def function(fn, *args, **kwargs): #pylint: disable=unused-variable import inspect, sys from mrtrix3 import app fnstring = fn.__module__ + '.' + fn.__name__ + \ '(' + ', '.join(['\'' + str(a) + '\'' if isinstance(a, str) else str(a) for a in args]) + \ (', ' if (args and kwargs) else '') + \ ', '.join([key+'='+str(value) for key, value in kwargs.items()]) + ')' if _lastFile: if _triggerContinue(args) or _triggerContinue(kwargs.values()): app.debug('Detected last file in function \'' + fnstring + '\'; this is the last run.command() / run.function() call that will be skipped') if app.verbosity: sys.stderr.write(app.colourExec + 'Skipping function:' + app.colourClear + ' ' + fnstring + '\n') sys.stderr.flush() return None if app.verbosity: sys.stderr.write(app.colourExec + 'Function:' + app.colourClear + ' ' + fnstring + '\n') sys.stderr.flush() # Now we need to actually execute the requested function try: if kwargs: result = fn(*args, **kwargs) else: result = fn(*args) except Exception as e: # pylint: disable=broad-except app.cleanup = False caller = inspect.getframeinfo(inspect.stack()[1][0]) error_text = str(type(e).__name__) + ': ' + str(e) script_name = os.path.basename(sys.argv[0]) app.console('') try: filename = caller.filename lineno = caller.lineno except AttributeError: filename = caller[1] lineno = caller[2] sys.stderr.write(script_name + ': ' + app.colourError + '[ERROR] Function failed: ' + fnstring + app.colourClear + app.colourDebug + ' (' + os.path.basename(filename) + ':' + str(lineno) + ')' + app.colourClear + '\n') sys.stderr.write(script_name + ': ' + app.colourConsole + 'Information from failed function:' + app.colourClear + '\n') for line in error_text.splitlines(): sys.stderr.write(' ' * (len(script_name)+2) + line + '\n') app.console('') sys.stderr.flush() if app.tempDir: with open(os.path.join(app.tempDir, 'error.txt'), 'w') as outfile: outfile.write(fnstring + '\n\n' + error_text + '\n') app.complete() sys.exit(1) # Only now do we append to the script log, since the function has completed successfully if app.tempDir: with open(os.path.join(app.tempDir, 'log.txt'), 'a') as outfile: outfile.write(fnstring + '\n') return result
def waitFor(path): import os, time from mrtrix3 import app def inUse(path): import subprocess from distutils.spawn import find_executable if app.isWindows(): if not os.access(path, os.W_OK): return None try: with open(path, 'rb+') as f: pass return False except: return True if not find_executable('fuser'): return None # fuser returns zero if there IS at least one process accessing the file # A fatal error will result in a non-zero code -> inUse() = False, so waitFor() can return return not subprocess.call(['fuser', '-s', path], shell=False, stdin=None, stdout=None, stderr=None) if not os.path.exists(path): delay = 1.0 / 1024.0 app.console('Waiting for creation of new file \"' + path + '\"') while not os.path.exists(path): time.sleep(delay) delay = max(60.0, delay * 2.0) app.debug('File \"' + path + '\" appears to have been created') if not os.path.isfile(path): app.debug('Path \"' + path + '\" is not a file; not testing for finalization') return init_test = inUse(path) if init_test is None: app.debug('Unable to test for finalization of new file \"' + path + '\"') return if not init_test: app.debug('File \"' + path + '\" immediately ready') return app.console('Waiting for finalization of new file \"' + path + '\"') delay = 1.0 / 1024.0 while True: if inUse(path): time.sleep(delay) delay = max(60.0, delay * 2.0) else: app.debug('File \"' + path + '\" appears to have been finalized') return
def delTempFile(path): import os from mrtrix3 import app if not app._cleanup: return if app._verbosity > 2: app.console('Deleting temporary file: ' + path) try: os.remove(path) except OSError: app.debug('Unable to delete temporary file ' + path)
def delTempFolder(path): import shutil from mrtrix3 import app if not app._cleanup: return if app._verbosity > 2: app.console('Deleting temporary folder: ' + path) try: shutil.rmtree(path) except OSError: app.debug('Unable to delete temprary folder ' + path)
def headerKeyValue(image_path, key): import subprocess from mrtrix3 import app, run command = [ run.exeName(run.versionMatch('mrinfo')), image_path, '-property', key ] if app._verbosity > 1: app.console('Command: \'' + ' '.join(command) + '\' (piping data to local storage)') proc = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=None) result, err = proc.communicate() result = result.rstrip().decode('utf-8') if app._verbosity > 1: app.console('Result: ' + result) return result
