예제 #1
0
def test_ovo_gridsearch():
    ovo = OneVsOneClassifier(LinearSVC(random_state=0))
    Cs = [0.1, 0.5, 0.8]
    cv = GridSearchCV(ovo, {'estimator__C': Cs})
    cv.fit(iris.data, iris.target)
    best_C = cv.best_estimator_.estimators_[0].C
    assert best_C in Cs
예제 #2
0
def test_ecoc_gridsearch():
    ecoc = OutputCodeClassifier(LinearSVC(random_state=0), random_state=0)
    Cs = [0.1, 0.5, 0.8]
    cv = GridSearchCV(ecoc, {'estimator__C': Cs})
    cv.fit(iris.data, iris.target)
    best_C = cv.best_estimator_.estimators_[0].C
    assert best_C in Cs
예제 #3
0
def _test_ridge_cv_normalize(filter_):
    ridge_cv = RidgeCV(normalize=True, cv=3)
    ridge_cv.fit(filter_(10. * X_diabetes), y_diabetes)

    gs = GridSearchCV(Ridge(normalize=True, solver='sparse_cg'),
                      cv=3,
                      param_grid={'alpha': ridge_cv.alphas})
    gs.fit(filter_(10. * X_diabetes), y_diabetes)
    assert gs.best_estimator_.alpha == ridge_cv.alpha_
예제 #4
0
def test_kde_pipeline_gridsearch():
    # test that kde plays nice in pipelines and grid-searches
    X, _ = make_blobs(cluster_std=.1,
                      random_state=1,
                      centers=[[0, 1], [1, 0], [0, 0]])
    pipe1 = make_pipeline(StandardScaler(with_mean=False, with_std=False),
                          KernelDensity(kernel="gaussian"))
    params = dict(kerneldensity__bandwidth=[0.001, 0.01, 0.1, 1, 10])
    search = GridSearchCV(pipe1, param_grid=params)
    search.fit(X)
    assert search.best_params_['kerneldensity__bandwidth'] == .1
예제 #5
0
def test_gridsearch_pipeline():
    # Test if we can do a grid-search to find parameters to separate
    # circles with a perceptron model.
    X, y = make_circles(n_samples=400, factor=.3, noise=.05, random_state=0)
    kpca = KernelPCA(kernel="rbf", n_components=2)
    pipeline = Pipeline([("kernel_pca", kpca),
                         ("Perceptron", Perceptron(max_iter=5))])
    param_grid = dict(kernel_pca__gamma=2.**np.arange(-2, 2))
    grid_search = GridSearchCV(pipeline, cv=3, param_grid=param_grid)
    grid_search.fit(X, y)
    assert grid_search.best_score_ == 1
예제 #6
0
def test_imputation_pipeline_grid_search():
    # Test imputation within a pipeline + gridsearch.
    X = sparse_random_matrix(100, 100, density=0.10)
    missing_values = X.data[0]

    pipeline = Pipeline([('imputer',
                          SimpleImputer(missing_values=missing_values)),
                         ('tree', tree.DecisionTreeRegressor(random_state=0))])

    parameters = {'imputer__strategy': ["mean", "median", "most_frequent"]}

    Y = sparse_random_matrix(100, 1, density=0.10).toarray()
    gs = GridSearchCV(pipeline, parameters)
    gs.fit(X, Y)
예제 #7
0
def test_gridsearch():
    """Check GridSearch support."""
    clf1 = LogisticRegression(random_state=1)
    clf2 = RandomForestClassifier(random_state=1)
    clf3 = GaussianNB()
    eclf = VotingClassifier(estimators=[
                ('lr', clf1), ('rf', clf2), ('gnb', clf3)],
                voting='soft')

    params = {'lr__C': [1.0, 100.0],
              'voting': ['soft', 'hard'],
              'weights': [[0.5, 0.5, 0.5], [1.0, 0.5, 0.5]]}

    grid = GridSearchCV(estimator=eclf, param_grid=params)
    grid.fit(iris.data, iris.target)
예제 #8
0
def test_gridsearch():
    # Check that base trees can be grid-searched.
    # AdaBoost classification
    boost = AdaBoostClassifier(base_estimator=DecisionTreeClassifier())
    parameters = {
        'n_estimators': (1, 2),
        'base_estimator__max_depth': (1, 2),
        'algorithm': ('SAMME', 'SAMME.R')
    }
    clf = GridSearchCV(boost, parameters)
    clf.fit(iris.data, iris.target)

