예제 #1
0
def get_image_pair_loader(args, hparams, out_dir):
    """
    TODO
    """
    from mpunet.image import ImagePairLoader, ImagePair
    if not args.f:
        # No single file was specified with -f flag, load the desired dataset
        dataset = args.dataset.replace("_data", "") + "_data"
        image_pair_loader = ImagePairLoader(predict_mode=args.no_eval,
                                            **hparams[dataset])
    else:
        predict_mode = not bool(args.l)
        image_pair_loader = ImagePairLoader(predict_mode=predict_mode,
                                            initialize_empty=True)
        image_pair_loader.add_image(ImagePair(args.f, args.l))

    # Put image pairs into a dict and remove from image_pair_loader to gain
    # more control with garbage collection
    image_pair_dict = {
        image.identifier: image
        for image in image_pair_loader.images
    }
    if vars(args)["continue"]:
        # Remove images that were already predicted
        image_pair_dict = remove_already_predicted(image_pair_dict, out_dir)
    return image_pair_loader, image_pair_dict
예제 #2
0
def entry_func(args=None):

    # Project base path
    args = vars(get_argparser().parse_args(args))
    basedir = os.path.abspath(args["project_dir"])
    overwrite = args["overwrite"]
    continue_training = args["continue_training"]
    eval_prob = args["eval_prob"]
    await_PID = args["wait_for"]
    dice_weight = args["dice_weight"]
    print("Fitting fusion model for project-folder: %s" % basedir)

    # Minimum images in validation set before also using training images
    min_val_images = 15

    # Fusion model training params
    epochs = args['epochs']
    fm_batch_size = args["batch_size"]

    # Early stopping params
    early_stopping = args["early_stopping"]

    # Wait for PID?
    if await_PID:
        from mpunet.utils import await_PIDs
        await_PIDs(await_PID)

    # Fetch GPU(s)
    num_GPUs = args["num_GPUs"]
    force_gpu = args["force_GPU"]
    # Wait for free GPU
    if not force_gpu:
        await_and_set_free_gpu(N=num_GPUs, sleep_seconds=120)
    else:
        set_gpu(force_gpu)

    # Get logger
    logger = Logger(base_path=basedir,
                    active_file="train_fusion",
                    overwrite_existing=overwrite)

    # Get YAML hyperparameters
    hparams = YAMLHParams(os.path.join(basedir, "train_hparams.yaml"))

    # Get some key settings
    n_classes = hparams["build"]["n_classes"]

    if hparams["build"]["out_activation"] == "linear":
        # Trained with logit targets?
        hparams["build"][
            "out_activation"] = "softmax" if n_classes > 1 else "sigmoid"

    # Get views
    views = np.load("%s/views.npz" % basedir)["arr_0"]
    del hparams["fit"]["views"]

    # Get weights and set fusion (output) path
    weights = get_best_model("%s/model" % basedir)
    weights_name = os.path.splitext(os.path.split(weights)[-1])[0]
    fusion_weights = "%s/model/fusion_weights/" \
                     "%s_fusion_weights.h5" % (basedir, weights_name)
    create_folders(os.path.split(fusion_weights)[0])

    # Log a few things
    log(logger, hparams, views, weights, fusion_weights)

    # Check if exists already...
    if not overwrite and os.path.exists(fusion_weights):
        from sys import exit
        print("\n[*] A fusion weights file already exists at '%s'."
              "\n    Use the --overwrite flag to overwrite." % fusion_weights)
        exit(0)

    # Load validation data
    images = ImagePairLoader(**hparams["val_data"], logger=logger)
    is_validation = {m.identifier: True for m in images}

    # Define random sets of images to train on simul. (cant be all due
    # to memory constraints)
    image_IDs = [m.identifier for m in images]

    if len(images) < min_val_images:
        # Pick N random training images
        diff = min_val_images - len(images)
        logger("Adding %i training images to set" % diff)

        # Load the training data and pick diff images
        train = ImagePairLoader(**hparams["train_data"], logger=logger)
        indx = np.random.choice(np.arange(len(train)),
                                diff,
                                replace=diff > len(train))

