def bg_model(reprojected_dir, bg_model_dir, diff_dir, corr_dir, template_header, im_type='intbgsub', level_only=True): """ Model the background for the mosaiced image Parameters ---------- reprojected_dir : str Path to temp directory containing reprojected images bg_model_dir : str Path to directory inside gal_dir to hold the background modeling information diff_dir : str Path to directory inside bg_model_dir to hold the difference images corr_dir : str Path to directory inside bg_model_dir to hold the background corrected images template_header : ascii file Path to file containing the WCS to which we want to reproject our images im_type : str Type of image used (Default: intbgsub) level_only : bool, optional Montage argument: Adjust background levels only, don't try to fit the slope (Default: True) """ # FIND OVERLAPS diff_dir = os.path.join(diff_dir, im_type) os.makedirs(diff_dir) reprojected_table = os.path.join(reprojected_dir, im_type + '_reprojected.tbl') diffs_table = os.path.join(diff_dir, 'differences.tbl') montage.mOverlaps(reprojected_table, diffs_table) # CALCULATE DIFFERENCES BETWEEN OVERLAPPING IMAGES montage.mDiffExec(diffs_table, template_header, diff_dir, proj_dir=reprojected_dir) # BEST-FIT PLANE COEFFICIENTS fits_table = os.path.join(diff_dir, 'fits.tbl') montage.mFitExec(diffs_table, fits_table, diff_dir) # CALCULATE CORRECTIONS corr_dir = os.path.join(corr_dir, im_type) os.makedirs(corr_dir) corrections_table = os.path.join(corr_dir, 'corrections.tbl') montage.mBgModel(reprojected_table, fits_table, corrections_table, level_only=level_only) # APPLY CORRECTIONS montage.mBgExec(reprojected_table, corrections_table, corr_dir, proj_dir=reprojected_dir)
def bg_model(gal_dir, reprojected_dir, template_header, level_only=False): bg_model_dir = os.path.join(gal_dir, 'background_model') os.makedirs(bg_model_dir) # FIND OVERLAPS diff_dir = os.path.join(bg_model_dir, 'differences') os.makedirs(diff_dir) reprojected_table = os.path.join(reprojected_dir, 'int_reprojected.tbl') diffs_table = os.path.join(diff_dir, 'differences.tbl') montage.mOverlaps(reprojected_table, diffs_table) # CALCULATE DIFFERENCES BETWEEN OVERLAPPING IMAGES montage.mDiffExec(diffs_table, template_header, diff_dir, proj_dir=reprojected_dir) # BEST-FIT PLANE COEFFICIENTS fits_table = os.path.join(diff_dir, 'fits.tbl') montage.mFitExec(diffs_table, fits_table, diff_dir) # CALCULATE CORRECTIONS corr_dir = os.path.join(bg_model_dir, 'corrected') os.makedirs(corr_dir) corrections_table = os.path.join(corr_dir, 'corrections.tbl') montage.mBgModel(reprojected_table, fits_table, corrections_table, level_only=level_only) # APPLY CORRECTIONS montage.mBgExec(reprojected_table, corrections_table, corr_dir, proj_dir=reprojected_dir) return corr_dir
def mosaic(input_files, mosaic_file, work_dir, ext=0, background_match=False, cdelt=None, density=False, equinox=None, header=None, level_only=False, north_aligned=False, postprocess=None, preprocess=None, system=None, weights_file=None): """Make a mosiac. High-level wrapper around several Montage operations similar to `montage_wrapper.mosaic`. The main differences are 1) added support for preprocessing the input images before reprojection and postprocessing the final image after mosaicking, 2) options for using images in total flux units instead of flux density (as assumed by Montage), 3) more of the `montage_wrapper.mMakeHdr` keywords available for header creation, and 4) the `whole` keyword for `montage_wrapper.mProjExec` is automatically set to True when `background_match` is True. The latter is important since backround matching behaves unreliably otherwise. Parameters ---------- input_files : list or string List of paths to the input images. This may also be the path to a directory containing all input images, in which case `input_files` will automatically be set to a list of all files in the directory ending with ".fits". mosaic_file : str Path to the output mosaic file. The final mosaic always has the same units as the `input_files` images. work_dir : str Path to the working directory for all intermediate files produced by Montage. The directory has the following structure:: work_dir/ input/ Contains either symlinks to `input_files` or new files depending on the `preprocess` and `density` keywords. Assuming the `density` keyword has been set correctly, these images will always be in flux density units. reprojected/ The reprojected images. differences/ Difference calculations for background matching (only if `background_match` is True). corrected/ Background-matched images (only if `background_match` is True). output/ The intermediate mosiac used to produce the final mosaic file, depending on the `density` and `postprocess` keywords. background_match : bool, optional If True, match the background levels of the reprojected images before mosaicking. Automatically sets ``whole = True`` in `montage_wrapper.mProjExec`. Default is False. cdelt : float, optional See `header` and `montage_wrapper.mMakeHdr`. Default is None. density : bool, optional If True, the input images are in flux density units (i.e., signal per unit pixel area). If False (default), the input images are assumed to be in