예제 #1
0
def test_classifier_results():
    """tests if classifier results match target"""
    alpha = .1
    n_features = 20
    n_samples = 10
    tol = .01
    max_iter = 200
    rng = np.random.RandomState(0)
    X = rng.normal(size=(n_samples, n_features))
    w = rng.normal(size=n_features)
    y = np.dot(X, w)
    y = np.sign(y)
    clf1 = LogisticRegression(solver='sag',
                              C=1. / alpha / n_samples,
                              max_iter=max_iter,
                              tol=tol,
                              random_state=77)
    clf2 = clone(clf1)

    clf1.fit(X, y)
    clf2.fit(sp.csr_matrix(X), y)
    pred1 = clf1.predict(X)
    pred2 = clf2.predict(X)
    assert_almost_equal(pred1, y, decimal=12)
    assert_almost_equal(pred2, y, decimal=12)
예제 #2
0
def test_sample_weight():
    """Tests sample_weight parameter of VotingClassifier"""
    clf1 = LogisticRegression(random_state=123)
    clf2 = RandomForestClassifier(random_state=123)
    clf3 = SVC(probability=True, random_state=123)
    eclf1 = VotingClassifier(estimators=[
        ('lr', clf1), ('rf', clf2), ('svc', clf3)],
        voting='soft').fit(X, y, sample_weight=np.ones((len(y),)))
    eclf2 = VotingClassifier(estimators=[
        ('lr', clf1), ('rf', clf2), ('svc', clf3)],
        voting='soft').fit(X, y)
    assert_array_equal(eclf1.predict(X), eclf2.predict(X))
    assert_array_almost_equal(eclf1.predict_proba(X), eclf2.predict_proba(X))

    sample_weight = np.random.RandomState(123).uniform(size=(len(y),))
    eclf3 = VotingClassifier(estimators=[('lr', clf1)], voting='soft')
    eclf3.fit(X, y, sample_weight)
    clf1.fit(X, y, sample_weight)
    assert_array_equal(eclf3.predict(X), clf1.predict(X))
    assert_array_almost_equal(eclf3.predict_proba(X), clf1.predict_proba(X))

    # check that an error is raised and indicative if sample_weight is not
    # supported.
    clf4 = KNeighborsClassifier()
    eclf3 = VotingClassifier(estimators=[
        ('lr', clf1), ('svc', clf3), ('knn', clf4)],
        voting='soft')
    msg = ('Underlying estimator KNeighborsClassifier does not support '
           'sample weights.')
    with pytest.raises(ValueError, match=msg):
        eclf3.fit(X, y, sample_weight)

    # check that _parallel_fit_estimator will raise the right error
    # it should raise the original error if this is not linked to sample_weight
    class ClassifierErrorFit(BaseEstimator, ClassifierMixin):
        def fit(self, X, y, sample_weight):
            raise TypeError('Error unrelated to sample_weight.')
    clf = ClassifierErrorFit()
    with pytest.raises(TypeError, match='Error unrelated to sample_weight'):
        clf.fit(X, y, sample_weight=sample_weight)
예제 #3
0
iris = datasets.load_iris()
X = iris.data[:, :2]  # we only take the first two features.
Y = iris.target

logreg = LogisticRegression(C=1e5)

# Create an instance of Logistic Regression Classifier and fit the data.
logreg.fit(X, Y)

# Plot the decision boundary. For that, we will assign a color to each
# point in the mesh [x_min, x_max]x[y_min, y_max].
x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5
y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5
h = .02  # step size in the mesh
xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
Z = logreg.predict(np.c_[xx.ravel(), yy.ravel()])

# Put the result into a color plot
Z = Z.reshape(xx.shape)
plt.figure(1, figsize=(4, 3))
plt.pcolormesh(xx, yy, Z, cmap=plt.cm.Paired)

# Plot also the training points
plt.scatter(X[:, 0], X[:, 1], c=Y, edgecolors='k', cmap=plt.cm.Paired)
plt.xlabel('Sepal length')
plt.ylabel('Sepal width')

plt.xlim(xx.min(), xx.max())
plt.ylim(yy.min(), yy.max())
plt.xticks(())
plt.yticks(())
예제 #4
0
    # Small number of epochs for fast runtime
    for this_max_iter in model_params['iters']:
        print('[model=%s, solver=%s] Number of epochs: %s' %
              (model_params['name'], solver, this_max_iter))
        lr = LogisticRegression(
            solver=solver,
            multi_class=model,
            penalty='l1',
            max_iter=this_max_iter,
            random_state=42,
        )
        t1 = timeit.default_timer()
        lr.fit(X_train, y_train)
        train_time = timeit.default_timer() - t1

        y_pred = lr.predict(X_test)
        accuracy = np.sum(y_pred == y_test) / y_test.shape[0]
        density = np.mean(lr.coef_ != 0, axis=1) * 100
        accuracies.append(accuracy)
        densities.append(density)
        times.append(train_time)
    models[model]['times'] = times
    models[model]['densities'] = densities
    models[model]['accuracies'] = accuracies
    print('Test accuracy for model %s: %.4f' % (model, accuracies[-1]))
    print('%% non-zero coefficients for model %s, '
          'per class:\n %s' % (model, densities[-1]))
    print('Run time (%i epochs) for model %s:'
          '%.2f' % (model_params['iters'][-1], model, times[-1]))

fig = plt.figure()
예제 #5
0
                             random_state=42,
                             multi_class=multi_class).fit(X, y)

    # print the training scores
    print("training score : %.3f (%s)" % (clf.score(X, y), multi_class))

    # create a mesh to plot in
    h = .02  # step size in the mesh
    x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
    y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
    xx, yy = np.meshgrid(np.arange(x_min, x_max, h),
                         np.arange(y_min, y_max, h))

    # Plot the decision boundary. For that, we will assign a color to each
    # point in the mesh [x_min, x_max]x[y_min, y_max].
    Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])
    # Put the result into a color plot
    Z = Z.reshape(xx.shape)
    plt.figure()
    plt.contourf(xx, yy, Z, cmap=plt.cm.Paired)
    plt.title("Decision surface of LogisticRegression (%s)" % multi_class)
    plt.axis('tight')

    # Plot also the training points
    colors = "bry"
    for i, color in zip(clf.classes_, colors):
        idx = np.where(y == i)
        plt.scatter(X[idx, 0],
                    X[idx, 1],
                    c=color,
                    cmap=plt.cm.Paired,