        # Add the images to the image set set
        train_add = [train[i] for i in indx]
        for m in train_add:
            is_validation[m.identifier] = False
            image_IDs.append(m.identifier)
        images.add_images(train_add)

    # Append to length % sub_size == 0
    sub_size = args["images_per_round"]
    rest = int(sub_size * np.ceil(len(image_IDs) / sub_size)) - len(image_IDs)
    if rest:
        image_IDs += list(np.random.choice(image_IDs, rest, replace=False))

    # Shuffle and split
    random.shuffle(image_IDs)
    sets = [
        set(s) for s in np.array_split(image_IDs,
                                       len(image_IDs) / sub_size)
    ]
    assert (contains_all_images(sets, image_IDs))

    # Define fusion model (named 'org' to store reference to orgiginal model if
    # multi gpu model is created below)
    fusion_model = FusionModel(n_inputs=len(views),
                               n_classes=n_classes,
                               weight=dice_weight,
                               logger=logger,
                               verbose=False)

    if continue_training:
        fusion_model.load_weights(fusion_weights)
        print("\n[OBS] CONTINUED TRAINING FROM:\n", fusion_weights)

    import tensorflow as tf
    with tf.distribute.MirroredStrategy().scope():
        # Define model
        unet = init_model(hparams["build"], logger)
        print("\n[*] Loading weights: %s\n" % weights)
        unet.load_weights(weights, by_name=True)

    # Compile the model
    logger("Compiling...")
    metrics = [
        "sparse_categorical_accuracy", sparse_fg_precision, sparse_fg_recall
    ]
    fusion_model.compile(optimizer=Adam(lr=1e-3),
                         loss=fusion_model.loss,
                         metrics=metrics)
    fusion_model._log()

    try:
        _run_fusion_training(sets, logger, hparams, min_val_images,
                             is_validation, views, n_classes, unet,
                             fusion_model, early_stopping, fm_batch_size,
                             epochs, eval_prob, fusion_weights)
    except KeyboardInterrupt:
        pass
    finally:
        if not os.path.exists(os.path.split(fusion_weights)[0]):
            os.mkdir(os.path.split(fusion_weights)[0])
        # Save fusion model weights
        # OBS: Must be original model if multi-gpu is performed!
        fusion_model.save_weights(fusion_weights)
예제 #3
0
def _run_fusion_training(sets, logger, hparams, min_val_images, is_validation,
                         views, n_classes, unet, fusion_model, early_stopping,
                         fm_batch_size, epochs, eval_prob,
                         fusion_weights_path):
    """
    TODO
    """

    for _round, _set in enumerate(sets):
        s = "Set %i/%i:\n%s" % (_round + 1, len(sets), _set)
        logger("\n%s" % highlighted(s))

        # Reload data
        images = ImagePairLoader(**hparams["val_data"])
        if len(images) < min_val_images:
            images.add_images(ImagePairLoader(**hparams["train_data"]))

        # Get list of ImagePair objects to run on
        image_set_dict = {
            m.identifier: m
            for m in images if m.identifier in _set
        }

        # Set scaler and bg values
        images.set_scaler_and_bg_values(
            bg_value=hparams.get_from_anywhere('bg_value'),
            scaler=hparams.get_from_anywhere('scaler'),
            compute_now=False)

        # Init LazyQueue and get its sequencer
        from mpunet.sequences.utils import get_sequence
        seq = get_sequence(data_queue=images,
                           is_validation=True,
                           views=views,
                           **hparams["fit"],
                           **hparams["build"])

        # Fetch points from the set images
        points_collection = []
        targets_collection = []
        N_im = len(image_set_dict)
        for num_im, image_id in enumerate(list(image_set_dict.keys())):
            logger("")
            logger(
                highlighted("(%i/%i) Running on %s (%s)" %
                            (num_im + 1, N_im, image_id,
                             "val" if is_validation[image_id] else "train")))

            with seq.image_pair_queue.get_image_by_id(image_id) as image:
                # Get voxel grid in real space
                voxel_grid_real_space = get_voxel_grid_real_space(image)