units of total flux, and are automatically scaled to flux density before reprojection. equinox : str, optional See `header` and `montage_wrapper.mMakeHdr`. Default is None. header : str, optional Path to the template header file describing the output mosaic. Default is None, in which case a template header is created automatically using `montage_wrapper.mMakeHdr` and the `cdelt`, `equinox`, `north_aligned`, and `system` keyword arguments. level_only : bool, optional See `montage_wrapper.mBgModel`. Ignored if `background_match` is False. Default is False. north_aligned : bool, optional See `header` and `montage_wrapper.mMakeHdr`. Default is None. postprocess, preprocess : function, optional Functions for processing the raw input images before the input density images are created (`preprocess`) and after the final mosaic is created (`postprocess`). The function arguments should be the image data array and the image header (`astropy.io.fits.Header`), and the return values should be the same. Default is None. system : str, optional See `header` and `montage_wrapper.mMakeHdr`. Default is None. weights_file : str, optional Path to output pixel weights file. Pixel weights are derived from the final mosaic area file. Weights are normalized to 1, and represent coverage of the mosaic area by the input images. Unlike Montage area files, regions where the input images overlap are not considered. Default is None. Returns ------- None """ # Get list of files if input_files is a directory name if isinstance(input_files, basestring): dirname = os.path.dirname(input_files) input_files = [os.path.join(dirname, basename) for basename in os.listdir(dirname) if os.path.splitext(basename)[1] == '.fits'] # Create working directory try: os.makedirs(work_dir) except OSError: shutil.rmtree(work_dir) os.makedirs(work_dir) # Create input directory, populate it, and get image metadata input_dir = os.path.join(work_dir, 'input') os.mkdir(input_dir) if preprocess or not density or ext>0: # Create new input files for input_file in input_files: data, hdr = astropy.io.fits.getdata(input_file, header=True, ext=ext) if preprocess: data, hdr = preprocess(data, hdr) if not density: # Convert total flux into flux density dx, dy = wcs.calc_pixscale(hdr, ref='crpix').arcsec pixarea = dx * dy # arcsec2 data /= pixarea # Write basename = os.path.basename(input_file) basename = '_density'.join(os.path.splitext(basename)) new_input_file = os.path.join(input_dir, basename) hdu = astropy.io.fits.PrimaryHDU(data=data, header=hdr) hdu.writeto(new_input_file, output_verify='ignore') else: # Symlink existing files for input_file in input_files: basename = os.path.basename(input_file) new_input_file = os.path.join(input_dir, basename) os.symlink(input_file, new_input_file) input_table = os.path.join(input_dir, 'input.tbl') montage.mImgtbl(input_dir, input_table, corners=True) # Template header if header is None: template_header = os.path.join(work_dir, 'template.hdr') montage.mMakeHdr(input_table, template_header, cdelt=cdelt, equinox=equinox, north_aligned=north_aligned, system=system) else: template_header = header # Create reprojection directory, reproject, and get image metadata proj_dir = os.path.join(work_dir, 'reprojected') os.makedirs(proj_dir) whole = True if background_match else False stats_table = os.path.join(proj_dir, 'mProjExec_stats.log') montage.mProjExec(input_table, template_header, proj_dir, stats_table, raw_dir=input_dir, whole=whole) reprojected_table = os.path.join(proj_dir, 'reprojected.tbl') montage.mImgtbl(proj_dir, reprojected_table, corners=True) # Background matching if background_match: diff_dir = os.path.join(work_dir, 'differences') os.makedirs(diff_dir) # Find overlaps diffs_table = os.path.join(diff_dir, 'differences.tbl') montage.mOverlaps(reprojected_table, diffs_table) # Calculate differences between overlapping images montage.mDiffExec(diffs_table, template_header, diff_dir, proj_dir=proj_dir) # Find best-fit plane coefficients fits_table = os.path.join(diff_dir, 'fits.tbl') montage.mFitExec(diffs_table, fits_table, diff_dir) # Calculate corrections corr_dir = os.path.join(work_dir, 'corrected') os.makedirs(corr_dir) corrections_table = os.path.join(corr_dir, 'corrections.tbl') montage.mBgModel(reprojected_table, fits_table, corrections_table, level_only=level_only) # Apply corrections montage.mBgExec(reprojected_table, corrections_table, corr_dir, proj_dir=proj_dir) img_dir = corr_dir else: img_dir = proj_dir # Make mosaic output_dir = os.path.join(work_dir, 'output') os.makedirs(output_dir) out_image = os.path.join(output_dir, 'mosaic.fits') montage.mAdd(reprojected_table, template_header, out_image, img_dir=img_dir, exact=True) # Pixel areas and weights if weights_file or not density: area_file = '_area'.join(os.path.splitext(out_image)) area, hdr = astropy.io.fits.getdata(area_file, header=True) # steradians area *= (180/np.pi*3600)**2 # arcsec2 dx, dy = wcs.calc_pixscale(hdr, ref='crpix').arcsec pixarea = dx * dy # arcsec2 area = np.clip(area, 0, pixarea) # Don't care about overlaps if weights_file: weights = area / pixarea # Normalize to 1 hdu = astropy.io.fits.PrimaryHDU(weights, header=hdr) try: hdu.writeto(weights_file) except IOError: os.remove(weights_file) hdu.writeto(weights_file) # Write final mosaic dirname = os.path.dirname(mosaic_file) try: os.makedirs(dirname) except OSError: pass if postprocess or not density: # Create new file data, hdr = astropy.io.fits.getdata(out_image, header=True) if not density: # Convert flux density into total flux data *= pixarea if postprocess: data, hdr = postprocess(data, hdr) # Write hdu = astropy.io.fits.PrimaryHDU(data, header=hdr) try: hdu.writeto(mosaic_file) except IOError: os.remove(mosaic_file) hdu.writeto(mosaic_file) else: # Move existing file os.rename(out_image, mosaic_file) return
