def apply_dephasing(number_of_spins, alpha, B,fm_str = 'AFM',kT = 0.0): ''' takes number of spins, alpha, and the magnetic field and returns the hamiltonian along with its ground state and the dephased ground state choose fm_str = 'FM' for ferromagnetic interaction, and 'AFM' for anti-ferromagnetic ''' if fm_str == 'FM': calc = ising_calculator_FM(number_of_spins, alpha, B) elif fm_str == 'AFM': calc = ising_calculator_AFM(number_of_spins, alpha, B) H = calc.get_H() if kT == 0.0: energy,groundstate = H.groundstate() dm_groundstate = ket2dm(groundstate) else: Hdata = H.data.todense() arr_mp = mp.matrix(-Hdata /kT) exp_mp = mp.expm(arr_mp) trace = np.array(exp_mp.tolist()).trace() normalized_mp = exp_mp / trace normalized_np = np.array(normalized_mp.tolist(), dtype = np.complex) dm_groundstate = Qobj(normalized_np, dims = 2 * [number_of_spins*[2]]) dephased = do_dephasing_dm(dm_groundstate, number_of_spins) return H, dm_groundstate, dephased
def expM(Q): """Uses mpmath's exp computation """ return mp.expm(Q)
mpmath.mpf.shape = () mpmath.mpc.shape = () # Observe that our E7-definitions have 'numerically exact' structure constants. # # So, it actually makes sense to take these as defined, and lift them to mpmath. # # >>> set(e7.t_a_ij_kl.reshape(-1)) # >>> {(-2+0j), (-1+0j), -2j, -1j, 0j, 1j, 2j, (1+0j), (2+0j)} # `mpmath` does not work with numpy.einsum(), so for that reason alone, # we use opt_einsum's generic-no-backend alternative implementation. mpmath_scalar_manifold_evaluator = scalar_sector.get_scalar_manifold_evaluator( frac=lambda p, q: mpmath.mpf(p) / mpmath.mpf(q), to_scaled_constant=( lambda x, scale=1: numpy.array( x, dtype=mpmath.ctx_mp_python.mpc) * scale), # Wrapping up `expm` is somewhat tricky here, as it returns a mpmath # matrix-type that numpy does not understand. expm=lambda m: numpy.array(mpmath.expm(m).tolist()), einsum=lambda spec, *arrs: opt_einsum.contract(spec, *arrs), # trace can stay as-is. eye=lambda n: numpy.eye(n) + mpmath.mpc(0), complexify=lambda a: a + mpmath.mpc(0), # re/im are again tricky, since numpy.array(dtype=object) # does not forward .real / .imag to the contained objects. re=lambda a: numpy.array([z.real for z in a.reshape(-1)]).reshape(a.shape), im=lambda a: numpy.array([z.imag for z in a.reshape(-1)]).reshape(a.shape))