                # Get array to store predictions across all views
                targets = image.labels.reshape(-1, 1)
                points = np.empty(shape=(len(targets), len(views), n_classes),
                                  dtype=np.float32)
                points.fill(np.nan)

                # Predict on all views
                for k, v in enumerate(views):
                    print("\n%s" % "View: %s" % v)
                    points[:, k, :] = predict_and_map(
                        model=unet,
                        seq=seq,
                        image=image,
                        view=v,
                        voxel_grid_real_space=voxel_grid_real_space,
                        n_planes='same+20',
                        targets=targets,
                        eval_prob=eval_prob).reshape(-1, n_classes)

                # add to collections
                points_collection.append(points)
                targets_collection.append(targets)
            print(image.is_loaded)

        # Stack points into one matrix
        logger("Stacking points...")
        X, y = stack_collections(points_collection, targets_collection)

        # Shuffle train
        print("Shuffling points...")
        X, y = shuffle(X, y)

        print("Getting validation set...")
        val_ind = int(0.20 * X.shape[0])
        X_val, y_val = X[:val_ind], y[:val_ind]
        X, y = X[val_ind:], y[val_ind:]

        # Prepare dice score callback for validation data
        val_cb = ValDiceScores((X_val, y_val), n_classes, 50000, logger)

        # Callbacks
        cbs = [
            val_cb,
            CSVLogger(filename="logs/fusion_training.csv",
                      separator=",",
                      append=True),
            PrintLayerWeights(fusion_model.layers[-1],
                              every=1,
                              first=1000,
                              per_epoch=True,
                              logger=logger)
        ]

        es = EarlyStopping(monitor='val_dice',
                           min_delta=0.0,
                           patience=early_stopping,
                           verbose=1,
                           mode='max')
        cbs.append(es)

        # Start training
        try:
            fusion_model.fit(X,
                             y,
                             batch_size=fm_batch_size,
                             epochs=epochs,
                             callbacks=cbs,
                             verbose=1)
        except KeyboardInterrupt:
            pass
        fusion_model.save_weights(fusion_weights_path)
예제 #4
0
def predict_single(image, model, hparams, verbose=1):
    """
    A generic prediction function that sets up a ImagePairLoader object for the
    given image, prepares the image and predicts.

    Note that this function should only be used for convinience in scripts that
    work on single images at a time anyway, as batch-preparing the entire
    ImagePairLoader object prior to prediction is faster.

    NOTE: Only works with iso_live intrp modes at this time
    """
    mode = hparams["fit"]["intrp_style"].lower()
    assert mode in ("iso_live", "iso_live_3d")

    # Prepare image for prediction
    kwargs = hparams["fit"]
    kwargs.update(hparams["build"])

    # Set verbose memory
    verb_mem = kwargs["verbose"]
    kwargs["verbose"] = verbose

    # Create a ImagePairLoader with only the given file
    from mpunet.image import ImagePairLoader
    image_pair_loader = ImagePairLoader(predict_mode=True,
                                        initialize_empty=True,
                                        no_log=bool(verbose))
    image_pair_loader.add_image(image)

    # Get N classes
    n_classes = kwargs["n_classes"]

    if mode == "iso_live":
        # Add views if SMMV model
        kwargs["views"] = np.load(hparams.project_path + "/views.npz")["arr_0"]

        # Get sequence object
        sequence = image_pair_loader.get_sequencer(**kwargs)

        # Get voxel grid in real space
        voxel_grid_real_space = get_voxel_grid_real_space(image)

        # Prepare tensor to store combined prediction
        d = image.image.shape
        predicted = np.empty(shape=(len(kwargs["views"]), d[0], d[1], d[2],
                                    n_classes),
                             dtype=np.float32)
        print("Predicting on brain hyper-volume of shape:", predicted.shape)

        for n_view, v in enumerate(kwargs["views"]):
            print("\nView %i/%i: %s" % (n_view + 1, len(kwargs["views"]), v))
            # Sample the volume along the view
            X, y, grid, inv_basis = sequence.get_view_from(image.id,
                                                           v,
                                                           n_planes="same+20")

