예제 #1
0
 def test_start(self, _temporary_session_directory):
     """ Create temporary test directory, fill it with images, run start(), do asserts,
             tear down temporary test directory. """
     source_path, temp_path = _temporary_session_directory
     os.chdir(source_path)
     defaults_dict = ini.make_defaults_dict()
     log_filename = defaults_dict['session log filename']
     temp_log_fullpath = os.path.join(temp_path, log_filename)
     assert not os.path.isfile(temp_log_fullpath)  # before start().
     assert os.getcwd() == source_path
     session.start(TEST_SESSION_TOP_DIRECTORY, TEMP_TEST_MP, TEST_AN, 'Clear')
     assert os.getcwd() == temp_path
     assert os.path.isfile(temp_log_fullpath)
     assert set(get_mp_filenames(temp_path)) == set(get_mp_filenames(source_path))
예제 #2
0
def _get_filenames_time_order(directory):
    """ Return list of FITS filenames in time order:"""
    dict_list = []
    for filename in get_mp_filenames(directory):
        fullpath = os.path.join(directory, filename)
        hdu = apyfits.open(fullpath)[0]
        jd_start = fits_header_value(hdu, 'JD')
        dict_list.append({'Filename': filename, 'JD': jd_start})
    return pd.DataFrame(data=dict_list).sort_values(by='JD')['Filename'].values
예제 #3
0
def _make_test_session_directory(source_path, temp_path):
    """ Make a fresh test directory (probably with test MP not matching its filename MP).
    :param source_path: from which FITS files are copied, treated as read-only. [string]
    :param temp_path: new test directory to populate with FITS files from source_path. [string]
    :return: [None]
    """
    os.makedirs(temp_path, exist_ok=True)
    fits_filenames = get_mp_filenames(source_path)
    for fn in fits_filenames:
        source_fullpath = os.path.join(source_path, fn)
        shutil.copy2(source_fullpath, temp_path)
예제 #4
0
파일: test_util.py 프로젝트: edose/mp2021
def test_get_mp_filenames():
    this_directory = os.path.join(TEST_SESSIONS_DIRECTORY,
                                  'MP_' + str(SOURCE_TEST_MP),
                                  'AN' + str(TEST_AN))
    mp_filenames = util.get_mp_filenames(this_directory)
    assert isinstance(mp_filenames, list)
    assert all([isinstance(fn, str) for fn in mp_filenames])
    assert len(mp_filenames) == 7
    assert all([fn.startswith('MP_') for fn in mp_filenames])
    assert all(
        [fn[-4:] in util.VALID_FITS_FILE_EXTENSIONS for fn in mp_filenames])
    assert len(set(mp_filenames)) == len(mp_filenames)  # filenames are unique.
예제 #5
0
파일: common.py 프로젝트: edose/mp2021
def do_fits_assessments(defaults_dict, this_directory):
    return_dict = {
        'file not read': [],  # list of filenames
        'filter not read': [],  # "
        'file count by filter': [],  # list of tuples (filter, file count)
        'warning count': 0,  # total count of all warnings.
        'not platesolved': [],  # list of filenames
        'not calibrated': [],  # "
        'unusual fwhm': [],  # list of tuples (filename, fwhm)
        'unusual focal length': []
    }  # list of tuples (filename, focal length)
    # Count FITS files by filter, write totals
    #    (we've stopped classifying files by intention; now we include all valid FITS in dfs):
    filter_counter = Counter()
    valid_fits_filenames = []
    all_fits_filenames = util.get_mp_filenames(this_directory)
    for filename in all_fits_filenames:
        fullpath = os.path.join(this_directory, filename)
        try:
            hdu = apyfits.open(fullpath)[0]
        except FileNotFoundError:
            print(' >>>>> WARNING: can\'t find file', fullpath,
                  'Skipping file.')
            return_dict['file not read'].append(filename)
        except (OSError, UnicodeDecodeError):
            print(' >>>>> WARNING: can\'t read file', fullpath,
                  'as FITS. Skipping file.')
            return_dict['file not read'].append(filename)
        else:
            fits_filter = util.fits_header_value(hdu, 'FILTER')
            if fits_filter is None:
                print(' >>>>> WARNING: filter in', fullpath,
                      'cannot be read. Skipping file.')
                return_dict['filter not read'].append(filename)
            else:
                valid_fits_filenames.append(filename)
                filter_counter[fits_filter] += 1
    for filter in filter_counter.keys():
        print('   ' + str(filter_counter[filter]), 'in filter', filter + '.')