    # AdaBoost regression
    boost = AdaBoostRegressor(base_estimator=DecisionTreeRegressor(),
                              random_state=0)
    parameters = {'n_estimators': (1, 2), 'base_estimator__max_depth': (1, 2)}
    clf = GridSearchCV(boost, parameters)
    clf.fit(boston.data, boston.target)
예제 #9
0
def test_ridgecv_sample_weight():
    rng = np.random.RandomState(0)
    alphas = (0.1, 1.0, 10.0)

    # There are different algorithms for n_samples > n_features
    # and the opposite, so test them both.
    for n_samples, n_features in ((6, 5), (5, 10)):
        y = rng.randn(n_samples)
        X = rng.randn(n_samples, n_features)
        sample_weight = 1.0 + rng.rand(n_samples)

        cv = KFold(5)
        ridgecv = RidgeCV(alphas=alphas, cv=cv)
        ridgecv.fit(X, y, sample_weight=sample_weight)

        # Check using GridSearchCV directly
        parameters = {'alpha': alphas}
        gs = GridSearchCV(Ridge(), parameters, cv=cv)
        gs.fit(X, y, sample_weight=sample_weight)

        assert ridgecv.alpha_ == gs.best_estimator_.alpha
        assert_array_almost_equal(ridgecv.coef_, gs.best_estimator_.coef_)
예제 #10
0
for clf, cs, X, y in clf_sets:
    # set up the plot for each regressor
    fig, axes = plt.subplots(nrows=2, sharey=True, figsize=(9, 10))

    for k, train_size in enumerate(np.linspace(0.3, 0.7, 3)[::-1]):
        param_grid = dict(C=cs)
        # To get nice curve, we need a large number of iterations to
        # reduce the variance
        grid = GridSearchCV(clf,
                            refit=False,
                            param_grid=param_grid,
                            cv=ShuffleSplit(train_size=train_size,
                                            test_size=.3,
                                            n_splits=250,
                                            random_state=1))
        grid.fit(X, y)
        scores = grid.cv_results_['mean_test_score']

        scales = [
            (1, 'No scaling'),
            ((n_samples * train_size), '1/n_samples'),
        ]

        for ax, (scaler, name) in zip(axes, scales):
            ax.set_xlabel('C')
            ax.set_ylabel('CV Score')
            grid_cs = cs * float(scaler)  # scale the C's
            ax.semilogx(grid_cs,
                        scores,
                        label="fraction %.2f" % train_size,
                        color=colors[k],
예제 #11
0
# Append classifier to preprocessing pipeline.
# Now we have a full prediction pipeline.
clf = Pipeline(steps=[('preprocessor',
                       preprocessor), ('classifier', LogisticRegression())])

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)

clf.fit(X_train, y_train)
print("model score: %.3f" % clf.score(X_test, y_test))

###############################################################################
# Using the prediction pipeline in a grid search
###############################################################################
# Grid search can also be performed on the different preprocessing steps
# defined in the ``ColumnTransformer`` object, together with the classifier's
# hyperparameters as part of the ``Pipeline``.
# We will search for both the imputer strategy of the numeric preprocessing
# and the regularization parameter of the logistic regression using
# :class:`mrex.model_selection.GridSearchCV`.

param_grid = {
    'preprocessor__num__imputer__strategy': ['mean', 'median'],
    'classifier__C': [0.1, 1.0, 10, 100],
}

grid_search = GridSearchCV(clf, param_grid, cv=10)
grid_search.fit(X_train, y_train)

print(("best logistic regression from grid search: %.3f" %
       grid_search.score(X_test, y_test)))
예제 #12
0
from mrex.datasets import load_digits
from mrex.neighbors import KernelDensity
from mrex.decomposition import PCA
from mrex.model_selection import GridSearchCV

# load the data
digits = load_digits()

# project the 64-dimensional data to a lower dimension
pca = PCA(n_components=15, whiten=False)
data = pca.fit_transform(digits.data)

# use grid search cross-validation to optimize the bandwidth
params = {'bandwidth': np.logspace(-1, 1, 20)}
grid = GridSearchCV(KernelDensity(), params)
grid.fit(data)

print("best bandwidth: {0}".format(grid.best_estimator_.bandwidth))

# use the best estimator to compute the kernel density estimate
kde = grid.best_estimator_

# sample 44 new points from the data
new_data = kde.sample(44, random_state=0)
new_data = pca.inverse_transform(new_data)

