예제 #1
0
    def preparePlot(self):
        """Prepare the plotting window"""
        plt.hot()
        self.figure = plt.figure(self.figNr)
        self.figure.clear()
        # this is black magic that makes the legend work with two axes
        if self.hasSubplotHost:
            self.axis1 = SubplotHost(self.figure, 111)
            self.figure.add_subplot(self.axis1)
        else:
            self.axis1 = self.figure.add_subplot(111)
        self.axis1.set_xlabel(self.xlabel)
        self.axis1.set_ylabel(self.ylabel)

        if len(self.alternate) > 0:
            self.axis2 = self.axis1.twinx()
            self.axis2.set_ylabel(self.ylabel2)

        try:
            if self.spec.logscale:
                self.axis1.set_yscale("log")
                if self.axis2:
                    self.axis2.set_yscale("log")
        except AttributeError:
            pass
예제 #2
0
def draw_heart_temp():
    fig = plt.figure(1)
    host = SubplotHost(fig, 111)
    par1 = host.twinx()
    par1.axis["right"].set_visible(True)
    #offset = 60, 0
    fig.add_axes(host)
    plt.subplots_adjust(right=0.75)
    host.set_xlabel("Time")
    host.set_ylabel("HeartRate [bpm]")
    par1.set_ylabel("Temperature [℃]")
    host.set_xlim(time_s[0], time_s[len(time_s) - 1])
    host.set_ylim(0, 100)
    par1.set_ylim(0, 35)
    p1, = host.plot(time_h, heart, label="HeartRate")
    p2, = par1.plot(time_t, temp, color="r", label="Temperature")
    host.legend()
    host.axis["left"].label.set_color(p1.get_color())
    par1.axis["right"].label.set_color(p2.get_color())
    days = mdates.AutoDateLocator()
    daysFmt = mdates.DateFormatter("%H:%M")
    host.xaxis.set_major_locator(days)
    host.xaxis.set_major_formatter(daysFmt)
    par1.xaxis.set_major_locator(days)
    par1.xaxis.set_major_formatter(daysFmt)
    plt.show()
예제 #3
0
def draw_sleep_humid():
    fig = plt.figure(1)
    host = SubplotHost(fig, 111)
    par1 = host.twinx()
    par1.axis["right"].set_visible(True)
    #offset = 60, 0
    fig.add_axes(host)
    plt.subplots_adjust(right=0.75)
    host.set_xlabel("Time")
    host.set_ylabel("State")
    par1.set_ylabel("Humidity [%]")
    host.set_xlim(time_s[0], time_s[len(time_s) - 1])
    host.yaxis.set_major_locator(MultipleLocator(1))
    par1.set_ylim(0, 90)
    p1, = host.plot(time_s, state, label="State")
    p2, = par1.plot(time_t, humid, color="r", label="Humidity")
    host.legend()
    host.axis["left"].label.set_color(p1.get_color())
    par1.axis["right"].label.set_color(p2.get_color())
    days = mdates.AutoDateLocator()
    daysFmt = mdates.DateFormatter("%H:%M")
    host.xaxis.set_major_locator(days)
    host.xaxis.set_major_formatter(daysFmt)
    par1.xaxis.set_major_locator(days)
    par1.xaxis.set_major_formatter(daysFmt)
    plt.show()
예제 #4
0
def draw_sleep_discomfort():
    for i in range(0, len(time_t)):
        tmp_t = float(temp[i])
        tmp_h = float(humid[i])
        value = 0.81 * tmp_t + 0.01 * tmp_h * (0.99 * tmp_t - 14.3) + 46.3
        discomfort.append(value)
    fig = plt.figure(1)
    host = SubplotHost(fig, 111)
    par1 = host.twinx()
    par1.axis["right"].set_visible(True)
    #offset = 60, 0
    fig.add_axes(host)
    plt.subplots_adjust(right=0.75)
    host.set_xlabel("Time")
    host.set_ylabel("State")
    par1.set_ylabel("Discomfort Index")
    host.set_xlim(time_s[0], time_s[len(time_s) - 1])
    host.yaxis.set_major_locator(MultipleLocator(1))
    par1.set_ylim(0, 100)
    p1, = host.plot(time_s, state, label="State")
    p2, = par1.plot(time_t, discomfort, color="r", label="Discomfort Index")
    host.legend()
    host.axis["left"].label.set_color(p1.get_color())
    par1.axis["right"].label.set_color(p2.get_color())
    days = mdates.AutoDateLocator()
    daysFmt = mdates.DateFormatter("%H:%M")
    host.xaxis.set_major_locator(days)
    host.xaxis.set_major_formatter(daysFmt)
    par1.xaxis.set_major_locator(days)
    par1.xaxis.set_major_formatter(daysFmt)
    plt.show()
    print(discomfort)
예제 #5
0
def test_polar_box():
    fig = plt.figure(figsize=(5, 5))