def _montage_test(): # create density images input_dir = os.path.dirname(density_files[0]) # image metadata meta1_file = os.path.join(input_dir, 'meta1.tbl') montage.mImgtbl(input_dir, meta1_file, corners=True) # make header #lon, lat = [], [] #for density_file in density_files: # data, hdr = astropy.io.fits.getdata(density_file, header=True) # wcs = astropy.wcs.WCS(hdr) # x1, y1 = 0.5, 0.5 # y2, x2 = data.shape # x2, y2 = x2 + 0.5, y2 + 0.5 # x, y = [x1, x2, x2, x1], [y1, y1, y2, y2] # ln, lt = wcs.wcs_pix2world(x, y, 1) # lon += list(ln) # lat += list(lt) #lon1, lon2 = np.min(lon), np.max(lon) #lat1, lat2 = np.min(lat), np.max(lat) hdr_file = os.path.join(os.path.dirname(input_dir), 'test.hdr') montage.mMakeHdr(meta1_file, hdr_file) # reproject proj_dir = os.path.dirname(proj_files[0]) safe_mkdir(proj_dir) stats_file = os.path.join(proj_dir, 'stats.tbl') montage.mProjExec(meta1_file, hdr_file, proj_dir, stats_file, raw_dir=input_dir, exact=True) # image metadata meta2_file = os.path.join(proj_dir, 'meta2.tbl') montage.mImgtbl(proj_dir, meta2_file, corners=True) # Background modeling diff_dir = os.path.join(os.path.dirname(proj_dir), 'difference') safe_mkdir(diff_dir) diff_file = os.path.join(diff_dir, 'diffs.tbl') montage.mOverlaps(meta2_file, diff_file) montage.mDiffExec(diff_file, hdr_file, diff_dir, proj_dir) fits_file = os.path.join(diff_dir, 'fits.tbl') montage.mFitExec(diff_file, fits_file, diff_dir) # Background matching corr_dir = os.path.join(os.path.dirname(proj_dir), 'correct') safe_mkdir(corr_dir) corr_file = os.path.join(corr_dir, 'corrections.tbl') montage.mBgModel(meta2_file, fits_file, corr_file, level_only=False) montage.mBgExec(meta2_file, corr_file, corr_dir, proj_dir=proj_dir) # Native mosaic projadd_file = config.path('{:s}.reproject.add'.format(kind)) projadd_dir, filename = os.path.split(projadd_file) filename, ext = os.path.splitext(filename) filename = '{0:s}_native{1:s}'.format(filename, ext) projaddnative_file = os.path.join(projadd_dir, filename) safe_mkdir(projadd_dir) montage.mAdd(meta2_file, hdr_file, projaddnative_file, img_dir=corr_dir, exact=True) # Reproject to final header header_file = config.path('{:s}.hdr'.format(kind)) montage.mProject(projaddnative_file, projadd_file, header_file) # Postprocess data, hdr = astropy.io.fits.getdata(projaddnative_file, header=True) x1, x2 = 900, 1900 y1, y2 = 3000, 4500 val = np.mean(data[y1:y2,x1:x2]) data, hdr = astropy.io.fits.getdata(projadd_file, header=True) data = data - val areaadd_file = config.path('{:s}.area.add'.format(kind)) area = astropy.io.fits.getdata(areaadd_file) * (180/np.pi*3600)**2 # arcsec2 data = data * area add_file = config.path('{:s}.add'.format(kind)) dirname = os.path.dirname(add_file) safe_mkdir(dirname) if os.path.exists(add_file): os.remove(add_file) hdu = astropy.io.fits.PrimaryHDU(data, header=hdr) hdu.writeto(add_file)
def Run(ra, dec, width, name=None, out_dir=None, temp_dir=None, replace=False, flux=True, thumbnails=False, gzip=True, montage_path=None, swarp_path=None): """ Function to generate standardised cutouts of Herschel observations. Arguments ra: {float, sequence of float} A sequence of right ascension values, in decimal degrees, of the targets to be processed. Alternatively, if you're only interested in one target, a single RA value can be given here. dec: {float, sequence of float} A sequence of declination values, in decimal degrees, of the targets to be processed. Alternatively, if you're only interested in one target, a single Dec value can be given here. width: {float, sequence of float} A sequence giving the desired width of the cutout square for each target, in decimal degrees. Alternatively, if you're only interested in one target, a single width value can be given here. Keyword arguments name: {str, sequence of str}, optional A sequence giving the name of each target; if you're only interested in one target, a single name can be given here. If not provided, a name is constructed automatrically from the target coordinates, according to the IAU catalogue convention. out_dir: str, optional A string giving the path to the directory where the output FITS files will be placed. If not provided, files will simply be written to the current working directory. temp_dir: str, optional A string giving the path to be used as a temporary working directory by Herschel_Button. If not provided, a temporary directory will be created inside the output directory. replace: bool, optional If False, Herschel_Button will search the output directory for any pre-existing output