def plotoptions_state_boundaries(**optimization_inputs): r'''Return the 'set' plot options for gnuplotlib to show the state boundaries SYNOPSIS import numpy as np import gnuplotlib as gp import mrcal model = mrcal.cameramodel('xxx.cameramodel') optimization_inputs = model.optimization_inputs() J = mrcal.optimizer_callback(**optimization_inputs)[2] gp.plot( np.sum(np.abs(J.toarray()), axis=-2), _set = mrcal.plotoptions_state_boundaries(**optimization_inputs) ) # a plot pops up showing the magnitude of the effects of each element of the # packed state (as seen by the optimizer), with boundaries between the # different state variables denoted When plotting the state vector (or anything relating to it, such as rows of the Jacobian), it is usually very useful to infer at a glance the meaning of each part of the plot. This function returns a list of 'set' directives passable to gnuplotlib that show the boundaries inside the state vector. ARGUMENTS **optimization_inputs: a dict() of arguments passable to mrcal.optimize() and mrcal.optimizer_callback(). These define the full optimization problem, and can be obtained from the optimization_inputs() method of mrcal.cameramodel RETURNED VALUE A list of 'set' directives passable as plot options to gnuplotlib ''' istate0 = [] try: istate0.append(mrcal.state_index_intrinsics (0, **optimization_inputs)) except: pass try: istate0.append(mrcal.state_index_extrinsics (0, **optimization_inputs)) except: pass try: istate0.append(mrcal.state_index_frames (0, **optimization_inputs)) except: pass try: istate0.append(mrcal.state_index_points (0, **optimization_inputs)) except: pass try: istate0.append(mrcal.state_index_calobject_warp( **optimization_inputs)) except: pass return [f"arrow nohead from {x},graph 0 to {x},graph 1" for x in istate0]
def ingest_packed_state(p_packed, **optimization_inputs): r'''Read a given packed state into optimization_inputs SYNOPSIS # A simple gradient check model = mrcal.cameramodel('xxx.cameramodel') optimization_inputs = model.optimization_inputs() p0,x0,J = mrcal.optimizer_callback(no_factorization = True, **optimization_inputs)[:3] dp = np.random.randn(len(p0)) * 1e-9 mrcal.ingest_packed_state(p0 + dp, **optimization_inputs) x1 = mrcal.optimizer_callback(no_factorization = True, no_jacobian = True, **optimization_inputs)[1] dx_observed = x1 - x0 dx_predicted = nps.inner(J, dp_packed) This is the converse of mrcal.optimizer_callback(). One thing mrcal.optimizer_callback() does is to convert the expanded (intrinsics, extrinsics, ...) arrays into a 1-dimensional scaled optimization vector p_packed. mrcal.ingest_packed_state() allows updates to p_packed to be absorbed back into the (intrinsics, extrinsics, ...) arrays for further evaluation with mrcal.optimizer_callback() and others. ARGUMENTS - p_packed: a numpy array of shape (Nstate,) containing the input packed state - **optimization_inputs: a dict() of arguments passable to mrcal.optimize() and mrcal.optimizer_callback(). The arrays in this dict are updated RETURNED VALUE None ''' intrinsics = optimization_inputs.get("intrinsics") extrinsics = optimization_inputs.get("extrinsics_rt_fromref") frames = optimization_inputs.get("frames_rt_toref") points = optimization_inputs.get("points") calobject_warp = optimization_inputs.get("calobject_warp") Npoints_fixed = optimization_inputs.get('Npoints_fixed', 0) Nvars_intrinsics = mrcal.num_states_intrinsics(**optimization_inputs) Nvars_extrinsics = mrcal.num_states_extrinsics(**optimization_inputs) Nvars_frames = mrcal.num_states_frames(**optimization_inputs) Nvars_points = mrcal.num_states_points(**optimization_inputs) Nvars_calobject_warp = mrcal.num_states_calobject_warp( **optimization_inputs) Nvars_expected = \ Nvars_intrinsics + \ Nvars_extrinsics + \ Nvars_frames + \ Nvars_points + \ Nvars_calobject_warp # Defaults MUST match those in OPTIMIZER_ARGUMENTS_OPTIONAL in # mrcal-pywrap.c. Or better yet, this whole function should # come from the C code instead of being reimplemented here in Python do_optimize_intrinsics_core = optimization_inputs.get( 'do_optimize_intrinsics_core', True) do_optimize_intrinsics_distortions = optimization_inputs.get( 'do_optimize_intrinsics_distortions', True) do_optimize_extrinsics = optimization_inputs.get('do_optimize_extrinsics', True) do_optimize_frames = optimization_inputs.get('do_optimize_frames', True) do_optimize_calobject_warp = optimization_inputs.get( 'do_optimize_calobject_warp', True) if p_packed.ravel().size != Nvars_expected: raise Exception( f"Mismatched array size: p_packed.size={p_packed.ravel().size} while the optimization problem expects {Nvars_expected}" ) p = p_packed.copy() mrcal.unpack_state(p, **optimization_inputs) if do_optimize_intrinsics_core or \ do_optimize_intrinsics_distortions: ivar0 = mrcal.state_index_intrinsics(0, **optimization_inputs) if ivar0 is not None: iunpacked0, iunpacked1 = None, None # everything by default lensmodel = optimization_inputs['lensmodel'] has_core = mrcal.lensmodel_metadata_and_config( lensmodel)['has_core'] Ncore = 4 if has_core else 0 Ndistortions = mrcal.lensmodel_num_params(lensmodel) - Ncore if not do_optimize_intrinsics_core: iunpacked0 = Ncore if not do_optimize_intrinsics_distortions: iunpacked1 = -Ndistortions intrinsics[:, iunpacked0:iunpacked1].ravel()[:] = \ p[ ivar0:Nvars_intrinsics ] if do_optimize_extrinsics: ivar0 = mrcal.state_index_extrinsics(0, **optimization_inputs) if ivar0 is not None: extrinsics.ravel()[:] = p[ivar0:ivar0 + Nvars_extrinsics] if do_optimize_frames: ivar0 = mrcal.state_index_frames(0, **optimization_inputs) if ivar0 is not None: frames.ravel()[:] = p[ivar0:ivar0 + Nvars_frames] if do_optimize_frames: ivar0 = mrcal.state_index_points(0, **optimization_inputs) if ivar0 is not None: points.ravel()[:-Npoints_fixed * 3] = p[ivar0:ivar0 + Nvars_points] if do_optimize_calobject_warp: ivar0 = mrcal.state_index_calobject_warp(**optimization_inputs) if ivar0 is not None: calobject_warp.ravel()[:] = p[ivar0:ivar0 + Nvars_calobject_warp]
testutils.confirm_equal(dx_predicted, dx_observed, eps=1e-6, worstcase=True, msg="dx follows the prediction") # The effect on the # parameters should be dp = M dqref. Where M = inv(JtJ) Jobservationst W M = np.linalg.solve(nps.matmult(nps.transpose(J0), J0), nps.transpose(J0[:Nmeasurements_boards, :])) * w dp_predicted = nps.matmult(dqref.ravel(), nps.transpose(M)).ravel() istate0_frames = mrcal.state_index_frames(0, **baseline) istate0_calobject_warp = mrcal.state_index_calobject_warp(**baseline) istate0_extrinsics = mrcal.state_index_extrinsics(0, **baseline) if istate0_extrinsics is None: istate0_extrinsics = istate0_frames slice_intrinsics = slice(0, istate0_extrinsics) slice_extrinsics = slice(istate0_extrinsics, istate0_frames) slice_frames = slice(istate0_frames, istate0_calobject_warp) # These thresholds look terrible. And they are. But I'm pretty sure this is # working properly. Look at the plots: if 0: import gnuplotlib as gp plot_dp = gp.gnuplotlib( title="dp predicted,observed", _set=mrcal.plotoptions_state_boundaries(**optimization_inputs)) plot_dp.plot(
optimization_inputs['do_optimize_intrinsics_core'] = True optimization_inputs['do_optimize_intrinsics_distortions'] = True optimization_inputs['do_optimize_extrinsics'] = True optimization_inputs['do_optimize_frames'] = True optimization_inputs['do_optimize_calobject_warp'] = True optimization_inputs['calobject_warp'] = np.array((0.001, 0.001)) stats = mrcal.optimize(**optimization_inputs, do_apply_outlier_rejection=True) x = stats['x'] rmserr = stats['rms_reproj_error__pixels'] testutils.confirm_equal(mrcal.state_index_intrinsics(2, **optimization_inputs), 8 * 2, "state_index_intrinsics()") testutils.confirm_equal(mrcal.state_index_extrinsics(2, **optimization_inputs), 8 * Ncameras + 6 * 2, "state_index_extrinsics()") testutils.confirm_equal(mrcal.state_index_frames(2, **optimization_inputs), 8 * Ncameras + 6 * (Ncameras - 1) + 6 * 2, "state_index_frames()") testutils.confirm_equal( mrcal.state_index_calobject_warp(**optimization_inputs), 8 * Ncameras + 6 * (Ncameras - 1) + 6 * Nframes, "state_index_calobject_warp()") testutils.confirm_equal( mrcal.measurement_index_boards(2, **optimization_inputs), object_width_n * object_height_n * 2 * 2, "measurement_index_boards()") testutils.confirm_equal( mrcal.measurement_index_regularization(**optimization_inputs), object_width_n * object_height_n * 2 * Nframes * Ncameras,
# I store dp_triangulated_dp initialy, without worrying about the "packed" part. # I'll scale the thing when done to pack it dp_triangulated_dpstate = np.zeros((Npoints,3,Nstate), dtype=float) istate_i0 = mrcal.state_index_intrinsics(0, **optimization_inputs_baseline) istate_i1 = mrcal.state_index_intrinsics(1, **optimization_inputs_baseline) # I'm expecting the layout of a vanilla calibration problem, and I assume that # camera0 is at the reference below. Here I confirm that this assumption is # correct icam_extrinsics0 = mrcal.corresponding_icam_extrinsics(0, **optimization_inputs_baseline) icam_extrinsics1 = mrcal.corresponding_icam_extrinsics(1, **optimization_inputs_baseline) if not (icam_extrinsics0 < 0 and icam_extrinsics1 == 0): raise Exception("Vanilla calibration problem expected, but got something else instead. Among others, _triangulate() assumes the triangulated result is in cam0, which is the same as the ref coord system") istate_e1 = mrcal.state_index_extrinsics(icam_extrinsics1, **optimization_inputs_baseline) istate_f0 = mrcal.state_index_frames(0, **optimization_inputs_baseline) Nstate_frames = mrcal.num_states_frames(**optimization_inputs_baseline) # dp_triangulated_di0 = dp_triangulated_dv0 dvlocal0_di0 # dp_triangulated_di1 = dp_triangulated_dv1 dv1_dvlocal1 dvlocal1_di1 nps.matmult( dp_triangulated_dv0, dvlocal0_dintrinsics0, out = dp_triangulated_dpstate[..., istate_i0:istate_i0+Nintrinsics]) nps.matmult( dp_triangulated_dv1, dv1_dvlocal1, dvlocal1_dintrinsics1, out = dp_triangulated_dpstate[..., istate_i1:istate_i1+Nintrinsics]) # dp_triangulated_de0 doesn't exist: assuming vanilla calibration problem, so