def test_predict_minibatch_dense_sparse(init): # check that models trained on sparse input also works for dense input at # predict time mb_k_means = MiniBatchKMeans(n_clusters=n_clusters, init=init, n_init=10, random_state=0).fit(X_csr) assert_array_equal(mb_k_means.predict(X), mb_k_means.labels_)
def test_mini_batch_k_means_random_init_partial_fit(): km = MiniBatchKMeans(n_clusters=n_clusters, init="random", random_state=42) # use the partial_fit API for online learning for X_minibatch in np.array_split(X, 10): km.partial_fit(X_minibatch) # compute the labeling on the complete dataset labels = km.predict(X) assert v_measure_score(true_labels, labels) == 1.0