def test_type_shape(self, input_data, data, expected_fg, expected_bg): result = FgBgToIndicesd(**input_data)(data) np.testing.assert_allclose(result["label_fg_indices"], expected_fg) np.testing.assert_allclose(result["label_bg_indices"], expected_bg)
ScaleIntensityRanged( keys=["image"], a_min=-57, a_max=164, b_min=0.0, b_max=1.0, clip=True, ) ), Range()(CropForegroundd(keys=["image", "label"], source_key="image")), # pre-compute foreground and background indexes # and cache them to accelerate training Range("Indexing")( FgBgToIndicesd( keys="label", fg_postfix="_fg", bg_postfix="_bg", image_key="image", ) ), EnsureTyped(keys=["image", "label"]), ToDeviced(keys=["image", "label"], device="cuda:0"), Range("RandCrop")( RandCropByPosNegLabeld( keys=["image", "label"], label_key="label", spatial_size=(96, 96, 96), pos=1, neg=1, num_samples=4, fg_indices_key="label_fg", bg_indices_key="label_bg",
def test_train_timing(self): images = sorted(glob(os.path.join(self.data_dir, "img*.nii.gz"))) segs = sorted(glob(os.path.join(self.data_dir, "seg*.nii.gz"))) train_files = [{ "image": img, "label": seg } for img, seg in zip(images[:32], segs[:32])] val_files = [{ "image": img, "label": seg } for img, seg in zip(images[-9:], segs[-9:])] device = torch.device("cuda:0") # define transforms for train and validation train_transforms = Compose([ LoadImaged(keys=["image", "label"]), EnsureChannelFirstd(keys=["image", "label"]), Spacingd(keys=["image", "label"], pixdim=(1.0, 1.0, 1.0), mode=("bilinear", "nearest")), ScaleIntensityd(keys="image"), CropForegroundd(keys=["image", "label"], source_key="image"), # pre-compute foreground and background indexes # and cache them to accelerate training FgBgToIndicesd(keys="label", fg_postfix="_fg", bg_postfix="_bg"), # change to execute transforms with Tensor data EnsureTyped(keys=["image", "label"]), # move the data to GPU and cache to avoid CPU -> GPU sync in every epoch ToDeviced(keys=["image", "label"], device=device), # randomly crop out patch samples from big # image based on pos / neg ratio # the image centers of negative samples # must be in valid image area RandCropByPosNegLabeld( keys=["image", "label"], label_key="label", spatial_size=(64, 64, 64), pos=1, neg=1, num_samples=4, fg_indices_key="label_fg", bg_indices_key="label_bg", ), RandFlipd(keys=["image", "label"], prob=0.5, spatial_axis=[1, 2]), RandAxisFlipd(keys=["image", "label"], prob=0.5), RandRotate90d(keys=["image", "label"], prob=0.5, spatial_axes=(1, 2)), RandZoomd(keys=["image", "label"], prob=0.5, min_zoom=0.8, max_zoom=1.2, keep_size=True), RandRotated( keys=["image", "label"], prob=0.5, range_x=np.pi / 4, mode=("bilinear", "nearest"), align_corners=True, dtype=np.float64, ), RandAffined(keys=["image", "label"], prob=0.5, rotate_range=np.pi / 2, mode=("bilinear", "nearest")), RandGaussianNoised(keys="image", prob=0.5), RandStdShiftIntensityd(keys="image", prob=0.5, factors=0.05, nonzero=True), ]) val_transforms = Compose([ LoadImaged(keys=["image", "label"]), EnsureChannelFirstd(keys=["image", "label"]), Spacingd(keys=["image", "label"], pixdim=(1.0, 1.0, 1.0), mode=("bilinear", "nearest")), ScaleIntensityd(keys="image"), CropForegroundd(keys=["image", "label"], source_key="image"), EnsureTyped(keys=["image", "label"]), # move the data to GPU and cache to avoid CPU -> GPU sync in every epoch ToDeviced(keys=["image", "label"], device=device), ]) max_epochs = 5 learning_rate = 2e-4 val_interval = 1 # do validation for every epoch # set CacheDataset, ThreadDataLoader and DiceCE loss for MONAI fast