def __init__( self, keys: KeysCollection, sigma1: Union[Sequence[float], float] = 3.0, sigma2: Union[Sequence[float], float] = 1.0, alpha: float = 30.0, ) -> None: super().__init__(keys) self.converter = GaussianSharpen(sigma1, sigma2, alpha)
def __call__(self, data): d = dict(data) self.randomize() if not self._do_transform: return d for key in self.keys: sigma1 = ensure_tuple_size(tup=(self.x1, self.y1, self.z1), dim=d[key].ndim - 1) sigma2 = ensure_tuple_size(tup=(self.x2, self.y2, self.z2), dim=d[key].ndim - 1) d[key] = GaussianSharpen(sigma1=sigma1, sigma2=sigma2, alpha=self.a, approx=self.approx)(d[key]) return d
def __init__( self, keys: KeysCollection, sigma1: Union[Sequence[float], float] = 3.0, sigma2: Union[Sequence[float], float] = 1.0, alpha: float = 30.0, approx: str = "erf", allow_missing_keys: bool = False, ) -> None: super().__init__(keys, allow_missing_keys) self.converter = GaussianSharpen(sigma1, sigma2, alpha, approx=approx)