def __init__(self, n_visible, n_hidden): super(GaussianBinaryRBM, self).__init__() # data shape self.n_visible = n_visible self.n_hidden = n_hidden # units self.v = units.GaussianUnits(self, name='v') # visibles self.h = units.BinaryUnits(self, name='h') # hiddens # parameters parameters.FixedBiasParameters(self, self.v.precision_units) self.W = parameters.ProdParameters(self, [self.v, self.h], theano.shared( value=self._initial_W(), name='W'), name='W') # weights self.bv = parameters.BiasParameters(self, self.v, theano.shared( value=self._initial_bv(), name='bv'), name='bv') # visible bias self.bh = parameters.BiasParameters(self, self.h, theano.shared( value=self._initial_bh(), name='bh'), name='bh') # hidden bias
def __init__(self, n_visible, n_hidden): super(TruncExpBinaryRBM, self).__init__() # data shape self.n_visible = n_visible self.n_hidden = n_hidden # units self.v = units.TruncatedExponentialUnits(self, name='v') # visibles self.h = units.BinaryUnits(self, name='h') # hiddens # parameters self.W = parameters.ProdParameters(self, [self.v, self.h], theano.shared( value=self._initial_W(), name='W'), name='W') # weights self.bv = parameters.BiasParameters(self, self.v, theano.shared( value=self._initial_bv(), name='bv'), name='bv') # visible bias self.bh = parameters.BiasParameters(self, self.h, theano.shared( value=self._initial_bh(), name='bh'), name='bh') # hidden bias
def __init__(self, n_visible, n_hidden): super(LearntPrecisionGaussianBinaryRBM, self).__init__() # data shape self.n_visible = n_visible self.n_hidden = n_hidden # units self.v = units.LearntPrecisionGaussianUnits(self, name='v') # visibles self.h = units.BinaryUnits(self, name='h') # hiddens # parameters self.Wm = parameters.ProdParameters(self, [self.v, self.h], theano.shared( value=self._initial_W(), name='Wm'), name='Wm') # weights self.Wp = parameters.ProdParameters( self, [self.v.precision_units, self.h], theano.shared(value=-np.abs(self._initial_W()) / 1000, name='Wp'), name='Wp') # weights self.bvm = parameters.BiasParameters( self, self.v, theano.shared(value=self._initial_bias(self.n_visible), name='bvm'), name='bvm') # visible bias self.bvp = parameters.BiasParameters( self, self.v.precision_units, theano.shared(value=self._initial_bias(self.n_visible), name='bvp'), name='bvp') # precision bias self.bh = parameters.BiasParameters( self, self.h, theano.shared(value=self._initial_bias(self.n_hidden), name='bh'), name='bh') # hidden bias
def __init__(self, n_visible, n_hidden_mean, n_hidden_precision): super(LearntPrecisionSeparateGaussianBinaryRBM, self).__init__() # data shape self.n_visible = n_visible self.n_hidden_mean = n_hidden_mean self.n_hidden_precision = n_hidden_precision # units self.v = units.LearntPrecisionGaussianUnits(self, name='v') # visibles self.hm = units.BinaryUnits(self, name='hm') # hiddens for mean self.hp = units.BinaryUnits(self, name='hp') # hiddens for precision # parameters self.Wm = parameters.ProdParameters( self, [self.v, self.hm], theano.shared(value=self._initial_W(self.n_visible, self.n_hidden_mean), name='Wm'), name='Wm') # weights self.Wp = parameters.ProdParameters( self, [self.v.precision_units, self.hp], theano.shared(value=-np.abs( self._initial_W(self.n_visible, self.n_hidden_precision)) / 1000, name='Wp'), name='Wp') # weights self.bvm = parameters.BiasParameters( self, self.v, theano.shared(value=self._initial_bias(self.n_visible), name='bvm'), name='bvm') # visible bias self.bvp = parameters.BiasParameters( self, self.v.precision_units, theano.shared(value=self._initial_bias(self.n_visible), name='bvp'), name='bvp') # precision bias self.bhm = parameters.BiasParameters( self, self.hm, theano.shared(value=self._initial_bias(self.n_hidden_mean), name='bhm'), name='bhm') # hidden bias for mean self.bhp = parameters.BiasParameters( self, self.hp, theano.shared(value=self._initial_bias(self.n_hidden_precision) + 1.0, name='bhp'), name='bhp') # hidden bias for precision
