def test__get_loader_encdec(setup_args):
    setup_args.model = 'shallow_encdec'
    train_loader, val_loader = get_dataloaders(setup_args)

    assert isinstance(train_loader, torch.utils.data.DataLoader)
    assert isinstance(train_loader.dataset, SeqInSeqOut)

    assert isinstance(val_loader, torch.utils.data.DataLoader)
    assert isinstance(val_loader.dataset, SeqInSeqOut)
def test__get_loader_fnn(setup_args):
    setup_args.model = 'shallow_fnn'
    train_loader, val_loader = get_dataloaders(setup_args)

    assert isinstance(train_loader, torch.utils.data.DataLoader)
    assert isinstance(train_loader.dataset, FlatInFlatOut)

    assert isinstance(val_loader, torch.utils.data.DataLoader)
    assert isinstance(val_loader.dataset, FlatInFlatOut)
예제 #3
0
import torch
import torch.optim as optim

from motornn.utils.parser import get_parser_with_args
from motornn.utils.helpers import (get_file_names, get_dataloaders, get_model,
                                   get_loss_function, Log)
from motornn.utils.runner import Runner

parser = get_parser_with_args()
args = parser.parse_args()

weight_path, log_path = get_file_names(args)
print(weight_path, log_path)
logger = Log(log_path, 'w')

train_loader, val_loader = get_dataloaders(args)
model = get_model(args)
criterion = get_loss_function(args)
optimizer = optim.SGD(model.parameters(), lr=args.lr)

runner = Runner(args.gpu, model, optimizer, criterion, train_loader,
                val_loader)

best_smape = 1000

logger.write_model(model)

for epoch in range(args.epochs):
    runner.set_epoch_metrics()

    train_metrics = runner.train_model()