def checkFirst(prefix, structures): #pylint: disable=unused-variable import os from mrtrix3 import app, file, path # pylint: disable=redefined-builtin vtk_files = [ prefix + '-' + struct + '_first.vtk' for struct in structures ] existing_file_count = sum([ os.path.exists(filename) for filename in vtk_files ]) if existing_file_count != len(vtk_files): if 'SGE_ROOT' in os.environ: app.console('FSL FIRST job has been submitted to SGE; awaiting completion') app.console('(note however that FIRST may fail silently, and hence this script may hang indefinitely)') file.waitFor(vtk_files) else: app.error('FSL FIRST has failed; only ' + str(existing_file_count) + ' of ' + str(len(vtk_files)) + ' structures were segmented successfully (check ' + path.toTemp('first.logs', False) + ')')
def check_first(prefix, structures): #pylint: disable=unused-variable import os from mrtrix3 import app, MRtrixError, path vtk_files = [ prefix + '-' + struct + '_first.vtk' for struct in structures ] existing_file_count = sum([ os.path.exists(filename) for filename in vtk_files ]) if existing_file_count != len(vtk_files): if 'SGE_ROOT' in os.environ and os.environ['SGE_ROOT']: app.console('FSL FIRST job may have been run via SGE; awaiting completion') app.console('(note however that FIRST may fail silently, and hence this script may hang indefinitely)') path.wait_for(vtk_files) else: raise MRtrixError('FSL FIRST has failed; ' + ('only ' if existing_file_count else '') + str(existing_file_count) + ' of ' + str(len(vtk_files)) + ' structures were segmented successfully (check ' + path.to_scratch('first.logs', False) + ')')
def mrinfo(image_path, field): #pylint: disable=unused-variable from mrtrix3 import app, run #pylint: disable=import-outside-toplevel command = [ run.exe_name(run.version_match('mrinfo')), image_path, '-' + field ] if app.VERBOSITY > 1: app.console('Command: \'' + ' '.join(command) + '\' (piping data to local storage)') proc = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=None) #pylint: disable=consider-using-with result = proc.communicate()[0].rstrip().decode('utf-8') if app.VERBOSITY > 1: app.console('Result: ' + result) # Don't exit on error; let the calling function determine whether or not # the absence of the key is an issue return result
def mrinfo(image_path, field): #pylint: disable=unused-variable import subprocess from mrtrix3 import app, run command = [ run.exeName(run.versionMatch('mrinfo')), image_path, '-' + field ] if app.verbosity > 1: app.console('Command: \'' + ' '.join(command) + '\' (piping data to local storage)') proc = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=None) result, dummy_err = proc.communicate() result = result.rstrip().decode('utf-8') if app.verbosity > 1: app.console('Result: ' + result) # Don't exit on error; let the calling function determine whether or not # the absence of the key is an issue return result
def statistic(image_path, statistic, mask_path = ''): import subprocess from mrtrix3 import app, run command = [ run.exeName(run.versionMatch('mrstats')), image_path, '-output', statistic ] if mask_path: command.extend([ '-mask', mask_path ]) if app._verbosity > 1: app.console('Command: \'' + ' '.join(command) + '\' (piping data to local storage)') proc = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=None) result, err = proc.communicate() result = result.rstrip().decode('utf-8') if app._verbosity > 1: app.console('Result: ' + result) return result
def statistics(image_path, **kwargs): #pylint: disable=unused-variable from mrtrix3 import app, run #pylint: disable=import-outside-toplevel mask = kwargs.pop('mask', None) allvolumes = kwargs.pop('allvolumes', False) ignorezero = kwargs.pop('ignorezero', False) if kwargs: raise TypeError( 'Unsupported keyword arguments passed to image.statistics(): ' + str(kwargs)) command = [run.exe_name(run.version_match('mrstats')), image_path] for stat in IMAGE_STATISTICS: command.extend(['-output', stat]) if mask: command.extend(['-mask', mask]) if allvolumes: command.append('-allvolumes') if ignorezero: command.append('-ignorezero') if app.VERBOSITY > 1: app.console('Command: \'' + ' '.join(command) + '\' (piping data to local storage)') try: from subprocess import DEVNULL #pylint: disable=import-outside-toplevel except ImportError: DEVNULL = open(os.devnull, 'wb') proc = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=DEVNULL) stdout = proc.communicate()[0] if proc.returncode: raise MRtrixError( 'Error trying to calculate statistics from image \'' + image_path + '\'') stdout_lines = [ line.strip() for line in stdout.decode('cp437').splitlines() ] result = [] for line in stdout_lines: line = line.replace('N/A', 'nan').split() assert len(line) == len(IMAGE_STATISTICS) result.append( ImageStatistics(float(line[0]), float(line[1]), float(line[2]), float(line[3]), float(line[4]), float(line[5]), int(line[6]))) if len(result) == 1: result = result[0] if app.VERBOSITY > 1: app.console('Result: ' + str(result)) return result