    # PolarAxes.PolarTransform takes radian. However, we want our coordinate
    # system in degree
    tr = Affine2D().scale(np.pi / 180., 1.) + PolarAxes.PolarTransform()

    # polar projection, which involves cycle, and also has limits in
    # its coordinates, needs a special method to find the extremes
    # (min, max of the coordinate within the view).
    extreme_finder = angle_helper.ExtremeFinderCycle(20,
                                                     20,
                                                     lon_cycle=360,
                                                     lat_cycle=None,
                                                     lon_minmax=None,
                                                     lat_minmax=(0, np.inf))

    grid_locator1 = angle_helper.LocatorDMS(12)
    tick_formatter1 = angle_helper.FormatterDMS()

    grid_helper = GridHelperCurveLinear(tr,
                                        extreme_finder=extreme_finder,
                                        grid_locator1=grid_locator1,
                                        tick_formatter1=tick_formatter1)

    ax1 = SubplotHost(fig, 1, 1, 1, grid_helper=grid_helper)

    ax1.axis["right"].major_ticklabels.set_visible(True)
    ax1.axis["top"].major_ticklabels.set_visible(True)

    # let right axis shows ticklabels for 1st coordinate (angle)
    ax1.axis["right"].get_helper().nth_coord_ticks = 0
    # let bottom axis shows ticklabels for 2nd coordinate (radius)
    ax1.axis["bottom"].get_helper().nth_coord_ticks = 1

    fig.add_subplot(ax1)

    ax1.axis["lat"] = axis = grid_helper.new_floating_axis(0, 45, axes=ax1)
    axis.label.set_text("Test")
    axis.label.set_visible(True)
    axis.get_helper()._extremes = 2, 12

    ax1.axis["lon"] = axis = grid_helper.new_floating_axis(1, 6, axes=ax1)
    axis.label.set_text("Test 2")
    axis.get_helper()._extremes = -180, 90

    # A parasite axes with given transform
    ax2 = ParasiteAxesAuxTrans(ax1, tr, "equal")
    assert ax2.transData == tr + ax1.transData
    # Anything you draw in ax2 will match the ticks and grids of ax1.
    ax1.parasites.append(ax2)
    ax2.plot(np.linspace(0, 30, 50), np.linspace(10, 10, 50))

    ax1.set_aspect(1.)
    ax1.set_xlim(-5, 12)
    ax1.set_ylim(-5, 10)

    ax1.grid(True)
예제 #6
0
def curvelinear_test2(fig):
    """
    polar projection, but in a rectangular box.
    """
    global ax1
    import numpy as np
    import mpl_toolkits.axes_grid.angle_helper as angle_helper
    from matplotlib.projections import PolarAxes
    from matplotlib.transforms import Affine2D

    from mpl_toolkits.axes_grid.parasite_axes import SubplotHost

    from mpl_toolkits.axes_grid.grid_helper_curvelinear import GridHelperCurveLinear

    # see demo_curvelinear_grid.py for details
    tr = Affine2D().scale(np.pi / 180., 1.) + PolarAxes.PolarTransform()

    extreme_finder = angle_helper.ExtremeFinderCycle(
        20,
        20,
        lon_cycle=360,
        lat_cycle=None,
        lon_minmax=None,
        lat_minmax=(0, np.inf),
    )

    grid_locator1 = angle_helper.LocatorDMS(12)

    tick_formatter1 = angle_helper.FormatterDMS()

    grid_helper = GridHelperCurveLinear(tr,
                                        extreme_finder=extreme_finder,
                                        grid_locator1=grid_locator1,
                                        tick_formatter1=tick_formatter1)

    ax1 = SubplotHost(fig, 1, 1, 1, grid_helper=grid_helper)

    fig.add_subplot(ax1)

