class MOPO(RLAlgorithm): """Model-based Offline Policy Optimization (MOPO) References ---------- Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon, James Zou, Sergey Levine, Chelsea Finn, Tengyu Ma. MOPO: Model-based Offline Policy Optimization. arXiv preprint arXiv:2005.13239. 2020. """ def __init__( self, training_environment, evaluation_environment, policy, Qs, pool, static_fns, plotter=None, tf_summaries=False, lr=3e-4, reward_scale=1.0, target_entropy='auto', discount=0.99, tau=5e-3, target_update_interval=1, action_prior='uniform', reparameterize=False, store_extra_policy_info=False, adapt=False, gru_state_dim=256, network_kwargs=None, deterministic=False, rollout_random=False, model_train_freq=250, num_networks=7, num_elites=5, model_retain_epochs=20, rollout_batch_size=100e3, real_ratio=0.1, # rollout_schedule=[20,100,1,1], rollout_length=1, hidden_dim=200, max_model_t=None, model_type='mlp', separate_mean_var=False, identity_terminal=0, pool_load_path='', pool_load_max_size=0, model_name=None, model_load_dir=None, penalty_coeff=0., penalty_learned_var=False, **kwargs): """ Args: env (`SoftlearningEnv`): Environment used for training. policy: A policy function approximator. initial_exploration_policy: ('Policy'): A policy that we use for initial exploration which is not trained by the algorithm. Qs: Q-function approximators. The min of these approximators will be used. Usage of at least two Q-functions improves performance by reducing overestimation bias. pool (`PoolBase`): Replay pool to add gathered samples to. plotter (`QFPolicyPlotter`): Plotter instance to be used for visualizing Q-function during training. lr (`float`): Learning rate used for the function approximators. discount (`float`): Discount factor for Q-function updates. tau (`float`): Soft value function target update weight. target_update_interval ('int'): Frequency at which target network updates occur in iterations. reparameterize ('bool'): If True, we use a gradient estimator for the policy derived using the reparameterization trick. We use a likelihood ratio based estimator otherwise. """ super(MOPO, self).__init__(**kwargs) print("[ DEBUG ]: model name: {}".format(model_name)) if '_smv' in model_name: self._env_name = model_name[:-8] + '-v0' else: self._env_name = model_name[:-4] + '-v0' if self._env_name in infos.REF_MIN_SCORE: self.min_ret = infos.REF_MIN_SCORE[self._env_name] self.max_ret = infos.REF_MAX_SCORE[self._env_name] else: self.min_ret = self.max_ret = 0 obs_dim = np.prod(training_environment.active_observation_shape) act_dim = np.prod(training_environment.action_space.shape) self._model_type = model_type self._identity_terminal = identity_terminal self._model = construct_model(obs_dim=obs_dim, act_dim=act_dim, hidden_dim=hidden_dim, num_networks=num_networks, num_elites=num_elites, model_type=model_type, separate_mean_var=separate_mean_var, name=model_name, load_dir=model_load_dir, deterministic=deterministic) print('[ MOPO ]: got self._model') self._static_fns = static_fns self.fake_env = FakeEnv(self._model, self._static_fns, penalty_coeff=penalty_coeff, penalty_learned_var=penalty_learned_var) self._rollout_schedule = [20, 100, rollout_length, rollout_length] self._max_model_t = max_model_t self._model_retain_epochs = model_retain_epochs self._model_train_freq = model_train_freq self._rollout_batch_size = int(rollout_batch_size) self._deterministic = deterministic self._rollout_random = rollout_random self._real_ratio = real_ratio # TODO: RLA writer (implemented with tf) should be compatible with the Writer object (implemented with tbx) self._log_dir = tester.log_dir # self._writer = tester.writer self._writer = Writer(self._log_dir) self._training_environment = training_environment self._evaluation_environment = evaluation_environment self.gru_state_dim = gru_state_dim self.network_kwargs = network_kwargs self.adapt = adapt self.optim_alpha = False # self._policy = policy # self._Qs = Qs # self._Q_targets = tuple(tf.keras.models.clone_model(Q) for Q in Qs) self._pool = pool self._plotter = plotter self._tf_summaries = tf_summaries self._policy_lr = lr self._Q_lr = lr self._reward_scale = reward_scale self._target_entropy = ( -np.prod(self._training_environment.action_space.shape) if target_entropy == 'auto' else target_entropy) print('[ MOPO ] Target entropy: {}'.format(self._target_entropy)) self._discount = discount self._tau = tau self._target_update_interval = target_update_interval self._action_prior = action_prior self._reparameterize = reparameterize self._store_extra_policy_info = store_extra_policy_info observation_shape = self._training_environment.active_observation_shape action_shape = self._training_environment.action_space.shape assert len(observation_shape) == 1, observation_shape self._observation_shape = observation_shape assert len(action_shape) == 1, action_shape self._action_shape = action_shape self._build() #### load replay pool data self._pool_load_path = pool_load_path self._pool_load_max_size = pool_load_max_size loader.restore_pool(self._pool, self._pool_load_path, self._pool_load_max_size, save_path=self._log_dir) self._init_pool_size = self._pool.size print('[ MOPO ] Starting with pool size: {}'.format( self._init_pool_size)) #### def _build(self): self._training_ops = {} # place holder self.global_step = training_util.get_or_create_global_step() self._training_ops.update( {'increment_global_step': training_util._increment_global_step(1)}) self._iteration_ph = tf.placeholder(tf.int64, shape=None, name='iteration') self._observations_ph = tf.placeholder( tf.float32, shape=(None, None, *self._observation_shape), name='observation', ) self._next_observations_ph = tf.placeholder( tf.float32, shape=(None, None, *self._observation_shape), name='next_observation', ) self._actions_ph = tf.placeholder( tf.float32, shape=(None, None, *self._action_shape), name='actions', ) self._prev_state_p_ph = tf.placeholder( tf.float32, shape=(None, self.gru_state_dim), name='prev_state_p', ) self._prev_state_v_ph = tf.placeholder( tf.float32, shape=(None, self.gru_state_dim), name='prev_state_v', ) self.seq_len = tf.placeholder(tf.float32, shape=[None], name="seq_len") self._rewards_ph = tf.placeholder( tf.float32, shape=(None, None, 1), name='rewards', ) self._terminals_ph = tf.placeholder( tf.float32, shape=(None, None, 1), name='terminals', ) if self._store_extra_policy_info: self._log_pis_ph = tf.placeholder( tf.float32, shape=(None, None, 1), name='log_pis', ) self._raw_actions_ph = tf.placeholder( tf.float32, shape=(None, None, *self._action_shape), name='raw_actions', ) # inner functions LOG_STD_MAX = 2 LOG_STD_MIN = -20 EPS = 1e-8 def mlp(x, hidden_sizes=(32, ), activation=tf.tanh, output_activation=None, kernel_initializer=None): print('[ DEBUG ], hidden layer size: ', hidden_sizes) for h in hidden_sizes[:-1]: x = tf.layers.dense(x, units=h, activation=activation, kernel_initializer=kernel_initializer) return tf.layers.dense(x, units=hidden_sizes[-1], activation=output_activation, kernel_initializer=kernel_initializer) def gaussian_likelihood(x, mu, log_std): pre_sum = -0.5 * ( ((x - mu) / (tf.exp(log_std) + EPS))**2 + 2 * log_std + np.log(2 * np.pi)) return tf.reduce_sum(pre_sum, axis=-1) def apply_squashing_func(mu, pi, logp_pi): # Adjustment to log prob # NOTE: This formula is a little bit magic. To get an understanding of where it # comes from, check out the original SAC paper (arXiv 1801.01290) and look in # appendix C. This is a more numerically-stable equivalent to Eq 21. # Try deriving it yourself as a (very difficult) exercise. :) logp_pi -= tf.reduce_sum( 2 * (np.log(2) - pi - tf.nn.softplus(-2 * pi)), axis=-1) # Squash those unbounded actions! mu = tf.tanh(mu) pi = tf.tanh(pi) return mu, pi, logp_pi def mlp_gaussian_policy(x, a, hidden_sizes, activation, output_activation): print('[ DEBUG ]: output activation: ', output_activation, ', activation: ', activation) act_dim = a.shape.as_list()[-1] net = mlp(x, list(hidden_sizes), activation, activation) mu = tf.layers.dense(net, act_dim, activation=output_activation) log_std = tf.layers.dense(net, act_dim, activation=None) log_std = tf.clip_by_value(log_std, LOG_STD_MIN, LOG_STD_MAX) std = tf.exp(log_std) pi = mu + tf.random_normal(tf.shape(mu)) * std logp_pi = gaussian_likelihood(pi, mu, log_std) return mu, pi, logp_pi, std def mlp_actor_critic(x, x_v, a, hidden_sizes=(256, 256), activation=tf.nn.relu, output_activation=None, policy=mlp_gaussian_policy): # policy with tf.variable_scope('pi'): mu, pi, logp_pi, std = policy(x, a, hidden_sizes, activation, output_activation) mu, pi, logp_pi = apply_squashing_func(mu, pi, logp_pi) # vfs vf_mlp = lambda x: tf.squeeze( mlp(x, list(hidden_sizes) + [1], activation, None), axis=-1) with tf.variable_scope('q1'): q1 = vf_mlp(tf.concat([x_v, a], axis=-1)) with tf.variable_scope('q2'): q2 = vf_mlp(tf.concat([x_v, a], axis=-1)) return mu, pi, logp_pi, q1, q2, std policy_state1 = self._observations_ph value_state1 = self._observations_ph policy_state2 = value_state2 = self._next_observations_ph ac_kwargs = { "hidden_sizes": self.network_kwargs["hidden_sizes"], "activation": self.network_kwargs["activation"], "output_activation": self.network_kwargs["output_activation"] } with tf.variable_scope('main', reuse=False): self.mu, self.pi, logp_pi, q1, q2, std = mlp_actor_critic( policy_state1, value_state1, self._actions_ph, **ac_kwargs) pi_entropy = tf.reduce_sum(tf.log(std + 1e-8) + 0.5 * tf.log(2 * np.pi * np.e), axis=-1) with tf.variable_scope('main', reuse=True): # compose q with pi, for pi-learning _, _, _, q1_pi, q2_pi, _ = mlp_actor_critic( policy_state1, value_state1, self.pi, **ac_kwargs) # get actions and log probs of actions for next states, for Q-learning _, pi_next, logp_pi_next, _, _, _ = mlp_actor_critic( policy_state2, value_state2, self._actions_ph, **ac_kwargs) with tf.variable_scope('target'): # target q values, using actions from *current* policy _, _, _, q1_targ, q2_targ, _ = mlp_actor_critic( policy_state2, value_state2, pi_next, **ac_kwargs) # actions = self._policy.actions([self._observations_ph]) # log_pis = self._policy.log_pis([self._observations_ph], actions) # assert log_pis.shape.as_list() == [None, 1] # alpha optimizer log_alpha = self._log_alpha = tf.get_variable('log_alpha', dtype=tf.float32, initializer=0.0) alpha = tf.exp(log_alpha) self._alpha = alpha assert self._action_prior == 'uniform' policy_prior_log_probs = 0.0 min_q_pi = tf.minimum(q1_pi, q2_pi) min_q_targ = tf.minimum(q1_targ, q2_targ) if self._reparameterize: policy_kl_losses = (tf.stop_gradient(alpha) * logp_pi - min_q_pi - policy_prior_log_probs) else: raise NotImplementedError policy_loss = tf.reduce_mean(policy_kl_losses) # Q next_log_pis = logp_pi_next min_next_Q = min_q_targ next_value = min_next_Q - self._alpha * next_log_pis q_target = td_target( reward=self._reward_scale * self._rewards_ph[..., 0], discount=self._discount, next_value=(1 - self._terminals_ph[..., 0]) * next_value) print('q1_pi: {}, q2_pi: {}, policy_state2: {}, policy_state1: {}, ' 'tmux a: {}, q_targ: {}, mu: {}, reward: {}, ' 'terminal: {}, target_q: {}, next_value: {}, ' 'q1: {}, logp_pi: {}, min_q_pi: {}'.format( q1_pi, q2_pi, policy_state1, policy_state2, pi_next, q1_targ, self.mu, self._rewards_ph[..., 0], self._terminals_ph[..., 0], q_target, next_value, q1, logp_pi, min_q_pi)) # assert q_target.shape.as_list() == [None, 1] # (self._Q_values, # self._Q_losses, # self._alpha, # self.global_step), self.Q1 = q1 self.Q2 = q2 q_target = tf.stop_gradient(q_target) q1_loss = tf.losses.mean_squared_error(labels=q_target, predictions=q1, weights=0.5) q2_loss = tf.losses.mean_squared_error(labels=q_target, predictions=q2, weights=0.5) self.Q_loss = (q1_loss + q2_loss) / 2 value_optimizer1 = tf.train.AdamOptimizer(learning_rate=self._Q_lr) value_optimizer2 = tf.train.AdamOptimizer(learning_rate=self._Q_lr) print('[ DEBUG ]: Q lr is {}'.format(self._Q_lr)) # train_value_op = value_optimizer.apply_gradients(zip(grads, variables)) pi_optimizer = tf.train.AdamOptimizer(learning_rate=self._policy_lr) print('[ DEBUG ]: policy lr is {}'.format(self._policy_lr)) pi_var_list = get_vars('main/pi') if self.adapt: pi_var_list += get_vars("lstm_net_pi") train_pi_op = pi_optimizer.minimize(policy_loss, var_list=pi_var_list) pgrads, variables = zip( *pi_optimizer.compute_gradients(policy_loss, var_list=pi_var_list)) _, pi_global_norm = tf.clip_by_global_norm(pgrads, 2000) with tf.control_dependencies([train_pi_op]): value_params1 = get_vars('main/q1') value_params2 = get_vars('main/q2') if self.adapt: value_params1 += get_vars("lstm_net_v") value_params2 += get_vars("lstm_net_v") grads, variables = zip(*value_optimizer1.compute_gradients( self.Q_loss, var_list=value_params1)) _, q_global_norm = tf.clip_by_global_norm(grads, 2000) train_value_op1 = value_optimizer1.minimize(q1_loss, var_list=value_params1) train_value_op2 = value_optimizer2.minimize(q2_loss, var_list=value_params2) with tf.control_dependencies([train_value_op1, train_value_op2]): if isinstance(self._target_entropy, Number): alpha_loss = -tf.reduce_mean( log_alpha * tf.stop_gradient(logp_pi + self._target_entropy)) self._alpha_optimizer = tf.train.AdamOptimizer( self._policy_lr, name='alpha_optimizer') self._alpha_train_op = self._alpha_optimizer.minimize( loss=alpha_loss, var_list=[log_alpha]) else: self._alpha_train_op = tf.no_op() self.target_update = tf.group([ tf.assign(v_targ, (1 - self._tau) * v_targ + self._tau * v_main) for v_main, v_targ in zip(get_vars('main'), get_vars('target')) ]) self.target_init = tf.group([ tf.assign(v_targ, v_main) for v_main, v_targ in zip(get_vars('main'), get_vars('target')) ]) # construct opt self._training_ops = [ tf.group((train_value_op2, train_value_op1, train_pi_op, self._alpha_train_op)), { "sac_pi/pi_global_norm": pi_global_norm, "sac_Q/q_global_norm": q_global_norm, "Q/q1_loss": q1_loss, "sac_Q/q2_loss": q2_loss, "sac_Q/q1": q1, "sac_Q/q2": q2, "sac_pi/alpha": alpha, "sac_pi/pi_entropy": pi_entropy, "sac_pi/logp_pi": logp_pi, "sac_pi/std": logp_pi, } ] self._session.run(tf.global_variables_initializer()) self._session.run(self.target_init) def get_action_meta(self, state, hidden, deterministic=False): with self._session.as_default(): state_dim = len(np.shape(state)) if state_dim == 2: state = state[None] feed_dict = { self._observations_ph: state, self._prev_state_p_ph: hidden } mu, pi = self._session.run([self.mu, self.pi], feed_dict=feed_dict) if state_dim == 2: mu = mu[0] pi = pi[0] # print(f"[ DEBUG ]: pi_shape: {pi.shape}, mu_shape: {mu.shape}") if deterministic: return mu, hidden else: return pi, hidden def make_init_hidden(self, batch_size=1): return np.zeros((batch_size, self.gru_state_dim)) def _train(self): """Return a generator that performs RL training. Args: env (`SoftlearningEnv`): Environment used for training. policy (`Policy`): Policy used for training initial_exploration_policy ('Policy'): Policy used for exploration If None, then all exploration is done using policy pool (`PoolBase`): Sample pool to add samples to """ training_environment = self._training_environment evaluation_environment = self._evaluation_environment # policy = self._policy pool = self._pool model_metrics = {} # if not self._training_started: self._init_training() # TODO: change policy to placeholder or a function def get_action(state, hidden, deterministic=False): return self.get_action_meta(state, hidden, deterministic) def make_init_hidden(batch_size=1): return self.make_init_hidden(batch_size) self.sampler.initialize(training_environment, (get_action, make_init_hidden), pool) gt.reset_root() gt.rename_root('RLAlgorithm') gt.set_def_unique(False) # self._training_before_hook() #### model training print('[ MOPO ] log_dir: {} | ratio: {}'.format( self._log_dir, self._real_ratio)) print( '[ MOPO ] Training model at epoch {} | freq {} | timestep {} (total: {})' .format(self._epoch, self._model_train_freq, self._timestep, self._total_timestep)) # train dynamics model offline max_epochs = 1 if self._model.model_loaded else None model_train_metrics = self._train_model(batch_size=256, max_epochs=max_epochs, holdout_ratio=0.2, max_t=self._max_model_t) model_metrics.update(model_train_metrics) self._log_model() gt.stamp('epoch_train_model') #### tester.time_step_holder.set_time(0) for self._epoch in gt.timed_for(range(self._epoch, self._n_epochs)): self._epoch_before_hook() gt.stamp('epoch_before_hook') self._training_progress = Progress(self._epoch_length * self._n_train_repeat) start_samples = self.sampler._total_samples training_logs = {} for timestep in count(): self._timestep = timestep if (timestep >= self._epoch_length and self.ready_to_train): break self._timestep_before_hook() gt.stamp('timestep_before_hook') ## model rollouts if timestep % self._model_train_freq == 0 and self._real_ratio < 1.0: self._training_progress.pause() self._set_rollout_length() self._reallocate_model_pool() model_rollout_metrics = self._rollout_model( rollout_batch_size=self._rollout_batch_size, deterministic=self._deterministic) model_metrics.update(model_rollout_metrics) gt.stamp('epoch_rollout_model') self._training_progress.resume() ## train actor and critic if self.ready_to_train: # print('[ DEBUG ]: ready to train at timestep: {}'.format(timestep)) training_logs = self._do_training_repeats( timestep=timestep) gt.stamp('train') self._timestep_after_hook() gt.stamp('timestep_after_hook') training_paths = self.sampler.get_last_n_paths( math.ceil(self._epoch_length / self.sampler._max_path_length)) # evaluate the polices evaluation_paths = self._evaluation_paths( (lambda _state, _hidden: get_action(_state, _hidden, True), make_init_hidden), evaluation_environment) gt.stamp('evaluation_paths') if evaluation_paths: evaluation_metrics = self._evaluate_rollouts( evaluation_paths, evaluation_environment) gt.stamp('evaluation_metrics') else: evaluation_metrics = {} gt.stamp('epoch_after_hook') sampler_diagnostics = self.sampler.get_diagnostics() diagnostics = self.get_diagnostics( iteration=self._total_timestep, batch=self._evaluation_batch(), training_paths=training_paths, evaluation_paths=evaluation_paths) time_diagnostics = gt.get_times().stamps.itrs diagnostics.update( OrderedDict( (*(('evaluation/{}'.format(key), evaluation_metrics[key]) for key in sorted(evaluation_metrics.keys())), *(('times/{}'.format(key), time_diagnostics[key][-1]) for key in sorted(time_diagnostics.keys())), *(('sampler/{}'.format(key), sampler_diagnostics[key]) for key in sorted(sampler_diagnostics.keys())), *(('model/{}'.format(key), model_metrics[key]) for key in sorted(model_metrics.keys())), ('epoch', self._epoch), ('timestep', self._timestep), ('timesteps_total', self._total_timestep), ('train-steps', self._num_train_steps), *(('training/{}'.format(key), training_logs[key]) for key in sorted(training_logs.keys()))))) diagnostics['perf/AverageReturn'] = diagnostics[ 'evaluation/return-average'] diagnostics['perf/AverageLength'] = diagnostics[ 'evaluation/episode-length-avg'] if not self.min_ret == self.max_ret: diagnostics['perf/NormalizedReturn'] = (diagnostics['perf/AverageReturn'] - self.min_ret) \ / (self.max_ret - self.min_ret) # diagnostics['keys/logp_pi'] = diagnostics['training/sac_pi/logp_pi'] if self._eval_render_mode is not None and hasattr( evaluation_environment, 'render_rollouts'): training_environment.render_rollouts(evaluation_paths) ## ensure we did not collect any more data assert self._pool.size == self._init_pool_size for k, v in diagnostics.items(): # print('[ DEBUG ] epoch: {} diagnostics k: {}, v: {}'.format(self._epoch, k, v)) self._writer.add_scalar(k, v, self._epoch) yield diagnostics self.sampler.terminate() self._training_after_hook() self._training_progress.close() yield {'done': True, **diagnostics} def train(self, *args, **kwargs): return self._train(*args, **kwargs) def _log_policy(self): # TODO: how to saving models save_path = os.path.join(self._log_dir, 'models') filesystem.mkdir(save_path) weights = self._policy.get_weights() data = {'policy_weights': weights} full_path = os.path.join(save_path, 'policy_{}.pkl'.format(self._total_timestep)) print('Saving policy to: {}'.format(full_path)) pickle.dump(data, open(full_path, 'wb')) def _log_model(self): print('[ MODEL ]: {}'.format(self._model_type)) if self._model_type == 'identity': print('[ MOPO ] Identity model, skipping save') elif self._model.model_loaded: print('[ MOPO ] Loaded model, skipping save') else: save_path = os.path.join(self._log_dir, 'models') filesystem.mkdir(save_path) print('[ MOPO ] Saving model to: {}'.format(save_path)) self._model.save(save_path, self._total_timestep) def _set_rollout_length(self): min_epoch, max_epoch, min_length, max_length = self._rollout_schedule if self._epoch <= min_epoch: y = min_length else: dx = (self._epoch - min_epoch) / (max_epoch - min_epoch) dx = min(dx, 1) y = dx * (max_length - min_length) + min_length self._rollout_length = int(y) print( '[ Model Length ] Epoch: {} (min: {}, max: {}) | Length: {} (min: {} , max: {})' .format(self._epoch, min_epoch, max_epoch, self._rollout_length, min_length, max_length)) def _reallocate_model_pool(self): obs_space = self._pool._observation_space act_space = self._pool._action_space rollouts_per_epoch = self._rollout_batch_size * self._epoch_length / self._model_train_freq model_steps_per_epoch = int(self._rollout_length * rollouts_per_epoch) new_pool_size = self._model_retain_epochs * model_steps_per_epoch if not hasattr(self, '_model_pool'): print( '[ MOPO ] Initializing new model pool with size {:.2e}'.format( new_pool_size)) self._model_pool = SimpleReplayPool(obs_space, act_space, new_pool_size) elif self._model_pool._max_size != new_pool_size: print('[ MOPO ] Updating model pool | {:.2e} --> {:.2e}'.format( self._model_pool._max_size, new_pool_size)) samples = self._model_pool.return_all_samples() new_pool = SimpleReplayPool(obs_space, act_space, new_pool_size) new_pool.add_samples(samples) assert self._model_pool.size == new_pool.size self._model_pool = new_pool def _train_model(self, **kwargs): if self._model_type == 'identity': print('[ MOPO ] Identity model, skipping model') model_metrics = {} else: env_samples = self._pool.return_all_samples() train_inputs, train_outputs = format_samples_for_training( env_samples) model_metrics = self._model.train(train_inputs, train_outputs, **kwargs) return model_metrics def _rollout_model(self, rollout_batch_size, **kwargs): print( '[ Model Rollout ] Starting | Epoch: {} | Rollout length: {} | Batch size: {} | Type: {}' .format(self._epoch, self._rollout_length, rollout_batch_size, self._model_type)) batch = self.sampler.random_batch(rollout_batch_size) obs = batch['observations'] steps_added = [] for i in range(self._rollout_length): hidden = self.make_init_hidden(1) if not self._rollout_random: # act = self._policy.actions_np(obs) act, hidden = self.get_action_meta(obs, hidden) else: # act_ = self._policy.actions_np(obs) act_, hidden = self.get_action_meta(obs, hidden) act = np.random.uniform(low=-1, high=1, size=act_.shape) if self._model_type == 'identity': next_obs = obs rew = np.zeros((len(obs), 1)) term = (np.ones( (len(obs), 1)) * self._identity_terminal).astype(np.bool) info = {} else: # print("act: {}, obs: {}".format(act.shape, obs.shape)) next_obs, rew, term, info = self.fake_env.step( obs, act, **kwargs) steps_added.append(len(obs)) samples = { 'observations': obs, 'actions': act, 'next_observations': next_obs, 'rewards': rew, 'terminals': term } self._model_pool.add_samples(samples) nonterm_mask = ~term.squeeze(-1) if nonterm_mask.sum() == 0: print('[ Model Rollout ] Breaking early: {} | {} / {}'.format( i, nonterm_mask.sum(), nonterm_mask.shape)) break obs = next_obs[nonterm_mask] mean_rollout_length = sum(steps_added) / rollout_batch_size rollout_stats = {'mean_rollout_length': mean_rollout_length} print( '[ Model Rollout ] Added: {:.1e} | Model pool: {:.1e} (max {:.1e}) | Length: {} | Train rep: {}' .format(sum(steps_added), self._model_pool.size, self._model_pool._max_size, mean_rollout_length, self._n_train_repeat)) return rollout_stats def _visualize_model(self, env, timestep): ## save env state state = env.unwrapped.state_vector() qpos_dim = len(env.unwrapped.sim.data.qpos) qpos = state[:qpos_dim] qvel = state[qpos_dim:] print('[ Visualization ] Starting | Epoch {} | Log dir: {}\n'.format( self._epoch, self._log_dir)) visualize_policy(env, self.fake_env, self._policy, self._writer, timestep) print('[ Visualization ] Done') ## set env state env.unwrapped.set_state(qpos, qvel) def _do_training_repeats(self, timestep): """Repeat training _n_train_repeat times every _train_every_n_steps""" if timestep % self._train_every_n_steps > 0: return trained_enough = (self._train_steps_this_epoch > self._max_train_repeat_per_timestep * self._timestep) if trained_enough: return log_buffer = [] logs = {} # print('[ DEBUG ]: {}'.format(self._training_batch())) for i in range(self._n_train_repeat): logs = self._do_training(iteration=timestep, batch=self._training_batch()) log_buffer.append(logs) logs_buffer = { k: np.mean([item[k] for item in log_buffer]) for k in logs } self._num_train_steps += self._n_train_repeat self._train_steps_this_epoch += self._n_train_repeat return logs_buffer def _training_batch(self, batch_size=None): batch_size = batch_size or self.sampler._batch_size env_batch_size = int(batch_size * self._real_ratio) model_batch_size = batch_size - env_batch_size # TODO: how to set teriminal state. # TODO: how to set model pool. ## can sample from the env pool even if env_batch_size == 0 env_batch = self._pool.random_batch(env_batch_size) if model_batch_size > 0: model_batch = self._model_pool.random_batch(model_batch_size) # keys = env_batch.keys() keys = set(env_batch.keys()) & set(model_batch.keys()) batch = { k: np.concatenate((env_batch[k], model_batch[k]), axis=0) for k in keys } else: ## if real_ratio == 1.0, no model pool was ever allocated, ## so skip the model pool sampling batch = env_batch return batch # def _init_global_step(self): # self.global_step = training_util.get_or_create_global_step() # self._training_ops.update({ # 'increment_global_step': training_util._increment_global_step(1) # }) # def _init_training(self): self._session.run(self.target_init) # self._update_target(tau=1.0) def _do_training(self, iteration, batch): """Runs the operations for updating training and target ops.""" self._training_progress.update() self._training_progress.set_description() feed_dict = self._get_feed_dict(iteration, batch) res = self._session.run(self._training_ops, feed_dict) if iteration % self._target_update_interval == 0: # Run target ops here. self._update_target() logs = {k: np.mean(res[1][k]) for k in res[1]} # for k, v in logs.items(): # print("[ DEBUG ] k: {}, v: {}".format(k, v)) # self._writer.add_scalar(k, v, iteration) return logs def _update_target(self): self._session.run(self.target_update) def _get_feed_dict(self, iteration, batch): """Construct TensorFlow feed_dict from sample batch.""" state_dim = len(batch['observations'].shape) resize = lambda x: x[None] if state_dim == 2 else x feed_dict = { self._observations_ph: resize(batch['observations']), self._actions_ph: resize(batch['actions']), self._next_observations_ph: resize(batch['next_observations']), self._rewards_ph: resize(batch['rewards']), self._terminals_ph: resize(batch['terminals']), } if self._store_extra_policy_info: feed_dict[self._log_pis_ph] = resize(batch['log_pis']) feed_dict[self._raw_actions_ph] = resize(batch['raw_actions']) if iteration is not None: feed_dict[self._iteration_ph] = iteration return feed_dict def get_diagnostics(self, iteration, batch, training_paths, evaluation_paths): """Return diagnostic information as ordered dictionary. Records mean and standard deviation of Q-function and state value function, and TD-loss (mean squared Bellman error) for the sample batch. Also calls the `draw` method of the plotter, if plotter defined. """ feed_dict = self._get_feed_dict(iteration, batch) (Q_value1, Q_value2, Q_losses, alpha, global_step) = self._session.run( (self.Q1, self.Q2, self.Q_loss, self._alpha, self.global_step), feed_dict) Q_values = np.concatenate((Q_value1, Q_value2), axis=0) diagnostics = OrderedDict({ 'Q-avg': np.mean(Q_values), 'Q-std': np.std(Q_values), 'Q_loss': np.mean(Q_losses), 'alpha': alpha, }) # TODO (luofm): policy diagnostics # policy_diagnostics = self._policy.get_diagnostics( # batch['observations']) # diagnostics.update({ # 'policy/{}'.format(key): value # for key, value in policy_diagnostics.items() # }) if self._plotter: self._plotter.draw() return diagnostics @property def tf_saveables(self): saveables = { '_policy_optimizer': self._policy_optimizer, **{ 'Q_optimizer_{}'.format(i): optimizer for i, optimizer in enumerate(self._Q_optimizers) }, '_log_alpha': self._log_alpha, } if hasattr(self, '_alpha_optimizer'): saveables['_alpha_optimizer'] = self._alpha_optimizer return saveables
def __init__( self, training_environment, evaluation_environment, policy, Qs, pool, static_fns, plotter=None, tf_summaries=False, lr=3e-4, reward_scale=1.0, target_entropy='auto', discount=0.99, tau=5e-3, target_update_interval=1, action_prior='uniform', reparameterize=False, store_extra_policy_info=False, adapt=False, gru_state_dim=256, network_kwargs=None, deterministic=False, rollout_random=False, model_train_freq=250, num_networks=7, num_elites=5, model_retain_epochs=20, rollout_batch_size=100e3, real_ratio=0.1, # rollout_schedule=[20,100,1,1], rollout_length=1, hidden_dim=200, max_model_t=None, model_type='mlp', separate_mean_var=False, identity_terminal=0, pool_load_path='', pool_load_max_size=0, model_name=None, model_load_dir=None, penalty_coeff=0., penalty_learned_var=False, **kwargs): """ Args: env (`SoftlearningEnv`): Environment used for training. policy: A policy function approximator. initial_exploration_policy: ('Policy'): A policy that we use for initial exploration which is not trained by the algorithm. Qs: Q-function approximators. The min of these approximators will be used. Usage of at least two Q-functions improves performance by reducing overestimation bias. pool (`PoolBase`): Replay pool to add gathered samples to. plotter (`QFPolicyPlotter`): Plotter instance to be used for visualizing Q-function during training. lr (`float`): Learning rate used for the function approximators. discount (`float`): Discount factor for Q-function updates. tau (`float`): Soft value function target update weight. target_update_interval ('int'): Frequency at which target network updates occur in iterations. reparameterize ('bool'): If True, we use a gradient estimator for the policy derived using the reparameterization trick. We use a likelihood ratio based estimator otherwise. """ super(MOPO, self).