예제 #1
0
    def setUp(self):
        dataset_filepath = config.ROOT + '/python/test/resource/NFLX_dataset_public_raw.py'
        dataset = import_python_file(dataset_filepath)

        np.random.seed(0)
        info_dict = {
            'selected_subjects': range(5),
        }

        self.dataset_reader = SelectSubjectRawDatasetReader(dataset, input_dict=info_dict)
예제 #2
0
class SelectedSubjectDatasetReaderTest(unittest.TestCase):

    def setUp(self):
        dataset_filepath = config.ROOT + '/python/test/resource/NFLX_dataset_public_raw.py'
        dataset = import_python_file(dataset_filepath)

        np.random.seed(0)
        info_dict = {
            'selected_subjects': range(5),
        }

        self.dataset_reader = SelectSubjectRawDatasetReader(dataset, input_dict=info_dict)

    def test_read_dataset_stats(self):
        self.assertEquals(self.dataset_reader.num_ref_videos, 9)
        self.assertEquals(self.dataset_reader.num_dis_videos, 79)
        self.assertEquals(self.dataset_reader.num_observers, 5)

    def test_opinion_score_2darray(self):
        os_2darray = self.dataset_reader.opinion_score_2darray
        self.assertEquals(os_2darray.shape, (79, 5))

    def test_to_dataset(self):
        dataset = self.dataset_reader.to_dataset()

        old_scores = [dis_video['os'] for dis_video in self.dataset_reader.dataset.dis_videos]
        new_scores = [dis_video['os'] for dis_video in dataset.dis_videos]

        self.assertNotEquals(old_scores, new_scores)
예제 #3
0
 def run_one_num_subject(num_subject, dataset, seed):
     np.random.seed(seed)
     total_subject = len(dataset.dis_videos[0]['os'])
     info_dict = {
         'selected_subjects':
         np.random.permutation(total_subject)[:num_subject]
     }
     dataset_reader = SelectSubjectRawDatasetReader(
         dataset, input_dict=info_dict)
     subjective_model = model_class(dataset_reader)
     result = subjective_model.run_modeling(normalize_final=False)
     return dataset_reader, result