    # Now creates floating axis

    #grid_helper = ax1.get_grid_helper()
    # floating axis whose first coordinate (theta) is fixed at 60
    ax1.axis["lat"] = axis = ax1.new_floating_axis(0, 60)
    axis.label.set_text(r"$\theta = 60^{\circ}$")
    axis.label.set_visible(True)

    # floating axis whose second coordinate (r) is fixed at 6
    ax1.axis["lon"] = axis = ax1.new_floating_axis(1, 6)
    axis.label.set_text(r"$r = 6$")

    ax1.set_aspect(1.)
    ax1.set_xlim(-5, 12)
    ax1.set_ylim(-5, 10)

    ax1.grid(True)
예제 #7
0
def setup_rot_axes(fig, rect):
    tr = Affine2D().rotate_deg(90.0)
    grid_helper = gh.GridHelperCurveLinear(tr)
    ax1 = SubplotHost(fig, rect, grid_helper=grid_helper)
    fig.add_subplot(ax1)
    ax2 = ParasiteAxesAuxTrans(ax1, tr, "equal")
    ax1.set_ylim([end, start])
    ax1.set_xlim([-8, 4])
    ax2 = ax1.get_aux_axes(tr)
    ax1.set_aspect('auto')
    ax1.axis['top', 'right', 'left', 'bottom'].set_visible(False)
    return ax1, ax2
예제 #8
0
 def __init__(self, height, width, X, LY, Xlabel, LYlabel, linecolor,
 set_marker, set_linestyle, fontsize, set_markersize,
 set_linewidth, set_mfc, set_mew, set_mec):
    
     self.X = X
    
     fig = plt.figure(figsize=(height, width))
    
     self.host = SubplotHost(fig, 111)
    
     plt.rc("font", size=fontsize)
    
     self.host.set_xlabel(Xlabel)
     self.host.set_ylabel(LYlabel)
     p1, = self.host.plot(X, LY, color=linecolor, marker=set_marker, ls=set_linestyle, ms=set_markersize, lw=set_linewidth, mfc=set_mfc, mew=set_mew, mec=set_mec)
    
     fig.add_axes(self.host)
    
     self.host.axis["left"].label.set_color(p1.get_color())
     self.host.tick_params(axis='y', color=p1.get_color())
예제 #9
0
def get_axis_two_scales(fig, scale_x, scale_y, \
                        ax2_xlabel = None, ax2_ylabel = None, \
                        subplot = 111,
                        sharex = None,
                        sharey = None):
    kargs = {}
    if (sharex != None):
        kargs['sharex'] = sharex
    if (sharey != None):
        kargs['sharey'] = sharey
    ax1 = SubplotHost(fig, subplot, **kargs)
    ax1_to_2 = mtransforms.Affine2D().scale(1.0 / scale_x, 1.0 / scale_y)
    ax2 = ax1.twin(ax1_to_2)
    ax2.set_viewlim_mode("transform")
    fig.add_subplot(ax1)
    if (ax2_xlabel != None):
        ax2.set_xlabel(ax2_xlabel)
    if (ax2_ylabel != None):
        ax2.set_ylabel(ax2_ylabel)
    if (scale_x == 1.0):
        ax2.get_xaxis().set_visible(False)
    if (scale_y == 1.0):
        ax2.get_yaxis().set_visible(False)
    return ax1, ax2
def test_axis_direction():
    fig = plt.figure(figsize=(5, 5))

    # PolarAxes.PolarTransform takes radian. However, we want our coordinate
    # system in degree
    tr = Affine2D().scale(np.pi / 180., 1.) + PolarAxes.PolarTransform()

    # polar projection, which involves cycle, and also has limits in
    # its coordinates, needs a special method to find the extremes
    # (min, max of the coordinate within the view).