training train_ds = CacheDataset(data=train_files, transform=train_transforms, cache_rate=1.0, num_workers=8) val_ds = CacheDataset(data=val_files, transform=val_transforms, cache_rate=1.0, num_workers=5) # disable multi-workers because `ThreadDataLoader` works with multi-threads train_loader = ThreadDataLoader(train_ds, num_workers=0, batch_size=4, shuffle=True) val_loader = ThreadDataLoader(val_ds, num_workers=0, batch_size=1) loss_function = DiceCELoss(to_onehot_y=True, softmax=True, squared_pred=True, batch=True) model = UNet( spatial_dims=3, in_channels=1, out_channels=2, channels=(16, 32, 64, 128, 256), strides=(2, 2, 2, 2), num_res_units=2, norm=Norm.BATCH, ).to(device) # Novograd paper suggests to use a bigger LR than Adam, # because Adam does normalization by element-wise second moments optimizer = Novograd(model.parameters(), learning_rate * 10) scaler = torch.cuda.amp.GradScaler() post_pred = Compose( [EnsureType(), AsDiscrete(argmax=True, to_onehot=2)]) post_label = Compose([EnsureType(), AsDiscrete(to_onehot=2)]) dice_metric = DiceMetric(include_background=True, reduction="mean", get_not_nans=False) best_metric = -1 total_start = time.time() for epoch in range(max_epochs): epoch_start = time.time() print("-" * 10) print(f"epoch {epoch + 1}/{max_epochs}") model.train() epoch_loss = 0 step = 0 for batch_data in train_loader: step_start = time.time() step += 1 optimizer.zero_grad() # set AMP for training with torch.cuda.amp.autocast(): outputs = model(batch_data["image"]) loss = loss_function(outputs, batch_data["label"]) scaler.scale(loss).backward() scaler.step(optimizer) scaler.update() epoch_loss += loss.item() epoch_len = math.ceil(len(train_ds) / train_loader.batch_size) print(f"{step}/{epoch_len}, train_loss: {loss.item():.4f}" f" step time: {(time.time() - step_start):.4f}") epoch_loss /= step print(f"epoch {epoch + 1} average loss: {epoch_loss:.4f}") if (epoch + 1) % val_interval == 0: model.eval() with torch.no_grad(): for val_data in val_loader: roi_size = (96, 96, 96) sw_batch_size = 4 # set AMP for validation with torch.cuda.amp.autocast(): val_outputs = sliding_window_inference( val_data["image"], roi_size, sw_batch_size, model) val_outputs = [ post_pred(i) for i in decollate_batch(val_outputs) ] val_labels = [ post_label(i) for i in decollate_batch(val_data["label"]) ] dice_metric(y_pred=val_outputs, y=val_labels) metric = dice_metric.aggregate().item() dice_metric.reset() if metric > best_metric: best_metric = metric print( f"epoch: {epoch + 1} current mean dice: {metric:.4f}, best mean dice: {best_metric:.4f}" ) print( f"time consuming of epoch {epoch + 1} is: {(time.time() - epoch_start):.4f}" ) total_time = time.time() - total_start print( f"train completed, best_metric: {best_metric:.4f} total time: {total_time:.4f}" ) # test expected metrics self.assertGreater(best_metric, 0.95)
mode=("bilinear", "nearest"), )), Range()(ScaleIntensityRanged( keys=["image"], a_min=-57, a_max=164, b_min=0.0, b_max=1.0, clip=True, )), Range()(CropForegroundd(keys=["image", "label"], source_key="image")), # pre-compute foreground and background indexes # and cache them to accelerate training Range("Indexing")(FgBgToIndicesd( keys="label", fg_postfix="_fg", bg_postfix="_bg", image_key="image", )), EnsureTyped(keys=["image", "label"]), ToDeviced(keys=["image", "label"], device="cuda:0"), Range("RandCrop")(RandCropByPosNegLabeld( keys=["image", "label"], label_key="label", spatial_size=(96, 96, 96), pos=1, neg=1, num_samples=4, fg_indices_key="label_fg", bg_indices_key="label_bg", )) ])