FITS files from previous runs of the function, and will not bother repeat creating these maps (making it easy to resume processing a large number of targets from an interruption. If True, Herschel_Button will produce maps for all input targets, regardless of whether maps for these targets already exist in the output directory. flux: bool, optional If True, output maps will be in flux density units of Jy/pix. If false, output maps will be in surface brightness units of MJy/sr. thumbnails: bool, optional If True, JPG thumbnail images of the generated maps will also be proced and placed in out_dir. montage_path: str, optional Path to directory that contains the Montage commands (mProject, etc); useful if this directory is not in $PATH swarp_path: str: optional Path to directory that contains the SWarp command; useful if this directory is not in $PATH """ # Handle Montage and SWarp paths, if kwargs provided if montage_path != None: os.environ['PATH'] += ':' + montage_path if swarp_path != None: os.environ['PATH'] += ':' + swarp_path import montage_wrapper # Make sure input values are in list format, and sort out variable names for rest of function if not hasattr(ra, '__iter__'): ra = [ra] ra_list = np.array(ra) del (ra) if not hasattr(dec, '__iter__'): dec = [dec] dec_list = np.array(dec) del (dec) # Check that ra and declists all have same lengths if np.std([float(len(ra_list)), float(len(dec_list))]) > 0: raise Exception( 'Input sequences of ra and dec all need to be the same length') # If single width provided, but multiple coordinates, create width array of same value repeated required number of times if not hasattr(width, '__iter__'): if len(ra_list) > 1: width_list = [width] * len(ra_list) # Else, if only one RA and one width given, stick width value into list, too elif len(ra_list) == 1: width_list = [width] width_list = np.array(width_list) del (width) # If no names provided, use coordinates to generate standardised names as per IAU catalogue convention if not hasattr(name, '__iter__'): if (name == None): name = [] for i in range(len(ra_list)): coord = astropy.coordinates.SkyCoord( str(ra_list[i]) + 'd ' + str(dec_list[i]) + 'd') name_coord = re.sub('[hmsdms. ]', ' ', coord.to_string('hmsdms')) name_coord = name_coord.split(' ') name_coord[3] = name_coord[3][:min(2, len(name_coord[3]))] name_coord[8] = name_coord[8][:min(2, len(name_coord[8]))] name_coord = 'J' + ''.join(name_coord) name.append( re.sub('[hmsdms. ]', ' ', coord.to_string('hmsdms'))) # If only one name provided, stick it into an array name_list = np.array([name]) # If a sequence of names is provided, make sure it's in array format (and stop single names becoming zero-dim array) else: name_list = np.array(copy.deepcopy(name)) if name_list.shape == (): name_list = np.array([name_list.tolist()]) del (name) # Do final check that all input sequences are the right length if np.std([ float(ra_list.size), float(dec_list.size), float(width_list.size), float(name_list.size) ]) > 0: raise Exception( 'Input sequences of ra, dec, with, and name all need to be the same length' ) # If no outout directory specified, set to current working directory if out_dir == None: out_dir = os.getcwd() # Check that output directory exists if not os.path.exists(out_dir): raise Exception('Specified output directory does not exist') # Create temporary directory if temp_dir == None: temp_dir = os.path.join(out_dir, 'Temp') # Check that temp directory exists, if it does, warn user that contents may be overwritten if os.path.exists(temp_dir): print( 'Specificed temporary directory already exists; note that any existing contents may be overwritten' ) # Else, if temp directory doesn't already exist, create it else: os.mkdir(temp_dir) # State band information bands_dict = { '70': { 'band': '70', 'instrument': 'PACS', 'wavelength': '70um', 'filter': 'PHOTBLUE', 'pix_size': 2, 'hdr_inst_card_kwrd': 'CAMERA', 'hdr_inst_card_entry': 'PHOTBLUE', 'hdr_blueband_kwrd': 'blue1', 'hdr_err_ext_name': 'stDev' }, '100': { 'band': '100', 'instrument': 'PACS', 'wavelength': '100um', 'filter': 'PHOTGREEN', 'pix_size': 3, 'hdr_inst_card_kwrd': 'CAMERA', 'hdr_inst_card_entry': 'PHOTBLUE', 'hdr_blueband_kwrd': 'blue2', 'hdr_err_ext_name': 'stDev' }, '160': { 'band': '160', 'instrument': 'PACS', 'wavelength': '160um', 'filter': 'PHOTRED', 'pix_size': 4, 'hdr_inst_card_kwrd': 'CAMERA', 'hdr_inst_card_entry': 'PHOTRED', 'hdr_blueband_kwrd': False, 'hdr_err_ext_name': 'stDev' }, '250': { 'band': '250', 'instrument': 'SPIRE', 'wavelength': '250um', 'filter': 'PSW', 'pix_size': 6, 'hdr_inst_card_kwrd': 'DETECTOR', 'hdr_inst_card_entry': 'PSW', 'hdr_blueband_kwrd': False, 'hdr_err_ext_name': 'error' }, '350': { 'band': '350', 'instrument': 'SPIRE', 'wavelength': '350um', 'filter': 'PMW', 'pix_size': 8, 'hdr_inst_card_kwrd': 'DETECTOR', 'hdr_inst_card_entry': 'PMW', 'hdr_blueband_kwrd': False, 'hdr_err_ext_name': 'error' }, '500': { 'band': '500', 'instrument': 'SPIRE', 'wavelength': '500um', 'filter': 'PLW', 'pix_size': 12, 'hdr_inst_card_kwrd': 'DETECTOR', 'hdr_inst_card_entry': 'PLW', 'hdr_blueband_kwrd': False, 'hdr_err_ext_name': 'error' } } # State map mode prefixes we care about req_obs_modes = [ 'SpirePhotoLargeScan', 'SpirePhotoSmallScan', 'PacsPhoto', 'SpirePacsParallel' ] # Record time taken time_list = [time.time()] # Loop over each target for i in np.random.permutation(range(name_list.shape[0])): name = name_list[i].replace(' ', '_') ra = ra_list[i] dec = dec_list[i] width = width_list[i] # If we're not repeating already-processed targets, check if this target has already been completed if not replace: bands_done = 0 for band in bands_dict.keys(): if os.path.exists( os.path.join( out_dir, name + '_Herschel_' + bands_dict[band]['wavelength'] + '.fits.gz')): bands_done += 1 # Also check for null files, indicated data not available for a givne band elif os.path.exists( os.path.join( out_dir, '.' + name + '_Herschel_' + bands_dict[band]['wavelength'] + '.null')): bands_done += 1 # If this source has already been processed in all bands, skip it if bands_done == len(bands_dict.keys()): print( 'Herschel data for ' + name + ' already processed (if available); continuing to next target' ) time_list.append(time.time()) continue print('Processing Herschel data for target ' + name) # Create field processing dirctories (deleting any prior) gal_dir = os.path.join(temp_dir, str(name)) + '/' if os.path.exists(gal_dir): ChrisFuncs.RemoveCrawl(gal_dir) if not os.path.exists(os.path.join(gal_dir, 'Raw')): os.makedirs(os.path.join(gal_dir, 'Raw')) os.chdir(os.path.join(gal_dir, 'Raw')) # Create band-specific directories for band in bands_dict.keys(): if not os.path.exists(os.path.join(gal_dir, 'Raw', band)): os.makedirs(os.path.join(gal_dir, 'Raw', band)) # Perform query, with error handling print('Querying HSA') query_success = False query_fail_count = 0 while query_success == False: if query_fail_count >= 10: raise Exception( 'HSA query failing consistently; maybe HSA is down, or something else has gone wrong' ) try: query_url = 'http://archives.esac.esa.int/hsa/aio/jsp/siap.jsp?POS=' + str( ra) + ',' + str(dec) + '&SIZE=' + str( width) + '&INTERSECT=OVERLAPS' query_filename = os.path.join(temp_dir, name, str(name) + '.vot') if os.path.exists(query_filename): os.remove(query_filename) urllib.request.urlretrieve(query_url, query_filename) query_success = True except: print('HSA query failed; reattempting') query_fail_count += 1 time.sleep(60) if not os.path.exists(query_filename): query_success = False # Read query result VOTable query_output = astropy.io.votable.parse_single_table(query_filename) query_table = query_output.array # Check if query returned any results; if not, create null file, and continue to next target if len(query_table) == 0: print('No Herschel coverage for ' + name + '; continuing to next target') os.system('touch ' + os.path.join(temp_dir, '.' + name + '_Herschel_' + band + '.null')) continue # Record which urls correspond to data in the desired modes (dealing with awkwardness for if there is only 1 entry, or silly massive files) hsa_urls = [] if query_table.size == 1: if query_table['OBS_MODE'] in req_obs_modes: hsa_urls.append(query_table['DATA_ACCESS']) else: for j in range(0, query_table.size): if query_table['OBS_MODE'][j].decode('utf-8') in req_obs_modes: hsa_urls.append( query_table['DATA_LINK'][j].decode('utf-8')) # In parallel, download and extract files os.chdir(os.path.join(gal_dir, 'Raw')) dl_pool = mp.Pool(processes=20) for j in range(0, len(hsa_urls)): data_url = hsa_urls[j] data_filename = os.path.join(gal_dir, 'Raw', name + '_' + str(j) + '_HSA.fits') #dl_pool.apply_async( Herschel_Download, args=(data_url, data_filename,) ) Herschel_Download(data_url, data_filename) dl_pool.close() dl_pool.join() # Loop over bands, and downloaded files (skipping folders), for sorting files into separate folders for band in bands_dict.keys(): prev_hdr_filenames = [] for listfile in os.listdir(os.path.join(gal_dir, 'Raw')): if '.tmp' in listfile: os.remove(os.path.join(gal_dir, 'Raw', listfile)) continue if '.fits' not in listfile: continue # Determine what band this is try: list_hdr = astropy.io.fits.getheader(os.path.join( gal_dir, 'Raw', listfile), ext=0) except: pdb.set_trace() if list_hdr['INSTRUME'] == bands_dict[band]['instrument']: if list_hdr[bands_dict[band] ['hdr_inst_card_kwrd']] == bands_dict[band][ 'hdr_inst_card_entry']: # Handle the fact that 70um and 100um are hard to tell apart in headers if bands_dict[band]['hdr_blueband_kwrd'] != False: if bands_dict[band][ 'hdr_blueband_kwrd'] not in list_hdr[ 'BLUEBAND']: continue # Skip dud PACS calibration(?) maps if list_hdr['OBSERVER'][-4:].lower() == 'pacs': os.remove(os.path.join(gal_dir, 'Raw', listfile)) continue # Check that we havne't already grabbed a duplicate of this map; if not, move it to band-specific directory if 'FILENAME' in list_hdr.keys(): if list_hdr['FILENAME'] in prev_hdr_filenames: os.remove( os.path.join(gal_dir, 'Raw', listfile)) continue else: prev_hdr_filenames.append(list_hdr['FILENAME']) shutil.copy2(os.path.join(gal_dir, 'Raw', listfile), os.path.join(gal_dir, 'Raw', band)) os.remove(os.path.join(gal_dir, 'Raw', listfile)) # Loop over PACS bands and files to delete dud PACS calibration(?) maps for band in bands_dict.keys(): if bands_dict[band]['instrument'] == 'PACS': for listfile in