def test_ovr_partial_fit(): # Test if partial_fit is working as intended X, y = shuffle(iris.data, iris.target, random_state=0) ovr = OneVsRestClassifier(MultinomialNB()) ovr.partial_fit(X[:100], y[:100], np.unique(y)) ovr.partial_fit(X[100:], y[100:]) pred = ovr.predict(X) ovr2 = OneVsRestClassifier(MultinomialNB()) pred2 = ovr2.fit(X, y).predict(X) assert_almost_equal(pred, pred2) assert len(ovr.estimators_) == len(np.unique(y)) assert np.mean(y == pred) > 0.65 # Test when mini batches doesn't have all classes # with SGDClassifier X = np.abs(np.random.randn(14, 2)) y = [1, 1, 1, 1, 2, 3, 3, 0, 0, 2, 3, 1, 2, 3] ovr = OneVsRestClassifier( SGDClassifier(max_iter=1, tol=None, shuffle=False, random_state=0)) ovr.partial_fit(X[:7], y[:7], np.unique(y)) ovr.partial_fit(X[7:], y[7:]) pred = ovr.predict(X) ovr1 = OneVsRestClassifier( SGDClassifier(max_iter=1, tol=None, shuffle=False, random_state=0)) pred1 = ovr1.fit(X, y).predict(X) assert np.mean(pred == y) == np.mean(pred1 == y) # test partial_fit only exists if estimator has it: ovr = OneVsRestClassifier(SVC()) assert not hasattr(ovr, "partial_fit")
def test_ovr_pipeline(): # Test with pipeline of length one # This test is needed because the multiclass estimators may fail to detect # the presence of predict_proba or decision_function. clf = Pipeline([("tree", DecisionTreeClassifier())]) ovr_pipe = OneVsRestClassifier(clf) ovr_pipe.fit(iris.data, iris.target) ovr = OneVsRestClassifier(DecisionTreeClassifier()) ovr.fit(iris.data, iris.target) assert_array_equal(ovr.predict(iris.data), ovr_pipe.predict(iris.data))
def test_ovr_coef_exceptions(): # Not fitted exception! ovr = OneVsRestClassifier(LinearSVC(random_state=0)) # lambda is needed because we don't want coef_ to be evaluated right away assert_raises(ValueError, lambda x: ovr.coef_, None) # Doesn't have coef_ exception! ovr = OneVsRestClassifier(DecisionTreeClassifier()) ovr.fit(iris.data, iris.target) assert_raises(AttributeError, lambda x: ovr.coef_, None)
def plot_subfigure(X, Y, subplot, title, transform): if transform == "pca": X = PCA(n_components=2).fit_transform(X) elif transform == "cca": X = CCA(n_components=2).fit(X, Y).transform(X) else: raise ValueError min_x = np.min(X[:, 0]) max_x = np.max(X[:, 0]) min_y = np.min(X[:, 1]) max_y = np.max(X[:, 1]) classif = OneVsRestClassifier(SVC(kernel='linear')) classif.fit(X, Y) plt.subplot(2, 2, subplot) plt.title(title) zero_class = np.where(Y[:, 0]) one_class = np.where(Y[:, 1]) plt.scatter(X[:, 0], X[:, 1], s=40, c='gray', edgecolors=(0, 0, 0)) plt.scatter(X[zero_class, 0], X[zero_class, 1], s=160, edgecolors='b', facecolors='none', linewidths=2, label='Class 1') plt.scatter(X[one_class, 0], X[one_class, 1], s=80, edgecolors='orange', facecolors='none', linewidths=2, label='Class 2') plot_hyperplane(classif.estimators_[0], min_x, max_x, 'k--', 'Boundary\nfor class 1') plot_hyperplane(classif.estimators_[1], min_x, max_x, 'k-.', 'Boundary\nfor class 2') plt.xticks(()) plt.yticks(()) plt.xlim(min_x - .5 * max_x, max_x + .5 * max_x) plt.ylim(min_y - .5 * max_y, max_y + .5 * max_y) if subplot == 2: plt.xlabel('First principal component') plt.ylabel('Second principal component') plt.legend(loc="upper left")