def __init__(self, n_visible, n_hidden, n_factors): super(FactoredBinaryBinaryRBM, self).__init__() # data shape self.n_visible = n_visible self.n_hidden = n_hidden self.n_factors = n_factors # units self.v = units.BinaryUnits(self, name='v') # visibles self.h = units.BinaryUnits(self, name='h') # hiddens # parameters Wv = theano.shared(value=self._initial_W(self.n_visible, self.n_factors), name='Wv') Wh = theano.shared(value=self._initial_W(self.n_hidden, self.n_factors), name='Wh') self.F = factors.Factor(self, name='F') # factor self.Wv = parameters.ProdParameters(self.F, [self.v, self.F], Wv, name='Wv') self.Wh = parameters.ProdParameters(self.F, [self.h, self.F], Wh, name='Wh') self.F.initialize() self.bv = parameters.BiasParameters(self, self.v, theano.shared( value=self._initial_bv(), name='bv'), name='bv') # visible bias self.bh = parameters.BiasParameters(self, self.h, theano.shared( value=self._initial_bh(), name='bh'), name='bh') # hidden bias
# This example shows how the FIOTRBM model from "Facial Expression Transfer with # Input-Output Temporal Restricted Boltzmann Machines" by Zeiler et al. (NIPS # 2011) can be recreated in Morb. rbm = base.RBM() rbm.v = units.GaussianUnits(rbm) # output (visibles) rbm.h = units.BinaryUnits(rbm) # latent (hiddens) rbm.s = units.Units(rbm) # input (context) rbm.vp = units.Units(rbm) # output history (context) initial_A = ... initial_B = ... initial_bv = ... initial_bh = ... initial_Wv = ... initial_Wh = ... initial_Ws = ... parameters.FixedBiasParameters( rbm, rbm.v.precision_units) # add precision term to the energy function rbm.A = parameters.ProdParameters( rbm, [rbm.vp, rbm.v], initial_A) # weights from past output to current output rbm.B = parameters.ProdParameters( rbm, [rbm.vp, rbm.h], initial_B) # weights from past output to hiddens rbm.bv = parameters.BiasParameters(rbm, rbm.v, initial_bv) # visible bias rbm.bh = parameters.BiasParameters(rbm, rbm.h, initial_bh) # hidden bias rbm.W = parameters.ThirdOrderFactoredParameters( rbm, [rbm.v, rbm.h, rbm.s], [initial_Wv, initial_Wh, initial_Ws]) # factored third order weights
size=(n_visible, n_hidden, n_context)), dtype=theano.config.floatX) initial_bv = np.zeros(n_visible, dtype=theano.config.floatX) initial_bh = np.zeros(n_hidden, dtype=theano.config.floatX) rbm = morb.base.RBM() rbm.v = units.BinaryUnits(rbm, name='v') # visibles rbm.h = units.BinaryUnits(rbm, name='h') # hiddens rbm.x = units.Units(rbm, name='x') # context rbm.W = parameters.ThirdOrderParameters(rbm, [rbm.v, rbm.h, rbm.x], theano.shared(value=initial_W, name='W'), name='W') # weights rbm.bv = parameters.BiasParameters(rbm, rbm.v, theano.shared(value=initial_bv, name='bv'), name='bv') # visible bias rbm.bh = parameters.BiasParameters(rbm, rbm.h, theano.shared(value=initial_bh, name='bh'), name='bh') # hidden bias initial_vmap = {rbm.v: T.matrix('v'), rbm.x: T.matrix('x')} # try to calculate weight updates using CD-1 stats print ">> Constructing contrastive divergence updaters..." s = stats.cd_stats(rbm, initial_vmap, visible_units=[rbm.v], hidden_units=[rbm.h], context_units=[rbm.x],