os.listdir(os.path.join(gal_dir, 'Raw', band)): if astropy.io.fits.getheader( os.path.join(gal_dir, 'Raw', band, listfile), ext=0)['OBSERVER'][-4:].lower() == 'pacs': os.remove(os.path.join(gal_dir, 'Raw', band, listfile)) # Loop over each band's files, to save image map to separate FITS files for band in bands_dict.keys(): for listfile in os.listdir(os.path.join(gal_dir, 'Raw', band)): print('Extracting components from ' + band + ' um map ' + listfile) if '.tmp' in listfile: pdb.set_trace() # Check map has error and coverage data; open if so, skip forward if not with astropy.io.fits.open( os.path.join(gal_dir, 'Raw', band, listfile)) as listfile_hdulist: if len(listfile_hdulist) < 4: print('Some FITS extensions missing from ' + band + ' um map ' + listfile + '; skipping') continue img_map, img_header = astropy.io.fits.getdata(os.path.join( gal_dir, 'Raw', band, listfile), header=True, extname='image') # Record which image pixels are zeros, and convert to NaNs where_zero = np.where(img_map == 0) img_map[where_zero] = np.NaN astropy.io.fits.writeto(os.path.join( gal_dir, 'Raw', band, listfile.replace('.fits', '_Img.fits')), img_map, header=img_header) # Now save coverage and error maps to separate files, with zeros similarly converted to NaNs cov_map, cov_header = astropy.io.fits.getdata( os.path.join(gal_dir, 'Raw', band, listfile), header=True, extname='coverage') cov_map[where_zero] = np.NaN astropy.io.fits.writeto(os.path.join( gal_dir, 'Raw', band, listfile.replace('.fits', '_Cov.fits')), cov_map, header=cov_header) err_map, err_header = astropy.io.fits.getdata( os.path.join(gal_dir, 'Raw', band, listfile), header=True, extname=bands_dict[band]['hdr_err_ext_name']) err_map[where_zero] = np.NaN astropy.io.fits.writeto(os.path.join( gal_dir, 'Raw', band, listfile.replace('.fits', '_Error.fits')), err_map, header=err_header) # Loop over each band for coaddition for band in bands_dict.keys(): if not os.path.exists(os.path.join(gal_dir, 'Raw', band)): continue if len(os.path.join(gal_dir, 'Raw', band)) == 0: continue print('Commencing processing of ' + name + '_Herschel_' + band) # Create processing directories os.chdir(os.path.join(gal_dir, 'Raw', band)) os.mkdir(os.path.join(gal_dir, 'Raw', band, 'Img_Maps')) os.mkdir(os.path.join(gal_dir, 'Raw', band, 'Cov_Maps')) os.mkdir(os.path.join(gal_dir, 'Raw', band, 'Err_Maps')) os.mkdir(os.path.join(gal_dir, 'Raw', band, 'Exp_Maps')) os.mkdir(os.path.join(gal_dir, 'Raw', band, 'Wgt_Temp')) os.mkdir(os.path.join(gal_dir, 'Raw', band, 'Pff_Temp')) os.mkdir(os.path.join(gal_dir, 'Raw', band, 'Backsub_Temp')) os.mkdir(os.path.join(gal_dir, 'Raw', band, 'SWarp_Temp')) # Create Montage FITS header location_string = str(ra) + ' ' + str(dec) pix_size = bands_dict[band]['pix_size'] montage_wrapper.mHdr(location_string, width, os.path.join(gal_dir, 'Raw', band, str(name) + '.hdr'), pix_size=pix_size) # Use Montage wrapper to reproject all fits files to common projection, skipping if none acually overlap print('Performing reprojections for ' + name + '_Herschel_' + band + ' maps') target_files = [] proj_fail = 0 [ target_files.append(target_file) for target_file in os.listdir( os.path.join(gal_dir, 'Raw', band)) if '.fits' in target_file ] for target_file in target_files: try: montage_wrapper.reproject( os.path.join( os.path.join(gal_dir, 'Raw', band, target_file)), os.path.join( os.path.join(gal_dir, 'Raw', band, target_file)), header=os.path.join(gal_dir, 'Raw', band, str(name) + '.hdr'), exact_size=True) except: os.remove( os.path.join( os.path.join(gal_dir, 'Raw', band, target_file))) proj_fail += 1 if proj_fail == len(target_files): print('No Herschel coverage for ' + name + ' at ' + band) os.system('touch ' + os.path.join( temp_dir, '.' + name + '_Herschel_' + band + '.null')) continue # Move reprojcted maps to relevant locations for listfile in os.listdir(os.path.join(gal_dir, 'Raw', band)): if '_Img.fits' in os.path.join(gal_dir, 'Raw', band, listfile): shutil.move(os.path.join(gal_dir, 'Raw', band, listfile), os.path.join(gal_dir, 'Raw', band, 'Img_Maps')) elif '_Cov.fits' in os.path.join(gal_dir, 'Raw', band, listfile): shutil.move(os.path.join(gal_dir, 'Raw', band, listfile), os.path.join(gal_dir, 'Raw', band, 'Cov_Maps')) elif '_Error.fits' in os.path.join(gal_dir, 'Raw', band, listfile): shutil.move(os.path.join(gal_dir, 'Raw', band, listfile), os.path.join(gal_dir, 'Raw', band, 'Err_Maps')) # If only one image file, proceed straight to co-adding; otherwise, commence background-matching mosaic_count = 0 for listfile in os.listdir( os.path.join(gal_dir, 'Raw', band, 'Img_Maps')): if '_Img.fits' in listfile: mosaic_count += 1 if mosaic_count == 1: for listfile in os.listdir( os.path.join(gal_dir, 'Raw', band, 'Img_Maps')): if '.fits' in listfile: shutil.move( os.path.join(gal_dir, 'Raw', band, 'Img_Maps', listfile), os.path.join(gal_dir, 'Raw', band, 'SWarp_Temp')) mBgExec_uberfail = False if mosaic_count > 1: # Use Montage wrapper to determine appropriate corrections for background matching print('Determining background corrections for ' + name + '_Herschel_' + band + ' maps') os.chdir(os.path.join(gal_dir, 'Raw', band, 'Img_Maps')) montage_wrapper.mImgtbl( os.path.join(gal_dir, 