# turn data into a 4x11 grid
new_data = new_data.reshape((4, 11, -1))
real_data = digits.data[:44].reshape((4, 11, -1))

# plot real digits and resampled digits
예제 #13
0
def check_gridsearch(name):
    forest = FOREST_CLASSIFIERS[name]()
    clf = GridSearchCV(forest, {'n_estimators': (1, 2), 'max_depth': (1, 2)})
    clf.fit(iris.data, iris.target)
예제 #14
0
    # TASK: Build a vectorizer / classifier pipeline that filters out tokens
    # that are too rare or too frequent
    pipeline = Pipeline([
        ('vect', TfidfVectorizer(min_df=3, max_df=0.95)),
        ('clf', LinearSVC(C=1000)),
    ])

    # TASK: Build a grid search to find out whether unigrams or bigrams are
    # more useful.
    # Fit the pipeline on the training set using grid search for the parameters
    parameters = {
        'vect__ngram_range': [(1, 1), (1, 2)],
    }
    grid_search = GridSearchCV(pipeline, parameters, n_jobs=-1)
    grid_search.fit(docs_train, y_train)

    # TASK: print the mean and std for each candidate along with the parameter
    # settings for all the candidates explored by grid search.
    n_candidates = len(grid_search.cv_results_['params'])
    for i in range(n_candidates):
        print(i, 'params - %s; mean - %0.2f; std - %0.2f'
                 % (grid_search.cv_results_['params'][i],
                    grid_search.cv_results_['mean_test_score'][i],
                    grid_search.cv_results_['std_test_score'][i]))

    # TASK: Predict the outcome on the testing set and store it in a variable
    # named y_predicted
    y_predicted = grid_search.predict(docs_test)

    # Print the classification report
예제 #15
0
from mrex.linear_model import Lasso
from mrex.model_selection import KFold
from mrex.model_selection import GridSearchCV

X, y = datasets.load_diabetes(return_X_y=True)
X = X[:150]
y = y[:150]

lasso = Lasso(random_state=0, max_iter=10000)
alphas = np.logspace(-4, -0.5, 30)

tuned_parameters = [{'alpha': alphas}]
n_folds = 5

clf = GridSearchCV(lasso, tuned_parameters, cv=n_folds, refit=False)
clf.fit(X, y)
scores = clf.cv_results_['mean_test_score']
scores_std = clf.cv_results_['std_test_score']
plt.figure().set_size_inches(8, 6)
plt.semilogx(alphas, scores)

# plot error lines showing +/- std. errors of the scores
std_error = scores_std / np.sqrt(n_folds)

plt.semilogx(alphas, scores + std_error, 'b--')
plt.semilogx(alphas, scores - std_error, 'b--')

# alpha=0.2 controls the translucency of the fill color
plt.fill_between(alphas, scores + std_error, scores - std_error, alpha=0.2)

plt.ylabel('CV score +/- std error')
예제 #16
0
rng = np.random.RandomState(0)

# Generate sample data
X = 15 * rng.rand(100, 1)
y = np.sin(X).ravel()
y += 3 * (0.5 - rng.rand(X.shape[0]))  # add noise

# Fit KernelRidge with parameter selection based on 5-fold cross validation
param_grid = {"alpha": [1e0, 1e-1, 1e-2, 1e-3],
              "kernel": [ExpSineSquared(l, p)
                         for l in np.logspace(-2, 2, 10)
                         for p in np.logspace(0, 2, 10)]}
kr = GridSearchCV(KernelRidge(), param_grid=param_grid)
stime = time.time()
kr.fit(X, y)
print("Time for KRR fitting: %.3f" % (time.time() - stime))

gp_kernel = ExpSineSquared(1.0, 5.0, periodicity_bounds=(1e-2, 1e1)) \
    + WhiteKernel(1e-1)
gpr = GaussianProcessRegressor(kernel=gp_kernel)
stime = time.time()
gpr.fit(X, y)
print("Time for GPR fitting: %.3f" % (time.time() - stime))

# Predict using kernel ridge
X_plot = np.linspace(0, 20, 10000)[:, None]
stime = time.time()
y_kr = kr.predict(X_plot)
print("Time for KRR prediction: %.3f" % (time.time() - stime))
예제 #17
0
# Arrays to store scores
non_nested_scores = np.zeros(NUM_TRIALS)
nested_scores = np.zeros(NUM_TRIALS)