def statistic(image_path, stat, options=''): #pylint: disable=unused-variable import shlex, subprocess from mrtrix3 import app, run command = [ run.exeName(run.versionMatch('mrstats')), image_path, '-output', stat ] if options: command.extend(shlex.split(options)) if app.verbosity > 1: app.console('Command: \'' + ' '.join(command) + '\' (piping data to local storage)') proc = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=None) result, dummy_err = proc.communicate() result = result.rstrip().decode('utf-8') if app.verbosity > 1: app.console('Result: ' + result) if proc.returncode: app.error('Error trying to calculate statistic \'' + stat + '\' from image \'' + image_path + '\'') return result
def __init__(self, image_path): from mrtrix3 import app, path, run #pylint: disable=import-outside-toplevel filename = path.name_temporary('json') command = [ run.exe_name(run.version_match('mrinfo')), image_path, '-json_all', filename ] if app.VERBOSITY > 1: app.console('Loading header for image file \'' + image_path + '\'') app.debug(str(command)) result = subprocess.call(command, stdout=None, stderr=None) if result: raise MRtrixError( 'Could not access header information for image \'' + image_path + '\'') try: with open(filename, 'r') as json_file: data = json.load(json_file) except UnicodeDecodeError: with open(filename, 'r') as json_file: data = json.loads(json_file.read().decode('utf-8', errors='replace')) os.remove(filename) try: #self.__dict__.update(data) # Load the individual header elements manually, for a couple of reasons: # - So that pylint knows that they'll be there # - Write to private members, and give read-only access self._name = data['name'] self._size = data['size'] self._spacing = data['spacing'] self._strides = data['strides'] self._format = data['format'] self._datatype = data['datatype'] self._intensity_offset = data['intensity_offset'] self._intensity_scale = data['intensity_scale'] self._transform = data['transform'] if not 'keyval' in data or not data['keyval']: self._keyval = {} else: self._keyval = data['keyval'] except: raise MRtrixError( 'Error in reading header information from file \'' + image_path + '\'') app.debug(str(vars(self)))
def checkFirst(prefix, structures): #pylint: disable=unused-variable import os from mrtrix3 import app, file, path # pylint: disable=redefined-builtin vtk_files = [prefix + '-' + struct + '_first.vtk' for struct in structures] existing_file_count = sum( [os.path.exists(filename) for filename in vtk_files]) if existing_file_count != len(vtk_files): if 'SGE_ROOT' in os.environ: app.console( 'FSL FIRST job has been submitted to SGE; awaiting completion') app.console( '(note however that FIRST may fail silently, and hence this script may hang indefinitely)' ) file.waitFor(vtk_files) else: app.error('FSL FIRST has failed; only ' + str(existing_file_count) + ' of ' + str(len(vtk_files)) + ' structures were segmented successfully (check ' + path.toTemp('first.logs', False) + ')')
def delTemporary(path): #pylint: disable=unused-variable import shutil, os from mrtrix3 import app if not app.cleanup: return if os.path.isfile(path): temporary_type = 'file' func = os.remove elif os.path.isdir(path): temporary_type = 'directory' func = shutil.rmtree else: app.debug('Unknown target \'' + path + '\'') return if app.verbosity > 2: app.console('Deleting temporary ' + temporary_type + ': \'' + path + '\'') try: func(path) except OSError: app.debug('Unable to delete temporary ' + temporary_type + ': \'' + path + '\'')