'Raw', band, 'Img_Maps'), os.path.join(gal_dir, 'Raw', band, 'Img_Maps', band + '_Image_Metadata_Table.dat'), corners=True) montage_wrapper.mOverlaps( os.path.join(gal_dir, 'Raw', band, 'Img_Maps', band + '_Image_Metadata_Table.dat'), os.path.join(gal_dir, 'Raw', band, 'Img_Maps', band + '_Image_Diffs_Table.dat')) montage_wrapper.mDiffExec( os.path.join(gal_dir, 'Raw', band, 'Img_Maps', band + '_Image_Diffs_Table.dat'), os.path.join(gal_dir, 'Raw', band, str(name) + '.hdr'), os.path.join(gal_dir, 'Raw', band, 'Pff_Temp'), no_area=True, proj_dir=os.path.join(gal_dir, 'Raw', band, 'Img_Maps')) montage_wrapper.mFitExec( os.path.join(gal_dir, 'Raw', band, 'Img_Maps', band + '_Image_Diffs_Table.dat'), os.path.join(gal_dir, 'Raw', band, 'Img_Maps', band + '_Image_Fitting_Table.dat'), os.path.join(gal_dir, 'Raw', band, 'Pff_Temp')) montage_wrapper.mBgModel( os.path.join(gal_dir, 'Raw', band, 'Img_Maps', band + '_Image_Metadata_Table.dat'), os.path.join(gal_dir, 'Raw', band, 'Img_Maps', band + '_Image_Fitting_Table.dat'), os.path.join(gal_dir, 'Raw', band, 'Img_Maps', band + '_Image_Corrections_Table.dat'), level_only=True, n_iter=16384) # Apply background corrections using Montage subprocess, with timeout handling print('Applying background corrections to ' + name + '_Herschel_' + band + ' maps') mBgExec_fail_count = 0 mBgExec_success = False mBgExec_uberfail = False while mBgExec_success == False: # Attempt background-matching mBgExec_sp = subprocess.Popen([ 'mBgExec', '-n', '-p', os.path.join(gal_dir, 'Raw', band, 'Img_Maps'), os.path.join(gal_dir, 'Raw', band, 'Img_Maps', band + '_Image_Metadata_Table.dat'), os.path.join(gal_dir, 'Raw', band, 'Img_Maps', band + '_Image_Corrections_Table.dat'), os.path.join(gal_dir, 'Raw', band, 'SWarp_Temp') ], preexec_fn=os.setsid, stdout=subprocess.PIPE) mBgExec_fail = False seconds = 0 minutes_max = 45 while mBgExec_fail == False: time.sleep(1) mBgExec_stdout = mBgExec_sp.stdout.readline().decode() if mBgExec_sp.poll() == None: seconds += 1 if 'Table has no data records' in mBgExec_stdout: mBgExec_fail = True mBgExec_fail_count += 1 break if seconds >= (60 * minutes_max): mBgExec_fail = True mBgExec_fail_count += 1 break if mBgExec_sp.poll() != None: mBgExec_success = True break # Handle timeouts and other failures if mBgExec_fail_count > 1: print('Background matching with Montage has failed ' + str(mBgExec_fail_count) + ' time(s); reattempting') if mBgExec_fail == True and mBgExec_success == False and mBgExec_fail_count >= 5: mBgExec_uberfail = True print( 'Background matching with Montage has failed 5 times; proceeding directly to co-additon' ) try: os.killpg(os.getpgid(mBgExec_sp.pid), 15) except: 'Background matching subprocess appears to have imploded; no task to kill' break if mBgExec_uberfail: raise Exception( 'Background matching with Montage has failed utterly') """for listfile in os.listdir(os.path.join(gal_dir,'Raw',band,'Img_Maps')): if '_HSA_Img.fits' in listfile: shutil.move(listfile, os.path.join(gal_dir,'Raw',band,'SWarp_Temp'))""" # Create weight maps, and copy to SWarp directory for listfile in os.listdir( os.path.join(gal_dir, 'Raw', band, 'Cov_Maps')): if '.fits' in listfile: shutil.copy2( os.path.join(gal_dir, 'Raw', band, 'Cov_Maps', listfile), os.path.join(gal_dir, 'Raw', band, 'SWarp_Temp')) wgt_image, wgt_header = astropy.io.fits.getdata( os.path.join(gal_dir, 'Raw', band, 'Cov_Maps', listfile), header=True) wgt_image = wgt_image**0.5 astropy.io.fits.writeto(os.path.join( gal_dir, 'Raw', band, 'SWarp_Temp', listfile.replace('_Cov.fits', '_Wgt.fits')), wgt_image, header=wgt_header) # Sort out daft filename differences between image maps and error maps for listfile in os.listdir( os.path.join(gal_dir, 'Raw', band, 'SWarp_Temp')): os.rename( os.path.join(gal_dir, 'Raw', band, 'SWarp_Temp', listfile), os.path.join(gal_dir, 'Raw', band, 'SWarp_Temp', listfile.replace('_Img.fits', '.fits'))) # Perform least-squares plane fitting to match image levels ChrisFuncs.Coadd.LevelFITS(os.path.join(gal_dir, 'Raw', band, 'SWarp_Temp'), 'Img.fits', convfile_dir=False) # Use SWarp to co-add images weighted by their coverage maps print('Co-adding ' + name + '_Herschel_' + band + ' maps') os.chdir(os.path.join(gal_dir, 'Raw', band, 'SWarp_Temp')) os.system( 'swarp *HSA.fits -IMAGEOUT_NAME ' + name + '_Herschel_' + band + '_SWarp.fits -WEIGHT_SUFFIX _Wgt.fits -WEIGHT_TYPE MAP_RMS -COMBINE_TYPE WEIGHTED -COMBINE_BUFSIZE 2048 -GAIN_KEYWORD DIESPIZERDIE -RESCALE_WEIGHTS N -SUBTRACT_BACK N -RESAMPLE N -VMEM_MAX 4095 -MEM_MAX 4096 -WEIGHT_TYPE MAP_WEIGHT -NTHREADS 4 -VERBOSE_TYPE QUIET' ) Herschel_SWarp_NaN(name + '_Herschel_' + band + '_SWarp.fits') # Check that the final maps provides actual coverage of the point in question coadd_image, coadd_header = astropy.io.fits.getdata(os.path.join( gal_dir, 'Raw', band, 'SWarp_Temp', name + '_Herschel_' + band + '_SWarp.fits'), header=True) coadd_wcs = astropy.wcs.WCS(coadd_header) coords_xy = np.round( coadd_wcs.all_world2pix(np.array([[ra, dec]]), 0)).astype(int) coord_i, coord_j = coords_xy[0, 1], coords_xy[0, 0] if np.isnan( np.nanmax(coadd_image[coord_i - 2:coord_i + 2 + 1, coord_j - 2:coord_j + 2 + 2])): print('No