__init__(**kwargs) print("[ DEBUG ]: model name: {}".format(model_name)) if '_smv' in model_name: self._env_name = model_name[:-8] + '-v0' else: self._env_name = model_name[:-4] + '-v0' if self._env_name in infos.REF_MIN_SCORE: self.min_ret = infos.REF_MIN_SCORE[self._env_name] self.max_ret = infos.REF_MAX_SCORE[self._env_name] else: self.min_ret = self.max_ret = 0 obs_dim = np.prod(training_environment.active_observation_shape) act_dim = np.prod(training_environment.action_space.shape) self._model_type = model_type self._identity_terminal = identity_terminal self._model = construct_model(obs_dim=obs_dim, act_dim=act_dim, hidden_dim=hidden_dim, num_networks=num_networks, num_elites=num_elites, model_type=model_type, separate_mean_var=separate_mean_var, name=model_name, load_dir=model_load_dir, deterministic=deterministic) print('[ MOPO ]: got self._model') self._static_fns = static_fns self.fake_env = FakeEnv(self._model, self._static_fns, penalty_coeff=penalty_coeff, penalty_learned_var=penalty_learned_var) self._rollout_schedule = [20, 100, rollout_length, rollout_length] self._max_model_t = max_model_t self._model_retain_epochs = model_retain_epochs self._model_train_freq = model_train_freq self._rollout_batch_size = int(rollout_batch_size) self._deterministic = deterministic self._rollout_random = rollout_random self._real_ratio = real_ratio # TODO: RLA writer (implemented with tf) should be compatible with the Writer object (implemented with tbx) self._log_dir = tester.log_dir # self._writer = tester.writer self._writer = Writer(self._log_dir) self._training_environment = training_environment self._evaluation_environment = evaluation_environment self.gru_state_dim = gru_state_dim self.network_kwargs = network_kwargs self.adapt = adapt self.optim_alpha = False # self._policy = policy # self._Qs = Qs # self._Q_targets = tuple(tf.keras.models.clone_model(Q) for Q in Qs) self._pool = pool self._plotter = plotter self._tf_summaries = tf_summaries self._policy_lr = lr self._Q_lr = lr self._reward_scale = reward_scale self._target_entropy = ( -np.prod(self._training_environment.action_space.shape) if target_entropy == 'auto' else target_entropy) print('[ MOPO ] Target entropy: {}'.format(self._target_entropy)) self._discount = discount self._tau = tau self._target_update_interval = target_update_interval self._action_prior = action_prior self._reparameterize = reparameterize self._store_extra_policy_info = store_extra_policy_info observation_shape = self._training_environment.active_observation_shape action_shape = self._training_environment.action_space.shape assert len(observation_shape) == 1, observation_shape self._observation_shape = observation_shape assert len(action_shape) == 1, action_shape self._action_shape = action_shape self._build() #### load replay pool data self._pool_load_path = pool_load_path self._pool_load_max_size = pool_load_max_size loader.restore_pool(self._pool, self._pool_load_path, self._pool_load_max_size, save_path=self._log_dir) self._init_pool_size = self._pool.size print('[ MOPO ] Starting with pool size: {}'.format( self._init_pool_size))
class MOPO(RLAlgorithm): """Model-based Offline Policy Optimization (MOPO) References ---------- Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon, James Zou, Sergey Levine, Chelsea Finn, Tengyu Ma. MOPO: Model-based Offline Policy Optimization. arXiv preprint arXiv:2005.13239. 2020. """ def __init__( self, training_environment, evaluation_environment, policy, Qs, pool, static_fns, plotter=None, tf_summaries=False, lr=3e-4, reward_scale=1.0, target_entropy='auto', discount=0.99, tau=5e-3, target_update_interval=1, action_prior='uniform', reparameterize=False, store_extra_policy_info=False, deterministic=False, rollout_random=False, model_train_freq=250, num_networks=7, num_elites=5, model_retain_epochs=20, rollout_batch_size=100e3, real_ratio=0.1, # rollout_schedule=[20,100,1,1], rollout_length=1, hidden_dim=200, max_model_t=None, model_type='mlp', separate_mean_var=False, identity_terminal=0, pool_load_path='', pool_load_max_size=0, model_name=None, model_load_dir=None, penalty_coeff=0., penalty_learned_var=False, **kwargs, ): """ Args: env (`SoftlearningEnv`): Environment used for training. policy: A policy function approximator. initial_exploration_policy: ('Policy'): A policy that we use for initial exploration which is not trained by the algorithm. Qs: Q-function approximators. The min of these approximators will be used. Usage of at least two Q-functions improves performance by reducing overestimation bias. pool (`PoolBase`): Replay pool to add gathered samples to. plotter (`QFPolicyPlotter`): Plotter instance to be used for visualizing Q-function during training. lr (`float`): Learning rate used for the function approximators. discount (`float`): Discount factor for Q-function updates. tau (`float`): Soft value function target update weight. target_update_interval ('int'): Frequency at which target network updates occur in iterations. reparameterize ('bool'): If True, we use a gradient estimator for the policy derived using the reparameterization trick. We use a likelihood ratio based estimator otherwise. """ super(MOPO, self).__init__(**kwargs) obs_dim = np.prod(training_environment.active_observation_shape) act_dim = np.prod(training_environment.action_space.shape) self._model_type = model_type self._identity_terminal = identity_terminal self._model = construct_model(obs_dim=obs_dim, act_dim=act_dim, hidden_dim=hidden_dim, num_networks=num_networks, num_elites=num_elites, model_type=model_type, separate_mean_var=separate_mean_var, name=model_name, load_dir=model_load_dir, deterministic=deterministic) self._modelr = construct_modelr( obs_dim=obs_dim, act_dim=act_dim, hidden_dim=hidden_dim, num_networks=num_networks, num_elites=num_elites, model_type=model_type, separate_mean_var=separate_mean_var, #name=model_name, load_dir=model_load_dir, deterministic=True) self._modelc = construct_modelc( obs_dim=obs_dim, act_dim=act_dim, hidden_dim=hidden_dim, num_networks=num_networks, num_elites=num_elites, model_type=model_type, separate_mean_var=separate_mean_var, #name=model_name, load_dir=model_load_dir, deterministic=True) self._static_fns = static_fns self.fake_env = FakeEnv(self._model, self._static_fns, penalty_coeff=penalty_coeff, penalty_learned_var=penalty_learned_var) self._rollout_schedule = [20, 100, rollout_length, rollout_length] self._max_model_t = max_model_t self._model_retain_epochs = model_retain_epochs self._model_train_freq = model_train_freq self._rollout_batch_size = int(rollout_batch_size) self._deterministic = deterministic self._rollout_random = rollout_random self._real_ratio = real_ratio self._log_dir = os.getcwd() self._writer = Writer(self._log_dir) self._training_environment = training_environment self._evaluation_environment = evaluation_environment self._policy = policy self._Qs = Qs self._Q_targets = tuple(tf.keras.models.clone_model(Q) for Q in Qs) self._pool = pool self._plotter = plotter self._tf_summaries = tf_summaries self._policy_lr = lr self._Q_lr = lr self._reward_scale = reward_scale self._target_entropy = ( -np.prod(self._training_environment.action_space.shape) if target_entropy == 'auto' else target_entropy) print('[ MOPO ] Target entropy: {}'.format(self._target_entropy)) self._discount = discount self._tau = tau self._target_update_interval = target_update_interval self._action_prior = action_prior self._reparameterize = reparameterize self._store_extra_policy_info = store_extra_policy_info observation_shape = self._training_environment.active_observation_shape action_shape = self._training_environment.action_space.shape assert len(observation_shape) == 1, observation_shape self._observation_shape = observation_shape assert len(action_shape) == 1, action_shape self._action_shape = action_shape self._build() #### load replay pool data self._pool_load_path = pool_load_path self._pool_load_max_size = pool_load_max_size loader.restore_pool(self._pool, self._pool_load_path, self._pool_load_max_size, save_path=self._log_dir) self._init_pool_size = self._pool.size print('[ MOPO ] Starting with pool size: {}'.format( self._init_pool_size)) #### def _build(self): self._training_ops = {} self._init_global_step() self._init_placeholders() self._init_actor_update() self._init_critic_update() def _train(self): """Return a generator that performs RL training. Args: env (`SoftlearningEnv`): Environment used for training. policy (`Policy`): Policy used for training initial_exploration_policy ('Policy'): Policy used for exploration If None, then all exploration is done using policy pool (`PoolBase`): Sample pool to add samples to """ training_environment = self._training_environment evaluation_environment = self._evaluation_environment policy = self._policy pool = self._pool model_metrics = {} if not self._training_started: self._init_training() self.sampler.initialize(training_environment, policy, pool) gt.reset_root() gt.rename_root('RLAlgorithm') gt.set_def_unique(False) self._training_before_hook() for