# Loop for each trial
for i in range(NUM_TRIALS):

    # Choose cross-validation techniques for the inner and outer loops,
    # independently of the dataset.
    # E.g "GroupKFold", "LeaveOneOut", "LeaveOneGroupOut", etc.
    inner_cv = KFold(n_splits=4, shuffle=True, random_state=i)
    outer_cv = KFold(n_splits=4, shuffle=True, random_state=i)

    # Non_nested parameter search and scoring
    clf = GridSearchCV(estimator=svm, param_grid=p_grid, cv=inner_cv)
    clf.fit(X_iris, y_iris)
    non_nested_scores[i] = clf.best_score_

    # Nested CV with parameter optimization
    nested_score = cross_val_score(clf, X=X_iris, y=y_iris, cv=outer_cv)
    nested_scores[i] = nested_score.mean()

score_difference = non_nested_scores - nested_scores

print("Average difference of {:6f} with std. dev. of {:6f}.".format(
    score_difference.mean(), score_difference.std()))

# Plot scores on each trial for nested and non-nested CV
plt.figure()
plt.subplot(211)
non_nested_scores_line, = plt.plot(non_nested_scores, color='r')
예제 #18
0
    # 'tfidf__use_idf': (True, False),
    # 'tfidf__norm': ('l1', 'l2'),
    'clf__max_iter': (20, ),
    'clf__alpha': (0.00001, 0.000001),
    'clf__penalty': ('l2', 'elasticnet'),
    # 'clf__max_iter': (10, 50, 80),
}

if __name__ == "__main__":
    # multiprocessing requires the fork to happen in a __main__ protected
    # block

    # find the best parameters for both the feature extraction and the
    # classifier
    grid_search = GridSearchCV(pipeline, parameters, n_jobs=-1, verbose=1)

    print("Performing grid search...")
    print("pipeline:", [name for name, _ in pipeline.steps])
    print("parameters:")
    pprint(parameters)
    t0 = time()
    grid_search.fit(data.data, data.target)
    print("done in %0.3fs" % (time() - t0))
    print()

    print("Best score: %0.3f" % grid_search.best_score_)
    print("Best parameters set:")
    best_parameters = grid_search.best_estimator_.get_params()
    for param_name in sorted(parameters.keys()):
        print("\t%s: %r" % (param_name, best_parameters[param_name]))
예제 #19
0
X_train_pca = pca.transform(X_train)
X_test_pca = pca.transform(X_test)
print("done in %0.3fs" % (time() - t0))


# #############################################################################
# Train a SVM classification model

print("Fitting the classifier to the training set")
t0 = time()
param_grid = {'C': [1e3, 5e3, 1e4, 5e4, 1e5],
              'gamma': [0.0001, 0.0005, 0.001, 0.005, 0.01, 0.1], }
clf = GridSearchCV(
    SVC(kernel='rbf', class_weight='balanced'), param_grid
)
clf = clf.fit(X_train_pca, y_train)
print("done in %0.3fs" % (time() - t0))
print("Best estimator found by grid search:")
print(clf.best_estimator_)


# #############################################################################
# Quantitative evaluation of the model quality on the test set

print("Predicting people's names on the test set")
t0 = time()
y_pred = clf.predict(X_test_pca)
print("done in %0.3fs" % (time() - t0))

print(classification_report(y_test, y_pred, target_names=target_names))
print(confusion_matrix(y_test, y_pred, labels=range(n_classes)))
예제 #20
0
# The scorers can be either be one of the predefined metric strings or a scorer
# callable, like the one returned by make_scorer
scoring = {'AUC': 'roc_auc', 'Accuracy': make_scorer(accuracy_score)}

# Setting refit='AUC', refits an estimator on the whole dataset with the
# parameter setting that has the best cross-validated AUC score.
# That estimator is made available at ``gs.best_estimator_`` along with
# parameters like ``gs.best_score_``, ``gs.best_params_`` and
# ``gs.best_index_``
gs = GridSearchCV(DecisionTreeClassifier(random_state=42),
                  param_grid={'min_samples_split': range(2, 403, 10)},
                  scoring=scoring,
                  refit='AUC',
                  return_train_score=True)
gs.fit(X, y)
results = gs.cv_results_

###############################################################################
# Plotting the result
# -------------------

plt.figure(figsize=(13, 13))
plt.title("GridSearchCV evaluating using multiple scorers simultaneously",
          fontsize=16)

plt.xlabel("min_samples_split")
plt.ylabel("Score")

ax = plt.gca()
ax.set_xlim(0, 402)
예제 #21
0
              "min_samples_split": sp_randint(2, 11),
              "bootstrap": [True, False],
              "criterion": ["gini", "entropy"]}