    # 20, 20 : number of sampling points along x, y direction
    extreme_finder = angle_helper.ExtremeFinderCycle(20, 20,
                                                     lon_cycle=360,
                                                     lat_cycle=None,
                                                     lon_minmax=None,
                                                     lat_minmax=(0, np.inf),
                                                     )

    grid_locator1 = angle_helper.LocatorDMS(12)
    tick_formatter1 = angle_helper.FormatterDMS()

    grid_helper = GridHelperCurveLinear(tr,
                                        extreme_finder=extreme_finder,
                                        grid_locator1=grid_locator1,
                                        tick_formatter1=tick_formatter1)

    ax1 = SubplotHost(fig, 1, 1, 1, grid_helper=grid_helper)

    for axis in ax1.axis.values():
        axis.set_visible(False)

    fig.add_subplot(ax1)

    ax1.axis["lat1"] = axis = grid_helper.new_floating_axis(
        0, 130,
        axes=ax1, axis_direction="left")
    axis.label.set_text("Test")
    axis.label.set_visible(True)
    axis.get_helper()._extremes = 0.001, 10

    ax1.axis["lat2"] = axis = grid_helper.new_floating_axis(
        0, 50,
        axes=ax1, axis_direction="right")
    axis.label.set_text("Test")
    axis.label.set_visible(True)
    axis.get_helper()._extremes = 0.001, 10

    ax1.axis["lon"] = axis = grid_helper.new_floating_axis(
        1, 10,
        axes=ax1, axis_direction="bottom")
    axis.label.set_text("Test 2")
    axis.get_helper()._extremes = 50, 130
    axis.major_ticklabels.set_axis_direction("top")
    axis.label.set_axis_direction("top")

    grid_helper.grid_finder.grid_locator1.den = 5
    grid_helper.grid_finder.grid_locator2._nbins = 5

    ax1.set_aspect(1.)
    ax1.set_xlim(-8, 8)
    ax1.set_ylim(-4, 12)

    ax1.grid(True)
예제 #11
0
import matplotlib.pyplot as plt
from mpl_toolkits.axes_grid.parasite_axes import SubplotHost
import numpy as np

fig = plt.figure(1, (4, 3))

ax = SubplotHost(fig, 111)
fig.add_subplot(ax)

xx = np.arange(0, 2 * np.pi, 0.01)
ax.plot(xx, np.sin(xx))

ax2 = ax.twin()  # ax2 is responsible for "top" axis and "right" axis
ax2.set_xticks([0., .5 * np.pi, np.pi, 1.5 * np.pi, 2 * np.pi])
ax2.set_xticklabels(
    ["0", r"$\frac{1}{2}\pi$", r"$\pi$", r"$\frac{3}{2}\pi$", r"$2\pi$"])

ax2.axis["right"].major_ticklabels.set_visible(False)

plt.draw()
plt.show()
예제 #12
0
## list: species (y-axis)
## list: number of individuals > 3 (x-axis)
## list: number of pictures > 3 (x-axis)
## value: mean number of pictures genus (horizontal line)
## value: mean number of pictures species (excluding sp.) (horizontal line)
## code runs in pythontex

## read the data from pkl file
with open('/home/stine/repositories/MSCCode/dictinventory.pkl', 'rb') as di:
    dictgenusspecies, dictspeciesspnr, dictspnrpath = pickle.load(di)

## initialize figure1 and two with given sizes
## initialize four axes objects, with right y-axis invisible
fig1 = plt.figure(figsize=(10, 4))

ax1 = SubplotHost(fig1, 121)
ax1.axis["right"].set_visible(False)

ax2 = SubplotHost(fig1, 122)
ax2.axis["right"].set_visible(False)

fig2 = plt.figure(figsize=(10, 10))
ax3 = SubplotHost(fig2, 121)
ax3.axis["right"].set_visible(False)

ax4 = SubplotHost(fig2, 122)
ax4.axis["right"].set_visible(False)

