def download_tweet_labels_file(): lines = stats_generator.generate_text_with_report_by_tweets( mmu.get_df_with_all().sort_values('insert_time')) with open('labels.txt', 'w') as the_file: for line in lines: the_file.write(line + '\n') return send_from_directory(directory='', filename="labels.txt")
def get_stats_heatmap(): flights = mmu.get_df_with_all() flights = pd.pivot_table(flights, values='tweet_id', index=['label'], columns=['username'], aggfunc=len) fig, ax = plt.subplots(figsize=(12, 3)) sns.heatmap(flights, annot=True, fmt=".0f") fig.savefig('output.png') return send_file("output.png", mimetype='image/gif', cache_timeout=0)
def get_labelled_tweets(): tweets = mmu.get_df_with_all() tweets = tweets[tweets.label != ''].sort_values(by=['update_time'], ascending=False) list_to_return = [] for index, row in tweets.iterrows(): d = row.to_dict() d['update_time'] = d['update_time'].isoformat() d['note'] = '' d['tweet'] = d['tweet_content'] d.pop('_id', None) d.pop('tweet_content', None) list_to_return.append(d) return jsonify({'tweets': list_to_return})
def get_stats_detailed(): tweets = mmu.get_df_with_all() return jsonify(group_by_counts(tweets))
def download(): mmu.get_df_with_all().to_json('results.json') return send_from_directory(directory='', filename="results.json")