def statistic(image_path, stat, options=''): #pylint: disable=unused-variable import shlex, subprocess from mrtrix3 import app, MRtrixError, run command = [ run.exe_name(run.version_match('mrstats')), image_path, '-output', stat ] if options: command.extend(shlex.split(options)) if app.VERBOSITY > 1: app.console('Command: \'' + ' '.join(command) + '\' (piping data to local storage)') proc = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=None) result = [ line.strip() for line in proc.communicate()[0].decode('cp437').splitlines() ] if stat == 'count': result = [ int(i) for i in result ] else: result = [ float(f) for f in result ] if len(result) == 1: result = result[0] if app.VERBOSITY > 1: app.console('Result: ' + str(result)) if proc.returncode: raise MRtrixError('Error trying to calculate statistic \'' + stat + '\' from image \'' + image_path + '\'') return result
def __init__(self, image_path): import json, os, subprocess from mrtrix3 import app, path, run filename = path.newTemporary('json') command = [ run.exeName(run.versionMatch('mrinfo')), image_path, '-json_all', filename ] if app.verbosity > 1: app.console('Loading header for image file \'' + image_path + '\'') app.debug(str(command)) result = subprocess.call(command, stdout=None, stderr=None) if result: app.error('Could not access header information for image \'' + image_path + '\'') with open(filename, 'r') as f: data = json.load(f) os.remove(filename) try: #self.__dict__.update(data) # Load the individual header elements manually, for a couple of reasons: # - So that pylint knows that they'll be there # - Write to private members, and give read-only access self._name = data['name'] self._size = data['size'] self._spacing = data['spacing'] self._strides = data['strides'] self._format = data['format'] self._datatype = data['datatype'] self._intensity_offset = data['intensity_offset'] self._intensity_scale = data['intensity_scale'] self._transform = data['transform'] if not 'keyval' in data or not data['keyval']: self._keyval = {} else: self._keyval = data['keyval'] except: app.error('Error in reading header information from file \'' + image_path + '\'') app.debug(str(vars(self)))
def __init__(self, image_path): import json, os, subprocess from mrtrix3 import app, path, run filename = path.newTemporary('json') command = [ run.exeName(run.versionMatch('mrinfo')), image_path, '-json_all', filename ] if app.verbosity > 1: app.console('Loading header for image file \'' + image_path + '\'') app.debug(str(command)) result = subprocess.call(command, stdout=None, stderr=None) if result: app.error('Could not access header information for image \'' + image_path + '\'') try: with open(filename, 'r') as f: data = json.load(f) except UnicodeDecodeError: with open(filename, 'r') as f: data = json.loads(f.read().decode('utf-8', errors='replace')) os.remove(filename) try: #self.__dict__.update(data) # Load the individual header elements manually, for a couple of reasons: # - So that pylint knows that they'll be there # - Write to private members, and give read-only access self._name = data['name'] self._size = data['size'] self._spacing = data['spacing'] self._strides = data['strides'] self._format = data['format'] self._datatype = data['datatype'] self._intensity_offset = data['intensity_offset'] self._intensity_scale = data['intensity_scale'] self._transform = data['transform'] if not 'keyval' in data or not data['keyval']: self._keyval = { } else: self._keyval = data['keyval'] except: app.error('Error in reading header information from file \'' + image_path + '\'') app.debug(str(vars(self)))
def headerField(image_path, field): import subprocess from mrtrix3 import app, run command = [ run.exeName(run.versionMatch('mrinfo')), image_path, '-' + field ] if app._verbosity > 1: app.console('Command: \'' + ' '.join(command) + '\' (piping data to local storage)') proc = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=None) result, err = proc.communicate() result = result.rstrip().decode('utf-8') if app._verbosity > 1: if '\n' in result: app.console('Result: (' + str(result.count('\n')+1) + ' lines)') app.debug(result) else: app.console('Result: ' + result) return result
def getScheme(image_path): import subprocess from mrtrix3 import app, run command = [ run.versionMatch('mrinfo'), image_path, '-petable' ] if app._verbosity > 1: app.console('Command: \'' + ' '.join(command) + '\' (piping data to local storage)') proc = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=None) result, err = proc.communicate() result = result.rstrip().decode('utf-8') if result: result = [ [ float(f) for f in line.split() ] for line in result.split('\n') ] if app._verbosity > 1: if not result: app.console('Result: No phase encoding table found') else: app.console('Result: ' + str(len(result)) + ' x ' + str(len(result[0])) + ' table') app.debug(str(result)) return result