self._epoch in gt.timed_for(range(self._epoch, self._n_epochs)): if self._epoch % 200 == 0: #### model training print('[ MOPO ] log_dir: {} | ratio: {}'.format( self._log_dir, self._real_ratio)) print( '[ MOPO ] Training model at epoch {} | freq {} | timestep {} (total: {})' .format(self._epoch, self._model_train_freq, self._timestep, self._total_timestep)) max_epochs = 1 if self._model.model_loaded else None model_train_metrics = self._train_model( batch_size=256, max_epochs=max_epochs, holdout_ratio=0.2, max_t=self._max_model_t) model_metrics.update(model_train_metrics) self._log_model() gt.stamp('epoch_train_model') #### self._epoch_before_hook() gt.stamp('epoch_before_hook') self._training_progress = Progress(self._epoch_length * self._n_train_repeat) start_samples = self.sampler._total_samples for timestep in count(): self._timestep = timestep if (timestep >= self._epoch_length and self.ready_to_train): break self._timestep_before_hook() gt.stamp('timestep_before_hook') ## model rollouts if timestep % self._model_train_freq == 0 and self._real_ratio < 1.0: self._training_progress.pause() self._set_rollout_length() self._reallocate_model_pool() model_rollout_metrics = self._rollout_model( rollout_batch_size=self._rollout_batch_size, deterministic=self._deterministic) model_metrics.update(model_rollout_metrics) gt.stamp('epoch_rollout_model') self._training_progress.resume() ## train actor and critic if self.ready_to_train: self._do_training_repeats(timestep=timestep) gt.stamp('train') self._timestep_after_hook() gt.stamp('timestep_after_hook') training_paths = self.sampler.get_last_n_paths( math.ceil(self._epoch_length / self.sampler._max_path_length)) evaluation_paths = self._evaluation_paths(policy, evaluation_environment) gt.stamp('evaluation_paths') if evaluation_paths: evaluation_metrics = self._evaluate_rollouts( evaluation_paths, evaluation_environment) gt.stamp('evaluation_metrics') else: evaluation_metrics = {} gt.stamp('epoch_after_hook') sampler_diagnostics = self.sampler.get_diagnostics() diagnostics = self.get_diagnostics( iteration=self._total_timestep, batch=self._evaluation_batch(), training_paths=training_paths, evaluation_paths=evaluation_paths) time_diagnostics = gt.get_times().stamps.itrs diagnostics.update( OrderedDict(( *((f'evaluation/{key}', evaluation_metrics[key]) for key in sorted(evaluation_metrics.keys())), *((f'times/{key}', time_diagnostics[key][-1]) for key in sorted(time_diagnostics.keys())), *((f'sampler/{key}', sampler_diagnostics[key]) for key in sorted(sampler_diagnostics.keys())), *((f'model/{key}', model_metrics[key]) for key in sorted(model_metrics.keys())), ('epoch', self._epoch), ('timestep', self._timestep), ('timesteps_total', self._total_timestep), ('train-steps', self._num_train_steps), ))) if self._eval_render_mode is not None and hasattr( evaluation_environment, 'render_rollouts'): training_environment.render_rollouts(evaluation_paths) ## ensure we did not collect any more data assert self._pool.size == self._init_pool_size yield diagnostics epi_ret = self._rollout_model_for_eval( self._training_environment.reset) np.savetxt("EEepi_ret__fin.csv", epi_ret, delimiter=',') self.sampler.terminate() self._training_after_hook() self._training_progress.close() yield {'done': True, **diagnostics} def train(self, *args, **kwargs): return self._train(*args, **kwargs) def _log_policy(self): save_path = os.path.join(self._log_dir, 'models') filesystem.mkdir(save_path) weights = self._policy.get_weights() data = {'policy_weights': weights} full_path = os.path.join(save_path, 'policy_{}.pkl'.format(self._total_timestep)) print('Saving policy to: {}'.format(full_path)) pickle.dump(data, open(full_path, 'wb')) def _log_model(self): print('MODEL: {}'.format(self._model_type)) if self._model_type == 'identity': print('[ MOPO ] Identity model, skipping save') elif self._model.model_loaded: print('[ MOPO ] Loaded model, skipping save') else: save_path = os.path.join(self._log_dir, 'models') filesystem.mkdir(save_path) print('[ MOPO ] Saving model to: {}'.format(save_path)) self._model.save(save_path, self._total_timestep) def _set_rollout_length(self): min_epoch, max_epoch, min_length, max_length = self._rollout_schedule if self._epoch <= min_epoch: y = min_length else: dx = (self._epoch - min_epoch) / (max_epoch - min_epoch) dx = min(dx, 1) y = dx * (max_length - min_length) + min_length self._rollout_length = int(y) print( '[ Model Length ] Epoch: {} (min: {}, max: {}) | Length: {} (min: {} , max: {})' .format(self._epoch, min_epoch, max_epoch, self._rollout_length, min_length, max_length)) def _reallocate_model_pool(self): obs_space = self._pool._observation_space act_space = self._pool._action_space rollouts_per_epoch = self._rollout_batch_size * self._epoch_length / self._model_train_freq model_steps_per_epoch = int(self._rollout_length * rollouts_per_epoch) new_pool_size = self._model_retain_epochs * model_steps_per_epoch if not hasattr(self, '_model_pool'): print( '[ MOPO ] Initializing new model pool with size {:.2e}'.format( new_pool_size)) self._model_pool = SimpleReplayPool(obs_space, act_space, new_pool_size) elif self._model_pool._max_size != new_pool_size: print('[ MOPO ] Updating model pool | {:.2e} --> {:.2e}'.format( self._model_pool._max_size, new_pool_size)) samples = self._model_pool.return_all_samples() new_pool = SimpleReplayPool(obs_space, act_space, new_pool_size) new_pool.add_samples(samples) assert self._model_pool.size == new_pool.size self._model_pool = new_pool def _train_model(self, **kwargs): from copy import deepcopy # hyperparameter smth = 0.1 B_dash = 200. env_samples = self._pool.return_all_samples() train_inputs_master, train_outputs_master = format_samples_for_training( env_samples) splitnum = 100 # for debug permutation = np.random.permutation( train_inputs_master.shape[0])[:int(train_inputs_master.shape[0] / 20)] #train_inputs_master = train_inputs_master[permutation] #train_outputs_master = train_outputs_master[permutation] #np.savetxt("train_inputs.csv",train_inputs_master,delimiter=',') #np.savetxt("train_outputs.csv",train_outputs_master,delimiter=',') if debug_data: np.savetxt("reward_data.csv", train_outputs_master[:, :1], delimiter=',') def compute_dr_weights(): for j in range(3): train_inputs = deepcopy(train_inputs_master) if 200000 < train_inputs.shape[0]: np.random.shuffle(train_inputs) train_inputs = train_inputs[:200000] fake_inputs = self._rollout_model_for_dr( self._training_environment.reset, train_inputs.shape[0]) # train ratio model _ = self._modelr.train(train_inputs, fake_inputs, **kwargs) train_inputs = deepcopy(train_inputs_master) #dr_weights, _ = self._modelr.predict(train_inputs) train_inputs_list = np.array_split(train_inputs, splitnum) dr_weights, _ = self._modelr.predict(train_inputs_list[0]) for i in range(1, splitnum): temp_dr_weights, _ = self._modelr.predict( train_inputs_list[i]) dr_weights = np.concatenate([dr_weights, temp_dr_weights], 0) if dr_weights.sum() > 0: break else: np.savetxt("dr_weights_raw_for_debug" + str(j) + ".csv", dr_weights, delimiter=',') dr_weights *= dr_weights.shape[0] / dr_weights.sum() return dr_weights if self._model_type == 'identity': print('[ MOPO ] Identity model, skipping model') model_metrics = {} else: if self._epoch > 0: epi_ret = self._rollout_model_for_eval( self._training_environment.reset) np.savetxt("epi_ret__" + str(self._epoch) + ".csv", epi_ret, delimiter=',') # compute weight print("training weights model for training") if self._epoch > 0: dr_weights = compute_dr_weights() if debug_data: np.savetxt("dr_weights_raw_" + str(self._epoch) + ".csv", dr_weights, delimiter=',') else: dr_weights = np.ones((train_inputs_master.shape[0], 1)) # train dynamics model print("training dynamics model ") actual_dr_weights = dr_weights * smth + (1. - smth) if debug_data: np.savetxt("dr_weights_train_" + str(self._epoch) + ".csv", actual_dr_weights, delimiter=',') if (smth > -0.01) or (self._epoch == 0): train_inputs = deepcopy(train_inputs_master) train_outputs = deepcopy(train_outputs_master) model_metrics = self._model.train(train_inputs, train_outputs, actual_dr_weights, **kwargs) self._model_metrics_prev = model_metrics else: model_metrics = self._model_metrics_prev # compute weight print("training weights model for evaluation") dr_weights = compute_dr_weights() if debug_data: np.savetxt("dr_weights_eval_" + str(self._epoch) + ".csv", dr_weights, delimiter=',') # compute loss print("compute pointwise loss for evaluation") train_inputs = deepcopy(train_inputs_master) train_outputs = deepcopy(train_outputs_master) train_inputs_list = np.array_split(train_inputs, splitnum) train_outputs_list = np.array_split(train_outputs, splitnum) loss_list = self._model.get_pointwise_loss(train_inputs_list[0], train_outputs_list[0]) for i in range(1, splitnum): temp_loss_list = self._model.get_pointwise_loss( train_inputs_list[i], train_outputs_list[i]) loss_list = np.concatenate([loss_list, temp_loss_list], 0) np.savetxt("loss_list" + str(self._epoch) + ".csv", loss_list, delimiter=',') losses = np.mean(loss_list * dr_weights) loss_min = np.min(loss_list) # compute coeff b_coeff = 0.5 * B_dash / np.sqrt(losses - loss_min) np.savetxt("Lloss_bcoeff_minloss_Bdash_smth" + str(self._epoch) + ".csv", np.array([losses, b_coeff, loss_min, B_dash, smth]), delimiter=',') # loss_model print("training loss model") #loss_list = ( b_coeff * (1.-self._discount) * (loss_list - loss_min) ) loss_list = (loss_list - loss_min) #loss_list = - ( b_coeff * (1.-self._discount) * (loss_list) - train_outputs_master[:,:1] ) loss_list2 = loss_list.reshape(loss_list.shape[0], ) #q25_q75 = np.percentile(loss_list2, q=[25, 75]) #iqr = q25_q75[1] - q25_q75[0] #cutoff_low = q25_q75[0] - iqr*1.5 #cutoff_high = q25_q75[1] + iqr*1.5 #idx = np.where((loss_list2 > cutoff_low) & (loss_list2 < cutoff_high)) #Standard Deviation Method loss_mean = np.mean(loss_list2) loss_std = np.std(loss_list2) cutoff_low = loss_mean - loss_std * 2. cutoff_high = loss_mean + loss_std * 2. idx = np.where((loss_list2 > cutoff_low) & (loss_list2 < cutoff_high)) if debug_data: np.savetxt("c_" + str(self._epoch) + ".csv", loss_list, delimiter=',') #loss_list = loss_list[idx] train_inputs = deepcopy(train_inputs_master) #[idx] actual_dr_weights = (dr_weights * 0. + 1.) #[idx] self._modelc.train(train_inputs, loss_list, actual_dr_weights, **kwargs) train_inputs = deepcopy(train_inputs_master) train_inputs_list = np.array_split(train_inputs, splitnum) penalty_np, _ = self._modelc.predict(train_inputs_list[0]) for i in range(1, splitnum): temp_penalty_np, _ = self._modelc.predict(train_inputs_list[i]) #print("temp_penalty_np",temp_penalty_np.shape) penalty_np = np.concatenate([penalty_np, temp_penalty_np], 0) if debug_data: np.savetxt("Ppredict_BC_" + str(self._epoch) + ".csv", penalty_np * (1. - self._discount), delimiter=',') # implement loss model self.fake_env.another_reward_model = self._modelc self.fake_env.coeff = b_coeff * (1. - self._discount) return model_metrics def _rollout_model(self, rollout_batch_size, **kwargs): print( '[ Model Rollout ] Starting | Epoch: {} | Rollout length: {} | Batch size: {} | Type: {}' .format(self._epoch, self._rollout_length, rollout_batch_size, self._model_type)) batch = self.sampler.random_batch(rollout_batch_size) obs = batch['observations'] steps_added = [] for i in range(self._rollout_length): if not self._rollout_random: act = self._policy.actions_np(obs) else: act_ = self._policy.actions_np(obs) act = np.random.uniform(low=-1, high=1, size=act_.shape) if self._model_type == 'identity': next_obs = obs rew = np.zeros((len(obs), 1)) term = (np.ones( (len(obs), 1)) * self._identity_terminal).astype(np.bool) info = {} else: next_obs, rew, term, info = self.fake_env.step( obs, act, **kwargs) steps_added.append(len(obs)) print("rew_min, rew_mean, rew_max, ", np.min(rew), np.mean(rew), np.max(rew)) print("pen_min, pen_mean, pen_max, ", np.min(info['penalty']), np.mean(info['penalty']), np.max(info['penalty'])) samples = { 'observations': obs, 'actions': act, 'next_observations': next_obs, 'rewards': rew, 'terminals': term } self._model_pool.add_samples(samples) nonterm_mask = ~term.squeeze(-1) if nonterm_mask.sum() == 0: print('[ Model Rollout ] Breaking early: {} | {} / {}'.format( i, nonterm_mask.sum(), nonterm_mask.shape)) break obs = next_obs[nonterm_mask] mean_rollout_length = sum(steps_added) / rollout_batch_size rollout_stats = {'mean_rollout_length': mean_rollout_length} print( '[ Model Rollout ] Added: {:.1e} | Model pool: {:.1e} (max {:.1e}) | Length: {} | Train rep: {}' .format(sum(steps_added), self._model_pool.size, self._model_pool._max_size, mean_rollout_length, self._n_train_repeat)) return rollout_stats def _rollout_model_for_dr(self, env_reset, data_num, **kwargs): from copy import deepcopy print("rollout for ratio estimation") ob = np.array([env_reset()['observations'] for i in range(20)]) ac = self._policy.actions_np(ob) ob_store = deepcopy(ob) ac_store = deepcopy(ac) total_ob_store = None total_ac_store = None while True: overflowFlag = False while True: ob, rew, term, info = self.fake_env.step(ob, ac, **kwargs) nonterm_mask = ~term.squeeze(-1) ob = ob[nonterm_mask] temp_rand = np.random.rand(ob.shape[0]) ob = ob[np.where(temp_rand < self._discount)] if ob.shape[0] == 0: break if np.count_nonzero(np.isnan(ob)) > 0 or ( np.nanmax(ob) > 1.e20) or (np.nanmin(ob) < -1.e20): overflowFlag = True break ac = self._policy.actions_np(ob) if np.count_nonzero(np.isnan(ac)) > 0 or ( np.nanmax(ac) > 1.e20) or (np.nanmin(ac) < -1.e20): overflowFlag = True break ob_store = np.concatenate([ob_store, ob]) ac_store = np.concatenate([ac_store, ac]) if overflowFlag is False: if total_ob_store is None: total_ob_store = deepcopy(ob_store) total_ac_store = deepcopy(ac_store) else: total_ob_store = np.concatenate([total_ob_store, ob_store]) total_ac_store = np.concatenate([total_ac_store, ac_store]) if total_ob_store is not None: print("total_ob_store.shape[0]", total_ob_store.shape[0], "overflowFlag", overflowFlag) if total_ob_store.shape[0] > data_num: break ob = np.array([env_reset()['observations'] for i in range(20)]) ac = self._policy.actions_np(ob) ob_store = deepcopy(ob) ac_store = deepcopy(ac) ret_data = np.concatenate([total_ob_store, total_ac_store], axis=1) np.random.shuffle(ret_data) return ret_data[:int(data_num)] def _rollout_model_for_eval(self, env_reset, **kwargs): epi_ret_list = [] for j in range(20): ob = env_reset()['observations'] ob = ob.reshape(1, ob.shape[0]) temp_epi_ret = 0. temp_gamma = 1. for i in range(1000): ac = self._policy.actions_np(ob) ob, rew, term, info = self.fake_env.step(ob, ac, **kwargs) #temp_epi_ret += temp_gamma*rew temp_epi_ret += temp_gamma * info['unpenalized_rewards'] temp_gamma *= self._discount if (True in term[0]): break #if np.random.rand()>self._discount: # break print("term", term, ", epi_ret", temp_epi_ret[0][0], ", last_rew", rew, ", unpenalized_rewards", info['unpenalized_rewards'], ", penalty", info['penalty']) #print("mean",info['mean']) if not np.isnan(temp_epi_ret[0][0]): epi_ret_list.append(temp_epi_ret[0][0]) #return sum(epi_ret_list)/len(epi_ret_list) return np.array(epi_ret_list) def _visualize_model(self, env, timestep): ## save env state state = env.unwrapped.state_vector() qpos_dim = len(env.unwrapped.sim.data.qpos) qpos = state[:qpos_dim] qvel = state[qpos_dim:] print('[ Visualization ] Starting | Epoch {} | Log dir: {}\n'.format( self._epoch, self._log_dir)) visualize_policy(env, self.fake_env, self._policy, self._writer, timestep) print('[ Visualization ] Done') ## set env state env.unwrapped.set_state(qpos, qvel) def _training_batch(self, batch_size=None): batch_size = batch_size or self.sampler._batch_size env_batch_size = int(batch_size * self._real_ratio) model_batch_size = batch_size - env_batch_size ## can sample from the env pool even if env_batch_size == 0 env_batch = self._pool.random_batch(env_batch_size) if model_batch_size > 0: model_batch = self._model_pool.random_batch(model_batch_size) # keys = env_batch.keys() keys = set(env_batch.keys()) & set(model_batch.keys()) batch = { k: np.concatenate((env_batch[k], model_batch[k]), axis=0) for k in keys } else: ## if real_ratio == 1.0, no model pool was ever allocated, ## so skip the model pool sampling batch = env_batch return batch def _init_global_step(self): self.global_step = training_util.get_or_create_global_step() self._training_ops.update( {'increment_global_step': training_util._increment_global_step(1)}) def _init_placeholders(self): """Create input placeholders for the SAC algorithm. Creates `tf.placeholder`s for: - observation - next observation - action - reward - terminals """ self._iteration_ph = tf.placeholder(tf.int64, shape=None, name='iteration') self._observations_ph = tf.placeholder( tf.float32, shape=(None, *self._observation_shape), name='observation', ) self._next_observations_ph = tf.placeholder( tf.float32, shape=(None, *self._observation_shape), name='next_observation', ) self._actions_ph = tf.placeholder( tf.float32, shape=(None, *self._action_shape), name='actions', ) self._rewards_ph = tf.placeholder( tf.float32, shape=(None, 1), name='rewards', ) self._terminals_ph = tf.placeholder( tf.float32, shape=(None, 1), name='terminals', ) if self._store_extra_policy_info: self._log_pis_ph = tf.placeholder( tf.float32, shape=(None, 1), name='log_pis', ) self._raw_actions_ph = tf.placeholder( tf.float32, shape=(None, *self._action_shape), name='raw_actions', ) def _get_Q_target(self): next_actions = self._policy.actions([self._next_observations_ph]) next_log_pis = self._policy.log_pis([self._next_observations_ph], next_actions) next_Qs_values = tuple( Q([self._next_observations_ph, next_actions]) for Q in self._Q_targets) min_next_Q = tf.reduce_min(next_Qs_values, axis=0) next_value = min_next_Q - self._alpha * next_log_pis Q_target = td_target(reward=self._reward_scale * self._rewards_ph, discount=self._discount, next_value=(1 - self._terminals_ph) * next_value) return Q_target def _init_critic_update(self): """Create minimization operation for critic Q-function. Creates a `tf.optimizer.minimize` operation for updating critic Q-function with gradient descent, and appends it to `self._training_ops` attribute. """ Q_target = tf.stop_gradient(self._get_Q_target()) assert Q_target.shape.as_list() == [None, 1] Q_values = self._Q_values = tuple( Q([self._observations_ph, self._actions_ph]) for Q in self._Qs) Q_losses = self._Q_losses = tuple( tf.losses.mean_squared_error( labels=Q_target, predictions=Q_value, weights=0.5) for Q_value in Q_values) self._Q_optimizers = tuple( tf.train.AdamOptimizer(learning_rate=self._Q_lr, name='{}_{}_optimizer'.format(Q._name, i)) for i, Q in enumerate(self._Qs)) Q_training_ops = tuple( tf.contrib.layers.optimize_loss(Q_loss, self.global_step, learning_rate=self._Q_lr, optimizer=Q_optimizer, variables=Q.trainable_variables, increment_global_step=False, summaries=(( "loss", "gradients", "gradient_norm", "global_gradient_norm" ) if self._tf_summaries else ())) for i, (Q, Q_loss, Q_optimizer) in enumerate( zip(self._Qs, Q_losses, self._Q_optimizers))) self._training_ops.update({'Q': tf.group(Q_training_ops)}) def _init_actor_update(self): """Create minimization operations for policy and entropy. Creates a `tf.optimizer.minimize` operations for updating policy and entropy with gradient descent, and adds them to `self._training_ops` attribute. """ actions = self._policy.actions([self._observations_ph]) log_pis = self._policy.log_pis([self._observations_ph], actions) assert log_pis.shape.as_list() == [None, 1] log_alpha = self._log_alpha = tf.get_variable('log_alpha', dtype=tf.float32, initializer=0.0) alpha = tf.exp(log_alpha) if isinstance(self._target_entropy, Number): alpha_loss = -tf.reduce_mean( log_alpha * tf.stop_gradient(log_pis + self._target_entropy)) self._alpha_optimizer = tf.train.AdamOptimizer( self._policy_lr, name='alpha_optimizer') self._alpha_train_op = self._alpha_optimizer.minimize( loss=alpha_loss, var_list=[log_alpha]) self._training_ops.update( {'temperature_alpha': self._alpha_train_op}) self._alpha = alpha if self._action_prior == 'normal': policy_prior = tf.contrib.distributions.MultivariateNormalDiag( loc=tf.zeros(self._action_shape), scale_diag=tf.ones(self._action_shape)) policy_prior_log_probs = policy_prior.log_prob(actions) elif self._action_prior == 'uniform': policy_prior_log_probs = 0.0 Q_log_targets = tuple( Q([self._observations_ph, actions]) for Q in self._Qs) min_Q_log_target = tf.reduce_min(Q_log_targets, axis=0) if self._reparameterize: policy_kl_losses = (alpha * log_pis - min_Q_log_target - policy_prior_log_probs) else: raise NotImplementedError assert policy_kl_losses.shape.as_list() == [None, 1] policy_loss = tf.reduce_mean(policy_kl_losses) self._policy_optimizer = tf.train.AdamOptimizer( learning_rate=self._policy_lr, name="policy_optimizer") policy_train_op = tf.contrib.layers.optimize_loss( policy_loss, self.global_step, learning_rate=self._policy_lr, optimizer=self._policy_optimizer, variables=self._policy.trainable_variables, increment_global_step=False, summaries=("loss", "gradients", "gradient_norm", "global_gradient_norm") if self._tf_summaries else ()) self._training_ops.update({'policy_train_op': policy_train_op}) def _init_training(self): self._update_target(tau=1.0) def _update_target(self, tau=None): tau = tau or self._tau for Q, Q_target in zip(self._Qs, self._Q_targets): source_params = Q.get_weights() target_params = Q_target.get_weights() Q_target.set_weights([ tau * source + (1.0 - tau) * target for source, target in zip(source_params, target_params) ]) def _do_training(self, iteration, batch): """Runs the operations for updating training and target ops.""" self._training_progress.update() self._training_progress.set_description() feed_dict = self._get_feed_dict(iteration, batch) self._session.run(self._training_ops, feed_dict) if iteration % self._target_update_interval == 0: # Run target ops here. self._update_target() def _get_feed_dict(self, iteration, batch): """Construct TensorFlow feed_dict from sample batch.""" feed_dict = { self._observations_ph: batch['observations'], self._actions_ph: batch['actions'], self._next_observations_ph: batch['next_observations'], self._rewards_ph: batch['rewards'], self._terminals_ph: batch['terminals'], } if self._store_extra_policy_info: feed_dict[self._log_pis_ph] = batch['log_pis'] feed_dict[self._raw_actions_ph] = batch['raw_actions'] if iteration is not None: feed_dict[self._iteration_ph] = iteration return feed_dict def get_diagnostics(self, iteration, batch, training_paths, evaluation_paths): """Return diagnostic information as ordered dictionary. Records mean and standard deviation of Q-function and state value function, and TD-loss (mean squared Bellman error) for the sample batch. Also calls the `draw` method of the plotter, if plotter defined. """ feed_dict = self._get_feed_dict(iteration, batch) (Q_values, Q_losses, alpha, global_step) = self._session.run( (self._Q_values, self._Q_losses, self._alpha, self.global_step), feed_dict) diagnostics = OrderedDict({ 'Q-avg': np.mean(Q_values), 'Q-std': np.std(Q_values), 'Q_loss': np.mean(Q_losses), 'alpha': alpha, }) policy_diagnostics = self._policy.get_diagnostics( batch['observations']) diagnostics.update({ f'policy/{key}': value for key, value in policy_diagnostics.items() }) if self._plotter: self._plotter.draw() return diagnostics @property def tf_saveables(self): saveables = { '_policy_optimizer': self._policy_optimizer, **{ f'Q_optimizer_{i}': optimizer for i, optimizer in enumerate(self._Q_optimizers) }, '_log_alpha': self._log_alpha, } if hasattr(self, '_alpha_optimizer'): saveables['_alpha_optimizer'] = self._alpha_optimizer return saveables