# run randomized search
n_iter_search = 20
random_search = RandomizedSearchCV(clf, param_distributions=param_dist,
                                   n_iter=n_iter_search)

start = time()
random_search.fit(X, y)
print("RandomizedSearchCV took %.2f seconds for %d candidates"
      " parameter settings." % ((time() - start), n_iter_search))
report(random_search.cv_results_)

# use a full grid over all parameters
param_grid = {"max_depth": [3, None],
              "max_features": [1, 3, 10],
              "min_samples_split": [2, 3, 10],
              "bootstrap": [True, False],
              "criterion": ["gini", "entropy"]}

# run grid search
grid_search = GridSearchCV(clf, param_grid=param_grid)
start = time()
grid_search.fit(X, y)

print("GridSearchCV took %.2f seconds for %d candidate parameter settings."
      % (time() - start, len(grid_search.cv_results_['params'])))
report(grid_search.cv_results_)
예제 #22
0
# Set the parameters by cross-validation
tuned_parameters = [{'kernel': ['rbf'], 'gamma': [1e-3, 1e-4],
                     'C': [1, 10, 100, 1000]},
                    {'kernel': ['linear'], 'C': [1, 10, 100, 1000]}]

scores = ['precision', 'recall']

for score in scores:
    print("# Tuning hyper-parameters for %s" % score)
    print()

    clf = GridSearchCV(
        SVC(), tuned_parameters, scoring='%s_macro' % score
    )
    clf.fit(X_train, y_train)

    print("Best parameters set found on development set:")
    print()
    print(clf.best_params_)
    print()
    print("Grid scores on development set:")
    print()
    means = clf.cv_results_['mean_test_score']
    stds = clf.cv_results_['std_test_score']
    for mean, std, params in zip(means, stds, clf.cv_results_['params']):
        print("%0.3f (+/-%0.03f) for %r"
              % (mean, std * 2, params))
    print()

    print("Detailed classification report:")
예제 #23
0
# Fit regression model
train_size = 100
svr = GridSearchCV(SVR(kernel='rbf', gamma=0.1),
                   param_grid={
                       "C": [1e0, 1e1, 1e2, 1e3],
                       "gamma": np.logspace(-2, 2, 5)
                   })

kr = GridSearchCV(KernelRidge(kernel='rbf', gamma=0.1),
                  param_grid={
                      "alpha": [1e0, 0.1, 1e-2, 1e-3],
                      "gamma": np.logspace(-2, 2, 5)
                  })

t0 = time.time()
svr.fit(X[:train_size], y[:train_size])
svr_fit = time.time() - t0
print("SVR complexity and bandwidth selected and model fitted in %.3f s" %
      svr_fit)

t0 = time.time()
kr.fit(X[:train_size], y[:train_size])
kr_fit = time.time() - t0
print("KRR complexity and bandwidth selected and model fitted in %.3f s" %
      kr_fit)

sv_ratio = svr.best_estimator_.support_.shape[0] / train_size
print("Support vector ratio: %.3f" % sv_ratio)

t0 = time.time()
y_svr = svr.predict(X_plot)
예제 #24
0
    for s in shrinkages
]

# under the ground-truth model, which we would not have access to in real
# settings
real_cov = np.dot(coloring_matrix.T, coloring_matrix)
emp_cov = empirical_covariance(X_train)
loglik_real = -log_likelihood(emp_cov, linalg.inv(real_cov))

# #############################################################################
# Compare different approaches to setting the parameter

# GridSearch for an optimal shrinkage coefficient
tuned_parameters = [{'shrinkage': shrinkages}]
cv = GridSearchCV(ShrunkCovariance(), tuned_parameters)
cv.fit(X_train)

# Ledoit-Wolf optimal shrinkage coefficient estimate
lw = LedoitWolf()
loglik_lw = lw.fit(X_train).score(X_test)

# OAS coefficient estimate
oa = OAS()
loglik_oa = oa.fit(X_train).score(X_test)

# #############################################################################
# Plot results
fig = plt.figure()
plt.title("Regularized covariance: likelihood and shrinkage coefficient")
plt.xlabel('Regularization parameter: shrinkage coefficient')
plt.ylabel('Error: negative log-likelihood on test data')