=voxel_spacing,
                             keys=['pet_img', "ct_img", 'mask_img'],
                             origin='head',
                             origin_key='pet_img'),
        Sitk2Numpy(keys=['pet_img', 'ct_img', 'mask_img']),
        # user can also add other random transforms
        RandAffined(keys=("pet_img", "ct_img", "mask_img"),
                    spatial_size=None,
                    prob=0.4,
                    rotate_range=(0, np.pi / 30, np.pi / 15),
                    shear_range=None,
                    translate_range=(10, 10, 10),
                    scale_range=(0.1, 0.1, 0.1),
                    mode=("bilinear", "bilinear", "nearest"),
                    padding_mode="border"),
        # normalize input
        ScaleIntensityRanged(
            keys=["pet_img"],
            a_min=0.0,
            a_max=25.0,
            b_min=0.0,
            b_max=1.0,
            clip=True,
        ),
        ScaleIntensityRanged(
            keys=["ct_img"],
            a_min=-1000.0,
            a_max=1000.0,
            b_min=0.0,
            b_max=1.0,
            clip=True,
        ),
        # Prepare for neural network
        ConcatModality(keys=['pet_img', 'ct_img']),
        AddChanneld(keys=["mask_img"]),  # Add channel to the first axis
        ToTensord(keys=["image", "mask_img"]),
    ])
    # without data augmentation for validation
    val_transforms = Compose([  # read img + meta info
        LoadNifti(keys=["pet_img", "ct_img", "mask_img"]),
        Roi2Mask(keys=['pet_img', 'mask_img'],
                 method='otsu',
                 tval=0.0,
                 idx_channel=0),
        ResampleReshapeAlign(target_shape=image_shape,
                             target_voxel_spacing=voxel_spacing,
                             keys=['pet_img', "ct_img", 'mask_img'],
                             origin='head',
                             origin_key='pet_img'),
        Sitk2Numpy(keys=['pet_img', 'ct_img', 'mask_img']),
        # normalize input
        ScaleIntensityRanged(
            keys=["pet_img"],
            a_min=0.0,
            a_max=25.0,
            b_min=0.0,
            b_max=1.0,
            clip=True,
        ),
        ScaleIntensityRanged(
            keys=["ct_img"],
            a_min=-1000.0,
            a_max=1000.0,
            b_min=0.0,
            b_max=1.0,
            clip=True,
        ),
        # Prepare for neural network
        ConcatModality(keys=['pet_img', 'ct_img']),
        AddChanneld(keys=["mask_img"]),  # Add channel to the first axis
        ToTensord(keys=["image", "mask_img"]),
    ])

    # create a training data loader
    train_ds = monai.data.CacheDataset(data=train_images_paths,
                                       transform=train_transforms,
                                       cache_rate=0.5)
    # use batch_size=2 to load images to generate 2 x 4 images for network training
    train_loader = monai.data.DataLoader(train_ds,
                                         batch_size=batch_size,
                                         shuffle=shuffle,
                                         num_workers=2)
    # create a validation data loader
    val_ds = monai.data.CacheDataset(data=val_images_paths,
                                     transform=val_transforms,
                                     cache_rate=1.0)
    val_loader = monai.data.DataLoader(val_ds,
                                       batch_size=batch_size,
                                       num_workers=2)

    # Model
    # create UNet, DiceLoss and Adam optimizer
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    net = UNet(
        dimensions=3,  # 3D
        in_channels=in_channels,
        out_channels=1,
        kernel_size=5,
        channels=(8, 16, 32, 64, 128),
        strides=(2, 2, 2, 2),
        num_res_units=2,
    ).to(device)
    loss = monai.losses.DiceLoss(sigmoid=True, squared_pred=True)
    opt = torch.optim.Adam(net.parameters(), 1e-3)

    # training
    val_post_transforms = Compose([
        Activationsd(keys="pred", sigmoid=True),
        AsDiscreted(keys="pred", threshold_values=True),
    ])
    val_handlers = [
        StatsHandler(output_transform=lambda x: None),
        TensorBoardStatsHandler(log_dir="./runs/",
                                output_transform=lambda x: None),
        # TensorBoardImageHandler(
        #     log_dir="./runs/",
        #     batch_transform=lambda x: (x["image"], x["label"]),
        #     output_transform=lambda x: x["pred"],
        # ),
        CheckpointSaver(save_dir="./runs/",
                        save_dict={
                            "net": net,
                            "opt": opt
                        },
                        save_key_metric=True),
    ]

    evaluator = SupervisedEvaluator(
        device=device,
        val_data_loader=val_loader,
        network=net,
        inferer=SimpleInferer(),
        post_transform=val_post_transforms,
        key_val_metric={
            "val_mean_dice":
            MeanDice(include_background=True,
                     output_transform=lambda x: (x["pred"], x["label"]))
        },
        additional_metrics={
            "val_acc":
            Accuracy(output_transform=lambda x: (x["pred"], x["label"])),
            "val_precision":
            Precision(output_transform=lambda x: (x["pred"], x["label"])),
            "val_recall":
            Recall(output_transform=lambda x: (x["pred"], x["label"]))
        },
        val_handlers=val_handlers,
        # if no FP16 support in GPU or PyTorch version < 1.6, will not enable AMP evaluation
        # amp=True if monai.config.get_torch_version_tuple() >= (1, 6) else False,
    )

    train_post_transforms = Compose([
        Activationsd(keys="pred", sigmoid=True),
        AsDiscreted(keys="pred", threshold_values=True),
    ])
    train_handlers = [
        # LrScheduleHandler(lr_scheduler=lr_scheduler, print_lr=True),
        ValidationHandler(validator=evaluator, interval=1, epoch_level=True),
        StatsHandler(tag_name="train_loss",
                     output_transform=lambda x: x["loss"]),
        TensorBoardStatsHandler(log_dir="./runs/",
                                tag_name="train_loss",
                                output_transform=lambda x: x["loss"]),
        CheckpointSaver(save_dir="./runs/",
                        save_dict={
                            "net": net,
                            "opt": opt
                        },
                        save_interval=2,
                        epoch_level=True),
    ]

    trainer = SupervisedTrainer(
        device=device,
        max_epochs=5,
        train_data_loader=train_loader,
        network=net,
        optimizer=opt,
        loss_function=loss,
        prepare_batch=lambda x: (x['image'], x['mask_img']),
        inferer=SimpleInferer(),
        post_transform=train_post_transforms,
        key_train_metric={
            "train_mean_dice":
            MeanDice(include_background=True,
                     output_transform=lambda x: (x["pred"], x["label"]))
        },
        additional_metrics={
            "train_acc":
            Accuracy(output_transform=lambda x: (x["pred"], x["label"])),
            "train_precision":
            Precision(output_transform=lambda x: (x["pred"], x["label"])),
            "train_recall":
            Recall(output_transform=lambda x: (x["pred"], x["label"]))
        },
        train_handlers=train_handlers,
        # if no FP16 support in GPU or PyTorch version < 1.6, will not enable AMP training
        amp=True if monai.config.get_torch_version_tuple() >=
        (1, 6) else False,
    )
    trainer.run()