def test_ovr_fit_predict(): # A classifier which implements decision_function. ovr = OneVsRestClassifier(LinearSVC(random_state=0)) pred = ovr.fit(iris.data, iris.target).predict(iris.data) assert len(ovr.estimators_) == n_classes clf = LinearSVC(random_state=0) pred2 = clf.fit(iris.data, iris.target).predict(iris.data) assert np.mean(iris.target == pred) == np.mean(iris.target == pred2) # A classifier which implements predict_proba. ovr = OneVsRestClassifier(MultinomialNB()) pred = ovr.fit(iris.data, iris.target).predict(iris.data) assert np.mean(iris.target == pred) > 0.65
def test_ovr_ovo_regressor(): # test that ovr and ovo work on regressors which don't have a decision_ # function ovr = OneVsRestClassifier(DecisionTreeRegressor()) pred = ovr.fit(iris.data, iris.target).predict(iris.data) assert len(ovr.estimators_) == n_classes assert_array_equal(np.unique(pred), [0, 1, 2]) # we are doing something sensible assert np.mean(pred == iris.target) > .9 ovr = OneVsOneClassifier(DecisionTreeRegressor()) pred = ovr.fit(iris.data, iris.target).predict(iris.data) assert len(ovr.estimators_) == n_classes * (n_classes - 1) / 2 assert_array_equal(np.unique(pred), [0, 1, 2]) # we are doing something sensible assert np.mean(pred == iris.target) > .9
def test_ovr_coef_(): for base_classifier in [ SVC(kernel='linear', random_state=0), LinearSVC(random_state=0) ]: # SVC has sparse coef with sparse input data ovr = OneVsRestClassifier(base_classifier) for X in [iris.data, sp.csr_matrix(iris.data)]: # test with dense and sparse coef ovr.fit(X, iris.target) shape = ovr.coef_.shape assert shape[0] == n_classes assert shape[1] == iris.data.shape[1] # don't densify sparse coefficients assert (sp.issparse(ovr.estimators_[0].coef_) == sp.issparse( ovr.coef_))
def test_classifier_chain_vs_independent_models(): # Verify that an ensemble of classifier chains (each of length # N) can achieve a higher Jaccard similarity score than N independent # models X, Y = generate_multilabel_dataset_with_correlations() X_train = X[:600, :] X_test = X[600:, :] Y_train = Y[:600, :] Y_test = Y[600:, :] ovr = OneVsRestClassifier(LogisticRegression()) ovr.fit(X_train, Y_train) Y_pred_ovr = ovr.predict(X_test) chain = ClassifierChain(LogisticRegression()) chain.fit(X_train, Y_train) Y_pred_chain = chain.predict(X_test) assert (jaccard_score(Y_test, Y_pred_chain, average='samples') > jaccard_score(Y_test, Y_pred_ovr, average='samples'))
def test_ovr_multilabel_predict_proba(): base_clf = MultinomialNB(alpha=1) for au in (False, True): X, Y = datasets.make_multilabel_classification(n_samples=100, n_features=20, n_classes=5, n_labels=3, length=50, allow_unlabeled=au, random_state=0) X_train, Y_train = X[:80], Y[:80] X_test = X[80:] clf = OneVsRestClassifier(base_clf).fit(X_train, Y_train) # Decision function only estimator. decision_only = OneVsRestClassifier(svm.SVR()).fit(X_train, Y_train) assert not hasattr(decision_only, 'predict_proba') # Estimator with predict_proba disabled, depending on parameters. decision_only = OneVsRestClassifier(svm.SVC(probability=False)) assert not hasattr(decision_only, 'predict_proba') decision_only.fit(X_train, Y_train) assert not hasattr(decision_only, 'predict_proba') assert hasattr(decision_only, 'decision_function') # Estimator which can get predict_proba enabled after fitting gs = GridSearchCV(svm.SVC(probability=False), param_grid={'probability': [True]}) proba_after_fit = OneVsRestClassifier(gs) assert not hasattr(proba_after_fit, 'predict_proba') proba_after_fit.fit(X_train, Y_train) assert hasattr(proba_after_fit, 'predict_proba') Y_pred = clf.predict(X_test) Y_proba = clf.predict_proba(X_test) # predict assigns a label if the probability that the # sample has the label is greater than 0.5. pred = Y_proba > .5 assert_array_equal(pred, Y_pred)
