def _right_model(img_input_dim, merged_dim): c, h, w = img_input_dim valid = lambda x, y, kernel, stride : ((x-kernel)/stride + 1, (y-kernel)/stride + 1) full = lambda x, y, kernel, stride : ((x+kernel)/stride - 1, (y+kernel)/stride - 1) right_model = Sequential(input_var=T.tensor4(), output_var=T.matrix()) right_model.add(Convolution2D(input_channels=3, filters=8, kernel_size=(3,3), stride=(1,1), border_mode='full')) h, w = full(h, w, 3, 1) right_model.add(RELU()) right_model.add(Convolution2D(input_channels=8, filters=8, kernel_size=(3,3), stride=(1,1), border_mode='valid')) h, w = valid(h, w, 3, 1) right_model.add(RELU()) right_model.add(Pooling2D(poolsize=(2, 2), stride=(1,1), mode='max')) h, w = valid(h, w, 2, 1) right_model.add(Dropout(0.25)) right_model.add(Convolution2D(input_channels=8, filters=8, kernel_size=(3,3), stride=(1,1), border_mode='full')) h, w = full(h, w, 3, 1) right_model.add(RELU()) right_model.add(Convolution2D(input_channels=8, filters=8, kernel_size=(3,3), stride=(1,1), border_mode='valid')) h, w = valid(h, w, 3, 1) right_model.add(RELU()) right_model.add(Pooling2D(poolsize=(2, 2), stride=(1,1), mode='max')) h, w = valid(h, w, 2, 1) right_model.add(Dropout(0.25)) right_model.add(Flatten()) right_model.add(Linear(8*h*w, 512)) right_model.add(Linear(512, 512)) right_model.add(RELU()) right_model.add(Dropout(0.5)) right_model.add(Linear(512, merged_dim)) return right_model
def __init__(self, input_dim, output_dim): self.layers = [] self.layers.append(RELU()) self.layers.append(Linear(input_dim, 200)) self.layers.append(RELU()) self.layers.append(Linear(200, output_dim)) self.layers.append(Softmax()) self.params = [] for layer in self.layers: self.params += layer.params
def __init__(self, input_shape, output_dim): ''' FIELDS: self.params: any params from the layer that needs to be updated by backpropagation can be put inside self.params PARAMS: input_shape: tuple shape of the input image with format (channel, height, width) output_dim: int the output dimension of the model ''' assert len(input_shape) == 3, 'input_shape must be a tuple or list of dim (channel, height, width)' c, h, w = input_shape valid = lambda x, y, kernel, stride : ((x-kernel)/stride + 1, (y-kernel)/stride + 1) full = lambda x, y, kernel, stride : ((x+kernel)/stride - 1, (y+kernel)/stride - 1) self.layers = [] self.layers.append(Convolution2D(input_channels=3, filters=96, kernel_size=(11,11), stride=(4,4), border_mode='valid')) nh, nw = valid(h, w, 11, 4) self.layers.append(RELU()) self.layers.append(LRN()) self.layers.append(Pooling2D(poolsize=(3,3), stride=(2,2), mode='max')) nh, nw = valid(nh, nw, 3, 2) self.layers.append(Convolution2D(input_channels=96, filters=256, kernel_size=(5,5), stride=(1,1), border_mode='full')) nh, nw = full(nh, nw, 5, 1) self.layers.append(RELU()) self.layers.append(LRN()) self.layers.append(Pooling2D(poolsize=(3,3), stride=(2,2), mode='max')) nh, nw = valid(nh, nw, 3, 2) self.layers.append(Convolution2D(input_channels=256, filters=384, kernel_size=(3,3), stride=(1,1), border_mode='full')) nh, nw = full(nh, nw, 3, 1) self.layers.append(RELU()) self.layers.append(Convolution2D(input_channels=384, filters=384, kernel_size=(3,3), stride=(1,1), border_mode='full')) nh, nw = full(nh, nw, 3, 1) self.layers.append(RELU()) self.layers.append(Convolution2D(input_channels=384, filters=256, kernel_size=(3,3), stride=(1,1), border_mode='full')) nh, nw = full(nh, nw, 3, 1) self.layers.append(RELU()) self.layers.append(Pooling2D(poolsize=(3,3), stride=(2,2), mode='max')) nh, nw = valid(nh, nw, 3, 2) self.layers.append(Flatten()) self.layers.append(Linear(256*nh*nw,4096)) self.layers.append(RELU()) self.layers.append(Dropout(0.5)) self.layers.append(Linear(4096,4096)) self.layers.append(RELU()) self.layers.append(Dropout(0.5)) self.layers.append(Linear(4096,output_dim)) self.layers.append(Softmax()) self.params = [] for layer in self.layers: self.params += layer.params
def train(): max_features=20000 maxseqlen = 100 # cut texts after this number of words (among top max_features most common words) batch_size = 16 word_vec_len = 256 iter_class = 'SequentialRecurrentIterator' seq_len = 10 data = IMDB(pad_zero=True, maxlen=100, nb_words=max_features, batch_size=batch_size, train_valid_test_ratio=[8,2,0], iter_class=iter_class, seq_len=seq_len) print('Build model...') model = Sequential(input_var=T.matrix(), output_var=T.matrix()) model.add(Embedding(max_features, word_vec_len)) # MLP layers model.add(Transform((word_vec_len,))) # transform from 3d dimensional input to 2d input for mlp model.add(Linear(word_vec_len, 100)) model.add(RELU()) model.add(BatchNormalization(dim=100, layer_type='fc')) model.add(Linear(100,100)) model.add(RELU()) model.add(BatchNormalization(dim=100, layer_type='fc')) model.add(Linear(100, word_vec_len)) model.add(RELU()) model.add(Transform((maxseqlen, word_vec_len))) # transform back from 2d to 3d for recurrent input # Stacked up BiLSTM layers model.add(BiLSTM(word_vec_len, 50, output_mode='concat', return_sequences=True)) model.add(BiLSTM(100, 24, output_mode='sum', return_sequences=True)) model.add(LSTM(24, 24, return_sequences=True)) # MLP layers model.add(Reshape((24 * maxseqlen,))) model.add(BatchNormalization(dim=24 * maxseqlen, layer_type='fc')) model.add(Linear(24 * maxseqlen, 50)) model.add(RELU()) model.add(Dropout(0.2)) model.add(Linear(50, 1)) model.add(Sigmoid()) # build learning method decay_batch = int(data.train.X.shape[0] * 5 / batch_size) learning_method = SGD(learning_rate=0.1, momentum=0.9, lr_decay_factor=1.0, decay_batch=decay_batch) # Build Logger log = Log(experiment_name = 'MLP', description = 'This is a tutorial', save_outputs = True, # log all the outputs from the screen save_model = True, # save the best model save_epoch_error = True, # log error at every epoch save_to_database = {'name': 'Example.sqlite3', 'records': {'Batch_Size': batch_size, 'Learning_Rate': learning_method.learning_rate, 'Momentum': learning_method.momentum}} ) # end log # put everything into the train object train_object = TrainObject(model = model, log = log, dataset = data, train_cost = mse, valid_cost = error, learning_method = learning_method, stop_criteria = {'max_epoch' : 100, 'epoch_look_back' : 5, 'percent_decrease' : 0.01} ) # finally run the code train_object.setup() train_object.run()
def _left_model(text_input_dim, merged_dim): left_model = Sequential(input_var=T.matrix(), output_var=T.matrix()) left_model.add(Linear(text_input_dim, 100)) left_model.add(RELU()) left_model.add(Linear(100, merged_dim)) return left_model