            # Predict on volume using model
            pred = predict_volume(model, X, axis=2)

            # Map the real space coordiante predictions to nearest
            # real space coordinates defined on voxel grid
            predicted[n_view] = map_real_space_pred(pred,
                                                    grid,
                                                    inv_basis,
                                                    voxel_grid_real_space,
                                                    method="nearest")
    else:
        predicted = pred_3D_iso(
            model=model,
            sequence=image_pair_loader.get_sequencer(**kwargs),
            image=image,
            extra_boxes="3x",
            min_coverage=None)

    # Revert verbose mem
    kwargs["verbose"] = verb_mem

    return predicted
예제 #5
0
def entry_func(args=None):

    # Get command line arguments
    args = vars(get_argparser().parse_args(args))
    base_dir = os.path.abspath(args["project_dir"])
    _file = args["f"]
    label = args["l"]
    N_extra = args["extra"]
    try:
        N_extra = int(N_extra)
    except ValueError:
        pass

    # Get settings from YAML file
    from mpunet.hyperparameters import YAMLHParams
    hparams = YAMLHParams(os.path.join(base_dir, "train_hparams.yaml"))

    # Set strides
    hparams["fit"]["strides"] = args["strides"]

    if not _file:
        try:
            # Data specified from command line?
            data_dir = os.path.abspath(args["data_dir"])

            # Set with default sub dirs
            hparams["test_data"] = {
                "base_dir": data_dir,
                "img_subdir": "images",
                "label_subdir": "labels"
            }
        except (AttributeError, TypeError):
            data_dir = hparams["test_data"]["base_dir"]
    else:
        data_dir = False
    out_dir = os.path.abspath(args["out_dir"])
    overwrite = args["overwrite"]
    predict_mode = args["no_eval"]
    save_only_pred = args["save_only_pred"]

    # Check if valid dir structures
    validate_folders(base_dir, data_dir, out_dir, overwrite)

    # Import all needed modules (folder is valid at this point)
    import numpy as np
    from mpunet.image import ImagePairLoader, ImagePair
    from mpunet.utils import get_best_model, create_folders, \
                                    pred_to_class, await_and_set_free_gpu, set_gpu
    from mpunet.utils.fusion import predict_3D_patches, predict_3D_patches_binary, pred_3D_iso
    from mpunet.logging import init_result_dict_3D, save_all_3D
    from mpunet.evaluate import dice_all
    from mpunet.bin.predict import save_nii_files

    # Fetch GPU(s)
    num_GPUs = args["num_GPUs"]
    force_gpu = args["force_GPU"]
    # Wait for free GPU
    if force_gpu == -1:
        await_and_set_free_gpu(N=num_GPUs, sleep_seconds=240)
    else:
        set_gpu(force_gpu)

    # Read settings from the project hyperparameter file
    dim = hparams["build"]["dim"]
    n_classes = hparams["build"]["n_classes"]
    mode = hparams["fit"]["intrp_style"]

    # Set ImagePairLoader object
    if not _file:
        image_pair_loader = ImagePairLoader(predict_mode=predict_mode,
                                            **hparams["test_data"])
    else:
        predict_mode = not bool(label)
        image_pair_loader = ImagePairLoader(predict_mode=predict_mode,
                                            initialize_empty=True)
        image_pair_loader.add_image(ImagePair(_file, label))
    all_images = {
        image.identifier: image
        for image in image_pair_loader.images
    }

    # Set scaler and bg values
    image_pair_loader.set_scaler_and_bg_values(
        bg_value=hparams.get_from_anywhere('bg_value'),
        scaler=hparams.get_from_anywhere('scaler'),
        compute_now=False)

    # Init LazyQueue and get its sequencer
    from mpunet.sequences.utils import get_sequence
    seq = get_sequence(data_queue=image_pair_loader,
                       is_validation=True,
                       **hparams["fit"],
                       **hparams["build"])
    """ Define UNet model """
    from mpunet.models import model_initializer
    hparams["build"]["batch_size"] = 1
    unet = model_initializer(hparams, False, base_dir)
    model_path = get_best_model(base_dir + "/model")
    unet.load_weights(model_path)