## add axes objects to figures
fig1.add_subplot(ax1)
fig1.add_subplot(ax2)
예제 #13
0
                      cooutf,
                      cutoff=[50, 100, 150],
                      binsize=[0.1, 0.5, 1.0],
                      lmin=-10.5,
                      lmax=90.5)
    cobinpt1 = readcol(prefix + 'cofillfact_v1.0.2_binsize0.10.txt',
                       asStruct=True)
    cobinpt5 = readcol(prefix + 'cofillfact_v1.0.2_binsize0.50.txt',
                       asStruct=True)
    cobin1 = readcol(prefix + 'cofillfact_v1.0.2_binsize1.00.txt',
                     asStruct=True)

    fig = figure(1)
    clf()
    from mpl_toolkits.axes_grid.parasite_axes import SubplotHost
    host = SubplotHost(fig, 111)
    rcParams['xtick.labelsize'] = 24
    rcParams['ytick.labelsize'] = 24
    rcParams['font.size'] = 24
    import scipy.stats as stats
    sig3 = 1 - stats.halfnorm.cdf(3)
    host.plot(bin1.longitude_bin100,
              bin1.fraction_over_300 - sig3,
              'k',
              drawstyle='steps-mid')
    host.set_xlim(-10.5, 90.5)
    host.set_ylim(0, 0.35)
    host.set_xlabel("Galactic Longitude", fontsize='24')
    host.set_ylabel("Fraction above 3$\sigma$ ", fontsize='24')
    ax2 = host.twinx()
    ax2.plot(cobin1.longitude_bin100,
예제 #14
0
def curvelinear_test3(fig):
    """
    polar projection, but in a rectangular box.
    """
    global ax1, axis
    import numpy as np
    from . import angle_helper
    from matplotlib.projections import PolarAxes
    from matplotlib.transforms import Affine2D

    from mpl_toolkits.axes_grid.parasite_axes import SubplotHost

    # PolarAxes.PolarTransform takes radian. However, we want our coordinate
    # system in degree
    tr = Affine2D().scale(np.pi / 180., 1.) + PolarAxes.PolarTransform()

    # polar projection, which involves cycle, and also has limits in
    # its coordinates, needs a special method to find the extremes
    # (min, max of the coordinate within the view).

    # 20, 20 : number of sampling points along x, y direction
    extreme_finder = angle_helper.ExtremeFinderCycle(
        20,
        20,
        lon_cycle=360,
        lat_cycle=None,
        lon_minmax=None,
        lat_minmax=(0, np.inf),
    )

    grid_locator1 = angle_helper.LocatorDMS(12)
    # Find a grid values appropriate for the coordinate (degree,
    # minute, second).

    tick_formatter1 = angle_helper.FormatterDMS()
    # And also uses an appropriate formatter.  Note that,the
    # acceptable Locator and Formatter class is a bit different than
    # that of mpl's, and you cannot directly use mpl's Locator and
    # Formatter here (but may be possible in the future).

    grid_helper = GridHelperCurveLinear(tr,
                                        extreme_finder=extreme_finder,
                                        grid_locator1=grid_locator1,
                                        tick_formatter1=tick_formatter1)

    ax1 = SubplotHost(fig, 1, 1, 1, grid_helper=grid_helper)

    for axis in list(six.itervalues(ax1.axis)):
        axis.set_visible(False)

    fig.add_subplot(ax1)

    grid_helper = ax1.get_grid_helper()
    ax1.axis["lat1"] = axis = grid_helper.new_floating_axis(
        0, 130, axes=ax1, axis_direction="left")
    axis.label.set_text("Test")
    axis.label.set_visible(True)
    axis.get_helper()._extremes = 0.001, 10

    grid_helper = ax1.get_grid_helper()
    ax1.axis["lat2"] = axis = grid_helper.new_floating_axis(
        0, 50, axes=ax1, axis_direction="right")
    axis.label.set_text("Test")
    axis.label.set_visible(True)
    axis.get_helper()._extremes = 0.001, 10

    ax1.axis["lon"] = axis = grid_helper.new_floating_axis(
        1, 10, axes=ax1, axis_direction="bottom")
    axis.label.set_text("Test 2")
    axis.get_helper()._extremes = 50, 130
    axis.major_ticklabels.set_axis_direction("top")
    axis.label.set_axis_direction("top")

    grid_helper.grid_finder.grid_locator1.den = 5
    grid_helper.grid_finder.grid_locator2._nbins = 5

