def test_same_result(self, im_shape, input_type): data = self.get_data(im_shape, input_type) alpha = [0.5, 0.8] t = RandGibbsNoised(KEYS, 1.0, alpha) t.set_random_state(42) out1 = t(deepcopy(data)) t.set_random_state(42) out2 = t(deepcopy(data)) for k in KEYS: torch.testing.assert_allclose(out1[k], out2[k], rtol=1e-7, atol=0) self.assertIsInstance(out1[k], type(data[k]))
def test_same_result(self, im_shape, as_tensor_output, as_tensor_input): data = self.get_data(im_shape, as_tensor_input) alpha = [0.5, 0.8] t = RandGibbsNoised(KEYS, 1.0, alpha, as_tensor_output) t.set_random_state(42) out1 = t(deepcopy(data)) t.set_random_state(42) out2 = t(deepcopy(data)) for k in KEYS: np.testing.assert_allclose(out1[k], out2[k]) self.assertIsInstance( out1[k], torch.Tensor if as_tensor_output else np.ndarray)
def test_same_result(self, im_shape, input_type): data = self.get_data(im_shape, input_type) alpha = [0.5, 0.8] t = RandGibbsNoised(KEYS, 1.0, alpha) t.set_random_state(42) out1 = t(deepcopy(data)) t.set_random_state(42) out2 = t(deepcopy(data)) for k in KEYS: assert_allclose(out1[k], out2[k], rtol=1e-7, atol=0, type_test="tensor")