def __main__(): parser = make_parser() args = parser.parse_args() LENGTH_OF_SMALLEST = int(args.bp) FNAME = str(args.plyfile) SPACERS = int(args.spacers) overhangs = None overhangfilename = args.overhangfile if overhangfilename is not None: overhangs = read_overhang_file(overhangfilename) #breakpoint() segs_list = segment_maker.get_segments(FNAME, LENGTH_OF_SMALLEST, SPACERS, nicks=args.nicks, overhangs=overhangs) #now we apply the sequence optimizer. sequence_optimizer.optimize_sequence(segs_list) model = mrdna.SegmentModel( segs_list, local_twist=True, dimensions=(5000, 5000, 5000), ) #model.set_sequence(m13seq(),force=False) #NUPACK add sequence here! prefix = "DNA" run_args = dict( model=model, output_name=prefix, job_id="job-" + prefix, directory=args.directory, gpu=args.gpu, minimization_output_period=int(args.output_period), coarse_local_twist=args.coarse_local_twist, fix_linking_number=args.fix_linking_number, coarse_output_period=int(args.output_period), fine_output_period=int(args.output_period), minimization_steps=0, # int(args.minimization_steps), coarse_steps=int(args.coarse_steps), fine_steps=int(args.fine_steps), backbone_scale=args.backbone_scale, oxdna_steps=args.oxdna_steps, oxdna_output_period=args.oxdna_output_period) export_sequences(model, args.seqfile) simulate(**run_args)
def __main__(): parser = make_parser() args = parser.parse_args() LENGTH_OF_SMALLEST = int(args.bp) FNAME = str(args.plyfile) SPACERS = int(args.spacers) segs_list = segment_maker.get_segments(FNAME, LENGTH_OF_SMALLEST, SPACERS) model = mrdna.SegmentModel( segs_list, local_twist=True, dimensions=(5000, 5000, 5000), ) #apply sequence here model.set_sequence(m13seq(), force=False) prefix = "DNA" run_args = dict( model=model, output_name=prefix, job_id="job-" + prefix, directory=args.directory, gpu=args.gpu, minimization_output_period=int(args.output_period), coarse_local_twist=args.coarse_local_twist, fix_linking_number=args.fix_linking_number, coarse_output_period=int(args.output_period), fine_output_period=int(args.output_period), minimization_steps=0, # int(args.minimization_steps), coarse_steps=int(args.coarse_steps), fine_steps=int(args.fine_steps), backbone_scale=args.backbone_scale, oxdna_steps=args.oxdna_steps, oxdna_output_period=args.oxdna_output_period) export_sequences(model, args.seqfile) simulate(**run_args)
if type(i).__name__ != "DoubleStrandedSegment": if i.num_nt == 7: i.num_nt = ss2 print("ss2 sorted") ''' if type(ss3) == type(1): for i in model.segments: if i.num_nt == 7: i.num_nt = ss3 print ("ss3 sorted") ''' run_args = dict( model=model, output_name="out", directory=args.directory, minimization_output_period=int(args.output_period), coarse_local_twist=args.coarse_local_twist, fix_linking_number=args.fix_linking_number, bond_cutoff=args.coarse_bond_cutoff, coarse_output_period=int(args.output_period), fine_output_period=int(args.output_period), minimization_steps=0, # int(args.minimization_steps), coarse_steps=int(args.coarse_steps), fine_steps=int(args.fine_steps), backbone_scale=args.backbone_scale, oxdna_steps=args.oxdna_steps, oxdna_output_period=args.oxdna_output_period, run_enrg_md=args.run_enrg_md) simulate(**run_args)