def test_spectral_embedding_amg_solver(seed=36): # Test spectral embedding with amg solver pytest.importorskip('pyamg') se_amg = SpectralEmbedding(n_components=2, affinity="nearest_neighbors", eigen_solver="amg", n_neighbors=5, random_state=np.random.RandomState(seed)) se_arpack = SpectralEmbedding(n_components=2, affinity="nearest_neighbors", eigen_solver="arpack", n_neighbors=5, random_state=np.random.RandomState(seed)) embed_amg = se_amg.fit_transform(S) embed_arpack = se_arpack.fit_transform(S) assert _check_with_col_sign_flipping(embed_amg, embed_arpack, 1e-5) # same with special case in which amg is not actually used # regression test for #10715 # affinity between nodes row = [0, 0, 1, 2, 3, 3, 4] col = [1, 2, 2, 3, 4, 5, 5] val = [100, 100, 100, 1, 100, 100, 100] affinity = sparse.coo_matrix((val + val, (row + col, col + row)), shape=(6, 6)).toarray() se_amg.affinity = "precomputed" se_arpack.affinity = "precomputed" embed_amg = se_amg.fit_transform(affinity) embed_arpack = se_arpack.fit_transform(affinity) assert _check_with_col_sign_flipping(embed_amg, embed_arpack, 1e-5)
def test_spectral_embedding_unknown_affinity(seed=36): # Test that SpectralClustering fails with an unknown affinity type se = SpectralEmbedding(n_components=1, affinity="<unknown>", random_state=np.random.RandomState(seed)) with pytest.raises(ValueError): se.fit(S)
def test_spectral_embedding_unknown_eigensolver(seed=36): # Test that SpectralClustering fails with an unknown eigensolver se = SpectralEmbedding(n_components=1, affinity="precomputed", random_state=np.random.RandomState(seed), eigen_solver="<unknown>") with pytest.raises(ValueError): se.fit(S)
def test_pipeline_spectral_clustering(seed=36): # Test using pipeline to do spectral clustering random_state = np.random.RandomState(seed) se_rbf = SpectralEmbedding(n_components=n_clusters, affinity="rbf", random_state=random_state) se_knn = SpectralEmbedding(n_components=n_clusters, affinity="nearest_neighbors", n_neighbors=5, random_state=random_state) for se in [se_rbf, se_knn]: km = KMeans(n_clusters=n_clusters, random_state=random_state) km.fit(se.fit_transform(S)) assert_array_almost_equal( normalized_mutual_info_score(km.labels_, true_labels), 1.0, 2)
def test_spectral_embedding_amg_solver_failure(seed=36): # Test spectral embedding with amg solver failure, see issue #13393 pytest.importorskip('pyamg') # The generated graph below is NOT fully connected if n_neighbors=3 n_samples = 200 n_clusters = 3 n_features = 3 centers = np.eye(n_clusters, n_features) S, true_labels = make_blobs(n_samples=n_samples, centers=centers, cluster_std=1., random_state=42) se_amg0 = SpectralEmbedding(n_components=3, affinity="nearest_neighbors", eigen_solver="amg", n_neighbors=3, random_state=np.random.RandomState(seed)) embed_amg0 = se_amg0.fit_transform(S) for i in range(10): se_amg0.set_params(random_state=np.random.RandomState(seed + 1)) embed_amg1 = se_amg0.fit_transform(S) assert _check_with_col_sign_flipping(embed_amg0, embed_amg1, 0.05)
def test_spectral_embedding_two_components(seed=36): # Test spectral embedding with two components random_state = np.random.RandomState(seed) n_sample = 100 affinity = np.zeros(shape=[n_sample * 2, n_sample * 2]) # first component affinity[0:n_sample, 0:n_sample] = np.abs(random_state.randn(n_sample, n_sample)) + 2 # second component affinity[n_sample::, n_sample::] = np.abs(random_state.randn(n_sample, n_sample)) + 2 # Test of internal _graph_connected_component before connection component = _graph_connected_component(affinity, 0) assert component[:n_sample].all() assert not component[n_sample:].any() component = _graph_connected_component(affinity, -1) assert not component[:n_sample].any() assert component[n_sample:].all() # connection affinity[0, n_sample + 1] = 1 affinity[n_sample + 1, 0] = 1 affinity.flat[::2 * n_sample + 1] = 0 affinity = 0.5 * (affinity + affinity.T) true_label = np.zeros(shape=2 * n_sample) true_label[0:n_sample] = 1 se_precomp = SpectralEmbedding(n_components=1, affinity="precomputed", random_state=np.random.RandomState(seed)) embedded_coordinate = se_precomp.fit_transform(affinity) # Some numpy versions are touchy with types embedded_coordinate = \ se_precomp.fit_transform(affinity.astype(np.float32)) # thresholding on the first components using 0. label_ = np.array(embedded_coordinate.ravel() < 0, dtype="float") assert normalized_mutual_info_score(true_label, label_) == 1.0
def test_spectral_embedding_precomputed_affinity(seed=36): # Test spectral embedding with precomputed kernel gamma = 1.0 se_precomp = SpectralEmbedding(n_components=2, affinity="precomputed", random_state=np.random.RandomState(seed)) se_rbf = SpectralEmbedding(n_components=2, affinity="rbf", gamma=gamma, random_state=np.random.RandomState(seed)) embed_precomp = se_precomp.fit_transform(rbf_kernel(S, gamma=gamma)) embed_rbf = se_rbf.fit_transform(S) assert_array_almost_equal(se_precomp.affinity_matrix_, se_rbf.affinity_matrix_) assert _check_with_col_sign_flipping(embed_precomp, embed_rbf, 0.05)
def test_spectral_embedding_callable_affinity(seed=36): # Test spectral embedding with callable affinity gamma = 0.9 kern = rbf_kernel(S, gamma=gamma) se_callable = SpectralEmbedding( n_components=2, affinity=(lambda x: rbf_kernel(x, gamma=gamma)), gamma=gamma, random_state=np.random.RandomState(seed)) se_rbf = SpectralEmbedding(n_components=2, affinity="rbf", gamma=gamma, random_state=np.random.RandomState(seed)) embed_rbf = se_rbf.fit_transform(S) embed_callable = se_callable.fit_transform(S) assert_array_almost_equal(se_callable.affinity_matrix_, se_rbf.affinity_matrix_) assert_array_almost_equal(kern, se_rbf.affinity_matrix_) assert _check_with_col_sign_flipping(embed_rbf, embed_callable, 0.05)