    # Evaluate?
    if not predict_mode:
        # Prepare dictionary to store results in pd df
        results, detailed_res = init_result_dict_3D(all_images, n_classes)

        # Save to check correct format
        save_all_3D(results, detailed_res, out_dir)

    # Define result paths
    nii_res_dir = os.path.join(out_dir, "nii_files")
    create_folders(nii_res_dir)

    image_ids = sorted(all_images)
    for n_image, image_id in enumerate(image_ids):
        print("\n[*] Running on: %s" % image_id)

        with seq.image_pair_queue.get_image_by_id(image_id) as image_pair:
            if mode.lower() == "iso_live_3d":
                pred = pred_3D_iso(model=unet,
                                   sequence=seq,
                                   image=image_pair,
                                   extra_boxes=N_extra,
                                   min_coverage=None)
            else:
                # Predict on volume using model
                if n_classes > 1:
                    pred = predict_3D_patches(model=unet,
                                              patches=seq,
                                              image=image_pair,
                                              N_extra=N_extra)
                else:
                    pred = predict_3D_patches_binary(model=unet,
                                                     patches=seq,
                                                     image_id=image_id,
                                                     N_extra=N_extra)

            if not predict_mode:
                # Get patches for the current image
                y = image_pair.labels

                # Calculate dice score
                print("Mean dice: ", end="", flush=True)
                p = pred_to_class(pred, img_dims=3, has_batch_dim=False)
                dices = dice_all(y, p, n_classes=n_classes, ignore_zero=True)
                mean_dice = dices[~np.isnan(dices)].mean()
                print("Dices: ", dices)
                print("%s (n=%i)" % (mean_dice, len(dices)))

                # Add to results
                results[image_id] = [mean_dice]
                detailed_res[image_id] = dices

                # Overwrite with so-far results
                save_all_3D(results, detailed_res, out_dir)

                # Save results
                save_nii_files(p, image_pair, nii_res_dir, save_only_pred)

    if not predict_mode:
        # Write final results
        save_all_3D(results, detailed_res, out_dir)
예제 #6
0
def predict_single(image, model, hparams, verbose=1):
    """
    A generic prediction function that sets up a ImagePairLoader object for the
    given image, prepares the image and predicts.

    Note that this function should only be used for convinience in scripts that
    work on single images at a time anyway, as batch-preparing the entire
    ImagePairLoader object prior to prediction is faster.

    NOTE: Only works with iso_live intrp modes at this time
    """
    mode = hparams["fit"]["intrp_style"].lower()
    assert mode in ("iso_live", "iso_live_3d")

    # Create a ImagePairLoader with only the given file
    from mpunet.image import ImagePairLoader
    image_pair_loader = ImagePairLoader(predict_mode=True,
                                        initialize_empty=True,
                                        no_log=bool(verbose))
    image_pair_loader.add_image(image)

    # Set scaler and bg values
    image_pair_loader.set_scaler_and_bg_values(
        bg_value=hparams.get_from_anywhere('bg_value'),
        scaler=hparams.get_from_anywhere('scaler'),
        compute_now=False)

    if mode == "iso_live":
        # Init LazyQueue and get its sequencer
        seq = get_sequence(data_queue=image_pair_loader,
                           views=np.load(hparams.project_path +
                                         "/views.npz")["arr_0"],
                           is_validation=True,
                           **hparams["fit"],
                           **hparams["build"])

        with seq.image_pair_queue.get_image_by_id(image.identifier) as image:
            # Get voxel grid in real space
            voxel_grid_real_space = get_voxel_grid_real_space(image)