def test_ovr_fit_predict_svc(): ovr = OneVsRestClassifier(svm.SVC()) ovr.fit(iris.data, iris.target) assert len(ovr.estimators_) == 3 assert ovr.score(iris.data, iris.target) > .9
print(__doc__) # Load a multi-label dataset from https://www.openml.org/d/40597 X, Y = fetch_openml('yeast', version=4, return_X_y=True) Y = Y == 'TRUE' X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=.2, random_state=0) # Fit an independent logistic regression model for each class using the # OneVsRestClassifier wrapper. base_lr = LogisticRegression() ovr = OneVsRestClassifier(base_lr) ovr.fit(X_train, Y_train) Y_pred_ovr = ovr.predict(X_test) ovr_jaccard_score = jaccard_score(Y_test, Y_pred_ovr, average='samples') # Fit an ensemble of logistic regression classifier chains and take the # take the average prediction of all the chains. chains = [ ClassifierChain(base_lr, order='random', random_state=i) for i in range(10) ] for chain in chains: chain.fit(X_train, Y_train) Y_pred_chains = np.array([chain.predict(X_test) for chain in chains]) chain_jaccard_scores = [ jaccard_score(Y_test, Y_pred_chain >= .5, average='samples') for Y_pred_chain in Y_pred_chains
# Add noisy features to make the problem harder random_state = np.random.RandomState(0) n_samples, n_features = X.shape X = np.c_[X, random_state.randn(n_samples, 200 * n_features)] # shuffle and split training and test sets X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.5, random_state=0) # Learn to predict each class against the other classifier = OneVsRestClassifier( svm.SVC(kernel='linear', probability=True, random_state=random_state)) y_score = classifier.fit(X_train, y_train).decision_function(X_test) # Compute ROC curve and ROC area for each class fpr = dict() tpr = dict() roc_auc = dict() for i in range(n_classes): fpr[i], tpr[i], _ = roc_curve(y_test[:, i], y_score[:, i]) roc_auc[i] = auc(fpr[i], tpr[i]) # Compute micro-average ROC curve and ROC area fpr["micro"], tpr["micro"], _ = roc_curve(y_test.ravel(), y_score.ravel()) roc_auc["micro"] = auc(fpr["micro"], tpr["micro"]) ############################################################################## # Plot of a ROC curve for a specific class
# Use label_binarize to be multi-label like settings Y = label_binarize(y, classes=[0, 1, 2]) n_classes = Y.shape[1] # Split into training and test X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=.5, random_state=random_state) # We use OneVsRestClassifier for multi-label prediction from mrex.multiclass import OneVsRestClassifier # Run classifier classifier = OneVsRestClassifier(svm.LinearSVC(random_state=random_state)) classifier.fit(X_train, Y_train) y_score = classifier.decision_function(X_test) ############################################################################### # The average precision score in multi-label settings # .................................................... from mrex.metrics import precision_recall_curve from mrex.metrics import average_precision_score # For each class precision = dict() recall = dict() average_precision = dict() for i in range(n_classes): precision[i], recall[i], _ = precision_recall_curve( Y_test[:, i], y_score[:, i])