    #     # A parasite axes with given transform
    #     ax2 = ParasiteAxesAuxTrans(ax1, tr, "equal")
    #     # note that ax2.transData == tr + ax1.transData
    #     # Anthing you draw in ax2 will match the ticks and grids of ax1.
    #     ax1.parasites.append(ax2)
    #     intp = cbook.simple_linear_interpolation
    #     ax2.plot(intp(np.array([0, 30]), 50),
    #              intp(np.array([10., 10.]), 50))

    ax1.set_aspect(1.)
    ax1.set_xlim(-5, 12)
    ax1.set_ylim(-5, 10)

    ax1.grid(True)
예제 #15
0
def test3():

    import numpy as np
    from matplotlib.transforms import Transform
    from matplotlib.path import Path

    class MyTransform(Transform):
        input_dims = 2
        output_dims = 2
        is_separable = False

        def __init__(self, resolution):
            """
            Create a new Aitoff transform.  Resolution is the number of steps
            to interpolate between each input line segment to approximate its
            path in curved Aitoff space.
            """
            Transform.__init__(self)
            self._resolution = resolution

        def transform(self, ll):
            x = ll[:, 0:1]
            y = ll[:, 1:2]

            return np.concatenate((x, y - x), 1)

        transform.__doc__ = Transform.transform.__doc__

        transform_non_affine = transform
        transform_non_affine.__doc__ = Transform.transform_non_affine.__doc__

        def transform_path(self, path):
            vertices = path.vertices
            ipath = path.interpolated(self._resolution)
            return Path(self.transform(ipath.vertices), ipath.codes)

        transform_path.__doc__ = Transform.transform_path.__doc__

        transform_path_non_affine = transform_path
        transform_path_non_affine.__doc__ = Transform.transform_path_non_affine.__doc__

        def inverted(self):
            return MyTransformInv(self._resolution)

        inverted.__doc__ = Transform.inverted.__doc__

    class MyTransformInv(Transform):
        input_dims = 2
        output_dims = 2
        is_separable = False

        def __init__(self, resolution):
            Transform.__init__(self)
            self._resolution = resolution

        def transform(self, ll):
            x = ll[:, 0:1]
            y = ll[:, 1:2]

            return np.concatenate((x, y + x), 1)

        transform.__doc__ = Transform.transform.__doc__

        def inverted(self):
            return MyTransform(self._resolution)

        inverted.__doc__ = Transform.inverted.__doc__

    import matplotlib.pyplot as plt
    fig = plt.figure(1)
    fig.clf()
    tr = MyTransform(1)
    grid_helper = GridHelperCurveLinear(tr)

    from mpl_toolkits.axes_grid1.parasite_axes import host_subplot_class_factory
    from .axislines import Axes

    SubplotHost = host_subplot_class_factory(Axes)

    ax1 = SubplotHost(fig, 1, 1, 1, grid_helper=grid_helper)

    fig.add_subplot(ax1)

    ax2 = ParasiteAxesAuxTrans(ax1, tr, "equal")
    ax1.parasites.append(ax2)
    ax2.plot([3, 6], [5.0, 10.])

    ax1.set_aspect(1.)
    ax1.set_xlim(0, 10)
    ax1.set_ylim(0, 10)

    ax1.grid(True)
    plt.draw()
예제 #16
0
def curvelinear_test2(fig):
    """
    polar projection, but in a rectangular box.
    """

    # PolarAxes.PolarTransform takes radian. However, we want our coordinate
    # system in degree
    tr = Affine2D().scale(np.pi / 180., 1.) + PolarAxes.PolarTransform()

    # polar projection, which involves cycle, and also has limits in
    # its coordinates, needs a special method to find the extremes
    # (min, max of the coordinate within the view).

    # 20, 20 : number of sampling points along x, y direction
    extreme_finder = angle_helper.ExtremeFinderCycle(
        20,
        20,
        lon_cycle=360,
        lat_cycle=None,
        lon_minmax=None,
        lat_minmax=(0, np.inf),
    )

    grid_locator1 = angle_helper.LocatorDMS(12)
    # Find a grid values appropriate for the coordinate (degree,
    # minute, second).

    tick_formatter1 = angle_helper.FormatterDMS()
    # And also uses an appropriate formatter.  Note that,the
    # acceptable Locator and Formatter class is a bit different than
    # that of mpl's, and you cannot directly use mpl's Locator and
    # Formatter here (but may be possible in the future).