        return_dict['file count by filter'].append(
            (filter, filter_counter[filter]))
    # Start dataframe for main FITS integrity checks:
    fits_extensions = pd.Series(
        [os.path.splitext(f)[-1].lower() for f in valid_fits_filenames])
    df = pd.DataFrame({
        'Filename': valid_fits_filenames,
        'Extension': fits_extensions.values
    }).sort_values(by=['Filename'])
    df = df.set_index('Filename', drop=False)
    df['PlateSolved'] = False
    df['Calibrated'] = False
    df['FWHM'] = np.nan
    df['FocalLength'] = np.nan
    # Populate df with FITS header info needed for validity tests below:
    for filename in df.index:
        fullpath = os.path.join(this_directory, filename)
        hdu = apyfits.open(fullpath)[
            0]  # already known to be valid, from above.
        df.loc[filename, 'PlateSolved'] = util.fits_is_plate_solved(hdu)
        df.loc[filename, 'Calibrated'] = util.fits_is_calibrated(hdu)
        df.loc[filename, 'FWHM'] = util.fits_header_value(hdu, 'FWHM')
        df.loc[filename, 'FocalLength'] = util.fits_focal_length(hdu)
        jd_start = util.fits_header_value(hdu, 'JD')
        exposure = util.fits_header_value(hdu, 'EXPOSURE')
        jd_mid = jd_start + (exposure / 2) / 24 / 3600
        df.loc[
            filename,
            'JD_mid'] = jd_mid  # needed only to write control.ini stub (1st & last FITS).
    # Warn of FITS without plate solution:
    filenames_not_platesolved = df.loc[~df['PlateSolved'], 'Filename']
    if len(filenames_not_platesolved) >= 1:
        print('NO PLATE SOLUTION:')
        for fn in filenames_not_platesolved:
            print('    ' + fn)
            return_dict['not platesolved'].append(fn)
        print('\n')
    else:
        print('All platesolved.')
    return_dict['warning count'] += len(filenames_not_platesolved)
    # Warn of FITS without calibration:
    filenames_not_calibrated = df.loc[~df['Calibrated'], 'Filename']
    if len(filenames_not_calibrated) >= 1:
        print('\nNOT CALIBRATED:')
        for fn in filenames_not_calibrated:
            print('    ' + fn)
            return_dict['not calibrated'].append(fn)
        print('\n')
    else:
        print('All calibrated.')
    return_dict['warning count'] += len(filenames_not_calibrated)
    # Warn of FITS with very large or very small FWHM:
    odd_fwhm_list = []
    instrument_dict = ini.make_instrument_dict(defaults_dict)
    # settings = Settings()
    min_fwhm = 0.5 * instrument_dict['nominal fwhm pixels']
    max_fwhm = 2.0 * instrument_dict['nominal fwhm pixels']
    for fn in df['Filename']:
        fwhm = df.loc[fn, 'FWHM']
        if fwhm < min_fwhm or fwhm > max_fwhm:  # too small or large:
            odd_fwhm_list.append((fn, fwhm))
    if len(odd_fwhm_list) >= 1:
        print('\nUnusual FWHM (in pixels):')
        for fn, fwhm in odd_fwhm_list:
            print('    ' + fn + ' has unusual FWHM of ' +
                  '{0:.2f}'.format(fwhm) + ' pixels.')
            return_dict['unusual fwhm'].append((fn, fwhm))
        print('\n')
    else:
        print('All FWHM values seem OK.')
    return_dict['warning count'] += len(odd_fwhm_list)
    # Warn of FITS with abnormal Focal Length:
    odd_fl_list = []
    median_fl = df['FocalLength'].median()
    for fn in df['Filename']:
        fl = df.loc[fn, 'FocalLength']
        focal_length_pct_deviation = 100.0 * abs((fl - median_fl)) / median_fl
        if focal_length_pct_deviation > FOCAL_LENGTH_MAX_PCT_DEVIATION:
            odd_fl_list.append((fn, fl))
    if len(odd_fl_list) >= 1:
        print('\nUnusual FocalLength (vs median of ' +
              '{0:.1f}'.format(median_fl) + ' mm:')
        for fn, fl in odd_fl_list:
            print('    ' + fn + ' has unusual Focal length of ' + str(fl))
            return_dict['unusual focal length'].append((fn, fl))
        print('\n')
    else:
        print('All Focal Lengths seem OK.')
    return_dict['warning count'] += len(odd_fl_list)
    return df, return_dict