            # Prepare tensor to store combined prediction
            d = image.image.shape
            predicted = np.empty(shape=(len(seq.views), d[0], d[1], d[2],
                                        seq.n_classes),
                                 dtype=np.float32)
            print("Predicting on brain hyper-volume of shape:",
                  predicted.shape)

            for n_view, v in enumerate(seq.views):
                print("\nView %i/%i: %s" % (n_view + 1, len(seq.views), v))
                # Sample the volume along the view
                X, y, grid, inv_basis = seq.get_view_from(image,
                                                          v,
                                                          n_planes="same+20")

                # Predict on volume using model
                pred = predict_volume(model, X, axis=2)

                # Map the real space coordiante predictions to nearest
                # real space coordinates defined on voxel grid
                predicted[n_view] = map_real_space_pred(pred,
                                                        grid,
                                                        inv_basis,
                                                        voxel_grid_real_space,
                                                        method="nearest")
    else:
        # Init LazyQueue and get its sequencer
        seq = get_sequence(data_queue=image_pair_loader,
                           is_validation=True,
                           **hparams["fit"],
                           **hparams["build"])
        predicted = pred_3D_iso(model=model,
                                sequence=seq,
                                image=image,
                                extra_boxes="3x",
                                min_coverage=None)

    return predicted
예제 #7
0
def _base_loader_func(hparams, just_one, no_val, logger, mtype):
    """
    Base loader function used for all models. This function performs a series
    of actions:

    1) Loads train, val and test data according to hparams
    2) Performs a hparam audit on the training + validation images
    3) If any audited parameters were not manually specified, updates the
       hparams dict with the audited values and updates the YAML file on disk
    4) If just_one, discards all but the first training and validation images
    5) Initializes a ImageQueue object on the training and validation data
       if needed.

    Args:
        hparams:   A mpunet.train.YAMLHParams object
        just_one:  A bool specifying whether to keep only the first train and
                   validation samples (for quick testing purposes)
        no_val:    A bool specifying whether to omit validation data entirely
                   Note: This setting applies even if validation data is
                   specified in the YAMLHparams object
        logger:    A mpunet.logger object
        mtype:     A string identifier for the dimensionality of the model,
                   currently either '2d', '3d'
                   (upper/lower ignored)

    Returns:
        train_data: An ImagePairLoader object storing the training images
        val_data:   An ImagePairLoader object storing the validation images, or
                    an 'empty' ImagePairLoader storing no images if no_val=True
        logger:     The passed logger object or a ScreenLogger object
        auditor:    An auditor object storing statistics on the training data
    """

    # Get basic ScreenLogger if no logger is passed
    logger = logger or ScreenLogger()
    logger("Looking for images...")

    # Get data loaders
    train_data = ImagePairLoader(logger=logger, **hparams["train_data"])
    val_data = ImagePairLoader(logger=logger, **hparams["val_data"])

    # Audit
    lab_paths = train_data.label_paths + val_data.label_paths
    auditor = Auditor(train_data.image_paths + val_data.image_paths,
                      nii_lab_paths=lab_paths, logger=logger,
                      dim_3d=hparams.get_from_anywhere("dim") or 64,
                      hparams=hparams)

    # Fill hparams with audited values, if not specified manually
    auditor.fill(hparams, mtype)

    # Add augmented data?
    if hparams.get("aug_data"):
        aug_data = hparams["aug_data"]
        if "include" not in aug_data:
            logger.warn("Found 'aug_data' group, but the group does not "
                        "contain the key 'include', which is required in "
                        "version 2.0 and above. OBS: Not including aug data!")
        elif aug_data["include"]:
            logger("\n[*] Adding augmented data with weight ", aug_data["sample_weight"])
            train_data.add_images(ImagePairLoader(logger=logger, **aug_data))

    if just_one:
        # For testing purposes, run only on one train and one val image?
        logger("[**NOTTICE**] Only running on first train & val samples.")
        train_data.images = [train_data.images[0]]
        val_data.images = [val_data.images[0]]
    if no_val:
        # Run without performing validation (even if specified in param file)
        val_data.images = []

    # Set queue object if necessary
    train_data.set_queue(hparams["train_data"].get("max_load"))
    val_data.set_queue(hparams["val_data"].get("max_load"))

    return train_data, val_data, logger, auditor