    grid_helper = GridHelperCurveLinear(tr,
                                        extreme_finder=extreme_finder,
                                        grid_locator1=grid_locator1,
                                        tick_formatter1=tick_formatter1)

    ax1 = SubplotHost(fig, 1, 2, 2, grid_helper=grid_helper)

    # make ticklabels of right and top axis visible.
    ax1.axis["right"].major_ticklabels.set_visible(True)
    ax1.axis["top"].major_ticklabels.set_visible(True)

    # let right axis shows ticklabels for 1st coordinate (angle)
    ax1.axis["right"].get_helper().nth_coord_ticks = 0
    # let bottom axis shows ticklabels for 2nd coordinate (radius)
    ax1.axis["bottom"].get_helper().nth_coord_ticks = 1

    fig.add_subplot(ax1)

    # A parasite axes with given transform
    ax2 = ParasiteAxesAuxTrans(ax1, tr, "equal")
    # note that ax2.transData == tr + ax1.transData
    # Anthing you draw in ax2 will match the ticks and grids of ax1.
    ax1.parasites.append(ax2)
    intp = cbook.simple_linear_interpolation
    ax2.plot(intp(np.array([0, 30]), 50), intp(np.array([10., 10.]), 50))

    ax1.set_aspect(1.)
    ax1.set_xlim(-5, 12)
    ax1.set_ylim(-5, 10)

    ax1.grid(True)
def test_custom_transform():
    class MyTransform(Transform):
        input_dims = 2
        output_dims = 2
        is_separable = False

        def __init__(self, resolution):
            """
            Resolution is the number of steps to interpolate between each input
            line segment to approximate its path in transformed space.
            """
            Transform.__init__(self)
            self._resolution = resolution

        def transform(self, ll):
            x = ll[:, 0:1]
            y = ll[:, 1:2]

            return np.concatenate((x, y - x), 1)

        transform_non_affine = transform

        def transform_path(self, path):
            vertices = path.vertices
            ipath = path.interpolated(self._resolution)
            return Path(self.transform(ipath.vertices), ipath.codes)

        transform_path_non_affine = transform_path

        def inverted(self):
            return MyTransformInv(self._resolution)

    class MyTransformInv(Transform):
        input_dims = 2
        output_dims = 2
        is_separable = False

        def __init__(self, resolution):
            Transform.__init__(self)
            self._resolution = resolution

        def transform(self, ll):
            x = ll[:, 0:1]
            y = ll[:, 1:2]

            return np.concatenate((x, y+x), 1)

        def inverted(self):
            return MyTransform(self._resolution)

    fig = plt.figure()

    SubplotHost = host_subplot_class_factory(Axes)

    tr = MyTransform(1)
    grid_helper = GridHelperCurveLinear(tr)
    ax1 = SubplotHost(fig, 1, 1, 1, grid_helper=grid_helper)
    fig.add_subplot(ax1)

    ax2 = ParasiteAxesAuxTrans(ax1, tr, "equal")
    ax1.parasites.append(ax2)
    ax2.plot([3, 6], [5.0, 10.])

    ax1.set_aspect(1.)
    ax1.set_xlim(0, 10)
    ax1.set_ylim(0, 10)

    ax1.grid(True)
예제 #18
0
import matplotlib.transforms as mtransforms
import matplotlib.pyplot as plt
from mpl_toolkits.axes_grid.parasite_axes import SubplotHost

obs = [["01_S1", 3.88, 0.14, 1970, 63], ["01_S4", 5.6, 0.82, 1622, 150],
       ["02_S1", 2.4, 0.54, 1570, 40], ["03_S1", 4.1, 0.62, 2380, 170]]

fig = plt.figure()

ax_kms = SubplotHost(fig, 1, 1, 1, aspect=1.)