Herschel coverage for ' + name + ' at ' + band) os.system('touch ' + os.path.join( temp_dir, '.' + name + '_Herschel_' + band + '.null')) continue # Re-project finalised image map using Montage montage_wrapper.reproject( os.path.join(gal_dir, 'Raw', band, 'SWarp_Temp', name + '_Herschel_' + band + '_SWarp.fits'), os.path.join(gal_dir, name + '_Herschel_' + band + '.fits'), header=os.path.join(gal_dir, 'Raw', band, str(name) + '.hdr'), exact_size=True) # Compress finalised FITS file os.chdir(gal_dir) if gzip: os.system('gzip ' + os.path.join(gal_dir, name + '_Herschel_' + band + '.fits')) print('Completed processing ' + name + '_Herschel_' + band + ' image map') # Turn error maps into exposure time maps for listfile in os.listdir( os.path.join(gal_dir, 'Raw', band, 'Err_Maps')): if '_Error.fits' in listfile: err_image, err_header = astropy.io.fits.getdata( os.path.join(gal_dir, 'Raw', band, 'Err_Maps', listfile), header=True) err_image = err_image**-2.0 astropy.io.fits.writeto(os.path.join( gal_dir, 'Raw', band, 'Exp_Maps', listfile.replace('_Error.fits', '_Exp.fits')), err_image, header=err_header) # Use Montage to add exposure time images print('Processing ' + name + '_Herschel_' + band + ' uncertainty map') target_files = [] [ target_files.append(dir_file) for dir_file in os.listdir( os.path.join(gal_dir, 'Raw', band, 'Exp_Maps')) if '_Exp.fits' in dir_file ] for i in range(0, len(target_files)): exp_image, exp_header = astropy.io.fits.getdata(os.path.join( gal_dir, 'Raw', band, 'Exp_Maps', target_files[i]), header=True) if i == 0: add_image = np.zeros( [exp_image.shape[0], exp_image.shape[1]]) add_header = exp_header.copy() exp_good = np.where(np.isnan(exp_image) == False) add_image[exp_good] += exp_image[exp_good] add_hdu = astropy.io.fits.PrimaryHDU(data=add_image, header=add_header) add_hdulist = astropy.io.fits.HDUList([add_hdu]) astropy.io.fits.writeto(os.path.join( gal_dir, 'Raw', band, 'Exp_Maps', name + '_Herschel_' + band + '_Exp_Add.fits'), add_image, header=add_header, clobber=True) # Re-project final exposure map using Montage montage_wrapper.reproject( os.path.join(gal_dir, 'Raw', band, 'Exp_Maps', name + '_Herschel_' + band + '_Exp_Add.fits'), os.path.join(gal_dir, 'Raw', band, 'Exp_Maps', name + '_Herschel_' + band + '_Exp.fits'), header=os.path.join(gal_dir, 'Raw', band, str(name) + '.hdr'), exact_size=True) # Convert final exposure time map into error map err_image, err_header = astropy.io.fits.getdata(os.path.join( gal_dir, 'Raw', band, 'Exp_Maps', name + '_Herschel_' + band + '_Exp.fits'), header=True) err_image[np.where(err_image < 0)] = np.NaN err_image = err_image**-0.5 err_image[np.where(err_image == np.inf)] = np.NaN astropy.io.fits.writeto(os.path.join( gal_dir, name + '_Herschel_' + band + '_Error.fits'), err_image, header=err_header, clobber=True) # Compress finalised exposure time map os.chdir(out_dir) if gzip: os.system('gzip ' + os.path.join( gal_dir, name + '_Herschel_' + band + '_Error.fits')) print('Completed processing ' + name + '_Herschel_' + band + ' uncertainty map') # In parallel, generate final standardised maps for each band pool = mp.Pool(processes=9) for key in bands_dict.keys(): band_dict = bands_dict[key] #pool.apply_async( Herschel_Generator, args=(name, ra, dec, temp_dir, out_dir, band_dict, flux, thumbnails, gzip=gzip,) ) Herschel_Generator(name, ra, dec, temp_dir, out_dir, band_dict, flux, thumbnails, gzip=gzip) pool.close() pool.join() # Clean memory, and return timings (if more than one target being processed) gc.collect() time_list.append(time.time()) time_est = ChrisFuncs.TimeEst(time_list, len(name_list)) if len(name) > 1: print( 'Estimated time until Herschel data completed for all targets: ' + time_est) # Tidy up (best as we can) gc.collect() try: shutil.rmtree(temp_dir) except: ChrisFuncs.RemoveCrawl(temp_dir) print( 'Unable to fully tidy up temporary directory; probably due to NFS locks on network drive' ) # Report completion print('Total time elapsed: ' + str((time.time() - time_list[0]) / 3600.0) + ' hours') print('All available Herschel imagery acquired for all targets')
os.chdir(bands) os.mkdir('projected') os.mkdir('diffdir') os.mkdir('corrdir') mt.mImgtbl('raw','rimages.tbl') mt.mProjExec('rimages.tbl', '../'+bands+'.hdr', 'projected', 'stats.tbl', raw_dir='raw') mt.mImgtbl('projected', 'pimages.tbl') len_dir = len(os.listdir('projected')) if len_dir < 3 : mt.mAdd('pimages.tbl', '../'+bands+'.hdr', '../'+sour_name+'_'+bands+'.fits', img_dir='projected') else: mt.mOverlaps('pimages.tbl', 'diffs.tbl') mt.mDiffExec('diffs.tbl', '../'+bands+'.hdr', 'diffdir', proj_dir = 'projected') mt.mFitExec('diffs.tbl', 'fits.tbl', 'diffdir') if ((len(os.listdir("diffdir")) > 1 and os.path.getsize("diffdir/"+os.listdir("diffdir")[1]) < 10000) or (len(os.listdir("diffdir")) < 1)) : listPro = os.listdir('projected') listPro = np.array(listPro) fileSize = np.array(range(len(listPro))) for ifile in range(len(listPro)): fileSize[ifile] = os.path.getsize('projected/'+listPro[ifile]) proTable = Table([listPro, fileSize], names = ["Name", "size"]) proTable.sort(["size", "Name"]) shutil.copy('projected/'+proTable['Name'][-2], '../'+sour_name+'_'+bands+'.fits')