예제 #1
0
    def __init__(
        self,
        keys: KeysCollection,
        k: Union[Sequence[int], int],
        mode: NumpyPadModeSequence = NumpyPadMode.CONSTANT,
        allow_missing_keys: bool = False,
    ) -> None:
        """
        Args:
            keys: keys of the corresponding items to be transformed.
                See also: :py:class:`monai.transforms.compose.MapTransform`
            k: the target k for each spatial dimension.
                if `k` is negative or 0, the original size is preserved.
                if `k` is an int, the same `k` be applied to all the input spatial dimensions.
            mode: {``"constant"``, ``"edge"``, ``"linear_ramp"``, ``"maximum"``, ``"mean"``,
                ``"median"``, ``"minimum"``, ``"reflect"``, ``"symmetric"``, ``"wrap"``, ``"empty"``}
                One of the listed string values or a user supplied function. Defaults to ``"constant"``.
                See also: https://numpy.org/doc/1.18/reference/generated/numpy.pad.html
                It also can be a sequence of string, each element corresponds to a key in ``keys``.
            allow_missing_keys: don't raise exception if key is missing.

        See also :py:class:`monai.transforms.SpatialPad`

        """
        super().__init__(keys, allow_missing_keys)
        self.mode = ensure_tuple_rep(mode, len(self.keys))
        self.padder = DivisiblePad(k=k)
예제 #2
0
    def __init__(self, keys: KeysCollection, k, mode="constant"):
        """
        Args:
            k (int or sequence of int): the target k for each spatial dimension.
                if `k` is negative or 0, the original size is preserved.
                if `k` is an int, the same `k` be applied to all the input spatial dimensions.
            mode (str or sequence of str): padding mode for SpatialPad.

        See also :py:class:`monai.transforms.SpatialPad`
        """
        super().__init__(keys)
        self.mode = ensure_tuple_rep(mode, len(self.keys))
        self.padder = DivisiblePad(k=k)