# angular proper motion("/yr) to linear velocity(km/s) at distance=2.3kpc
pm_to_kms = 1. / 206265. * 2300 * 3.085e18 / 3.15e7 / 1.e5

aux_trans = mtransforms.Affine2D().scale(pm_to_kms, 1.)
ax_pm = ax_kms.twin(aux_trans)
ax_pm.set_viewlim_mode("transform")

fig.add_subplot(ax_kms)

for n, ds, dse, w, we in obs:
    time = ((2007 + (10. + 4 / 30.) / 12) - 1988.5)
    v = ds / time * pm_to_kms
    ve = dse / time * pm_to_kms
    ax_kms.errorbar([v], [w], xerr=[ve], yerr=[we], color="k")

ax_kms.axis["bottom"].set_label("Linear velocity at 2.3 kpc [km/s]")
ax_kms.axis["left"].set_label("FWHM [km/s]")
ax_pm.axis["top"].set_label("Proper Motion [$^{''}$/yr]")
ax_pm.axis["top"].label.set_visible(True)
ax_pm.axis["right"].major_ticklabels.set_visible(False)
예제 #19
0
def multiplot(metaAry, size=(10, 7.5), dpi=75, grid=True, \
                legend=0, fontsize=15, real_label=None, imag_label=None, \
                fig=None, host=None, par=None):
    """
    metaArray function to do a simple 1D plot of complex array as real and imaginary parts.

    legend:
        'best'  0
        'upper right'   1
        'upper left'    2
        'lower left'    3
        'lower right'   4
        'right'         5
        'center left'   6
        'center right'  7
        'lower center'  8
        'upper center'  9
        'center'        10
    """

    if legend is None:
        legend = 0

    if real_label is None:
        real_label = "Real"

    if imag_label is None:
        imag_label = "Imaginary"

    axis = metaAry['range']
    rdata = metaAry.data.real
    idata = metaAry.data.imag

    # Load the plotting ranges and units
    x0 = axis['begin'][0]
    x1 = axis['end'][0]
    ry0 = min(rdata)
    ry1 = max(rdata)
    iy0 = min(idata)
    iy1 = max(idata)
    xunit = axis['unit'][0]
    ryunit = metaAry['unit']
    iyunit = metaAry['unit']

    # Leave 10% margin in the y axis
    rmean = np.average((ry0, ry1))
    rreach = np.abs(ry0 - ry1) / 2 / 0.9
    ry0 = np.sign(ry0 - rmean) * rreach + rmean
    ry1 = np.sign(ry1 - rmean) * rreach + rmean

    imean = np.average((iy0, iy1))
    ireach = np.abs(iy0 - iy1) / 2 / 0.9
    iy0 = np.sign(iy0 - imean) * ireach + imean
    iy1 = np.sign(iy1 - imean) * ireach + imean

    # Apply unit prefix if unit is defined
    xunit, x0, x1, xscale = prettyunit(xunit, x0, x1)
    ryunit, ry0, ry1, ryscale = prettyunit(ryunit, ry0, ry1)
    iyunit, iy0, iy1, iyscale = prettyunit(iyunit, iy0, iy1)

    if ryscale != 1:
        rdata = rdata.copy() * ryscale

    if iyscale != 1:
        idata = idata.copy() * iyscale

    xlabl = lbl_repr(axis['label'][0], xunit)
    rylabl = lbl_repr(metaAry['label'], ryunit, real_label + ' part')
    iylabl = lbl_repr(metaAry['label'], iyunit, imag_label + ' part')

    title = metaAry['name']

    fig = figure(figsize=size, dpi=dpi)
    host = SubplotHost(fig, 111)

    fig.add_subplot(host)
    par = host.twinx()

    #if axis['log'][0] == False:
    #    x = linspace(x0, x1, len(metaAry))
    #else:
    #    raise NotImplemented, "Log axis is not yet implemented."

    x = metaAry.get_axis()

    host.plot(x, rdata, 'b-', label=lbl_repr(axis['label'][0], '', real_label))
    par.plot(x, idata, 'r--', label=lbl_repr(axis['label'][0], '', real_label))

    host.grid(grid)

    host.set_xlabel(xlabl, fontsize=fontsize)
    host.set_ylabel(rylabl, fontsize=fontsize)
    par.set_ylabel(iylabl, fontsize=fontsize)

    host.set_xlim([x0, x1])
    host.set_ylim([ry0, ry1])
    par.set_ylim([iy0, iy1])

    if fontsize is not None:
        host.set_title(title, fontsize=int(fontsize * 1.3))
    else:
        host.set_title(title)

    if legend >= 0:
        host.legend(loc=legend)

    return fig, host, par