def command(cmd, exitOnError=True): #pylint: disable=unused-variable import inspect, itertools, shlex, signal, string, subprocess, sys, tempfile from distutils.spawn import find_executable from mrtrix3 import app # This is the only global variable that is _modified_ within this function global _processes # Vectorise the command string, preserving anything encased within quotation marks if os.sep == '/': # Cheap POSIX compliance check cmdsplit = shlex.split(cmd) else: # Native Windows Python cmdsplit = [ entry.strip('\"') for entry in shlex.split(cmd, posix=False) ] if _lastFile: if _triggerContinue(cmdsplit): app.debug('Detected last file in command \'' + cmd + '\'; this is the last run.command() / run.function() call that will be skipped') if app.verbosity: sys.stderr.write(app.colourExec + 'Skipping command:' + app.colourClear + ' ' + cmd + '\n') sys.stderr.flush() return ('', '') # This splits the command string based on the piping character '|', such that each # individual executable (along with its arguments) appears as its own list cmdstack = [ list(g) for k, g in itertools.groupby(cmdsplit, lambda s : s != '|') if k ] for line in cmdstack: is_mrtrix_exe = line[0] in _mrtrix_exe_list if is_mrtrix_exe: line[0] = versionMatch(line[0]) if app.numThreads is not None: line.extend( [ '-nthreads', str(app.numThreads) ] ) # Get MRtrix3 binaries to output additional INFO-level information if running in debug mode if app.verbosity == 3: line.append('-info') elif not app.verbosity: line.append('-quiet') else: line[0] = exeName(line[0]) shebang = _shebang(line[0]) if shebang: if not is_mrtrix_exe: # If a shebang is found, and this call is therefore invoking an # interpreter, can't rely on the interpreter finding the script # from PATH; need to find the full path ourselves. line[0] = find_executable(line[0]) for item in reversed(shebang): line.insert(0, item) app.debug('To execute: ' + str(cmdstack)) if app.verbosity: sys.stderr.write(app.colourExec + 'Command:' + app.colourClear + ' ' + cmd + '\n') sys.stderr.flush() # Disable interrupt signal handler while threads are running try: signal.signal(signal.SIGINT, signal.default_int_handler) except: pass # Construct temporary text files for holding stdout / stderr contents when appropriate # (One entry per process; each is a tuple containing two entries, each of which is either a # file-like object, or None) tempfiles = [ ] # Execute all processes assert not _processes for index, to_execute in enumerate(cmdstack): file_out = None file_err = None # If there's at least one command prior to this, need to receive the stdout from the prior command # at the stdin of this command; otherwise, nothing to receive if index > 0: handle_in = _processes[index-1].stdout else: handle_in = None # If this is not the last command, then stdout needs to be piped to the next command; # otherwise, write stdout to a temporary file so that the contents can be read later if index < len(cmdstack)-1: handle_out = subprocess.PIPE else: file_out = tempfile.TemporaryFile() handle_out = file_out.fileno() # If we're in debug / info mode, the contents of stderr will be read and printed to the terminal # as the command progresses, hence this needs to go to a pipe; otherwise, write it to a temporary # file so that the contents can be read later if app.verbosity > 1: handle_err = subprocess.PIPE else: file_err = tempfile.TemporaryFile() handle_err = file_err.fileno() # Set off the processes try: try: process = subprocess.Popen (to_execute, stdin=handle_in, stdout=handle_out, stderr=handle_err, env=_env, preexec_fn=os.setpgrp) # pylint: disable=bad-option-value,subprocess-popen-preexec-fn except AttributeError: process = subprocess.Popen (to_execute, stdin=handle_in, stdout=handle_out, stderr=handle_err, env=_env) _processes.append(process) tempfiles.append( ( file_out, file_err ) ) # FileNotFoundError not defined in Python 2.7 except OSError as e: if exitOnError: app.error('\'' + to_execute[0] + '\' not executed ("' + str(e) + '"); script cannot proceed') else: app.warn('\'' + to_execute[0] + '\' not executed ("' + str(e) + '")') for p in _processes: p.terminate() _processes = [ ] break return_stdout = '' return_stderr = '' error = False error_text = '' # Wait for all commands to complete # Switch how we monitor running processes / wait for them to complete # depending on whether or not the user has specified -info or -debug option try: if app.verbosity > 1: for process in _processes: stderrdata = b'' do_indent = True while True: # Have to read one character at a time: Waiting for a newline character using e.g. readline() will prevent MRtrix progressbars from appearing byte = process.stderr.read(1) stderrdata += byte char = byte.decode('cp1252', errors='ignore') if not char and process.poll() is not None: break if do_indent and char in string.printable and char != '\r' and char != '\n': sys.stderr.write(' ') do_indent = False elif char in [ '\r', '\n' ]: do_indent = True sys.stderr.write(char) sys.stderr.flush() stderrdata = stderrdata.decode('utf-8', errors='replace') return_stderr += stderrdata if process.returncode: error = True error_text += stderrdata else: for process in _processes: process.wait() except (KeyboardInterrupt, SystemExit): app.handler(signal.SIGINT, inspect.currentframe()) # Re-enable interrupt signal handler try: signal.signal(signal.SIGINT, app.handler) except: pass # For any command stdout / stderr data that wasn't either passed to another command or # printed to the terminal during execution, read it here. for index in range(len(cmdstack)): if tempfiles[index][0] is not None: tempfiles[index][0].flush() tempfiles[index][0].seek(0) stdout_text = tempfiles[index][0].read().decode('utf-8', errors='replace') return_stdout += stdout_text if _processes[index].returncode: error = True error_text += stdout_text if tempfiles[index][1] is not None: tempfiles[index][1].flush() tempfiles[index][1].seek(0) stderr_text = tempfiles[index][1].read().decode('utf-8', errors='replace') return_stderr += stderr_text if _processes[index].returncode: error = True error_text += stderr_text _processes = [ ] if error: if exitOnError: app.cleanup = False caller = inspect.getframeinfo(inspect.stack()[1][0]) script_name = os.path.basename(sys.argv[0]) app.console('') try: filename = caller.filename lineno = caller.lineno except AttributeError: filename = caller[1] lineno = caller[2] sys.stderr.write(script_name + ': ' + app.colourError + '[ERROR] Command failed: ' + cmd + app.colourClear + app.colourDebug + ' (' + os.path.basename(filename) + ':' + str(lineno) + ')' + app.colourClear + '\n') sys.stderr.write(script_name + ': ' + app.colourConsole + 'Output of failed command:' + app.colourClear + '\n') for line in error_text.splitlines(): sys.stderr.write(' ' * (len(script_name)+2) + line + '\n') app.console('') sys.stderr.flush() if app.tempDir: with open(os.path.join(app.tempDir, 'error.txt'), 'w') as outfile: outfile.write(cmd + '\n\n' + error_text + '\n') app.complete() sys.exit(1) else: app.warn('Command failed: ' + cmd) # Only now do we append to the script log, since the command has completed successfully # Note: Writing the command as it was formed as the input to run.command(): # other flags may potentially change if this file is eventually used to resume the script if app.tempDir: with open(os.path.join(app.tempDir, 'log.txt'), 'a') as outfile: outfile.write(cmd + '\n') return (return_stdout, return_stderr)
def execute(): #pylint: disable=unused-variable class Input(object): def __init__(self, filename, prefix, mask_filename=''): self.filename = filename self.prefix = prefix self.mask_filename = mask_filename input_dir = path.from_user(app.ARGS.input_dir, False) if not os.path.exists(input_dir): raise MRtrixError('input directory not found') in_files = path.all_in_dir(input_dir, dir_path=False) if len(in_files) <= 1: raise MRtrixError( 'not enough images found in input directory: more than one image is needed to perform a group-wise intensity normalisation' ) app.console('performing global intensity normalisation on ' + str(len(in_files)) + ' input images') mask_dir = path.from_user(app.ARGS.mask_dir, False) if not os.path.exists(mask_dir): raise MRtrixError('mask directory not found') mask_files = path.all_in_dir(mask_dir, dir_path=False) if len(mask_files) != len(in_files): raise MRtrixError( 'the number of images in the mask directory does not equal the number of images in the input directory' ) mask_common_postfix = os.path.commonprefix([i[::-1] for i in mask_files])[::-1] mask_prefixes = [] for mask_file in mask_files: mask_prefixes.append(mask_file.split(mask_common_postfix)[0]) common_postfix = os.path.commonprefix([i[::-1] for i in in_files])[::-1] input_list = [] for i in in_files: subj_prefix = i.split(common_postfix)[0] if subj_prefix not in mask_prefixes: raise MRtrixError( 'no matching mask image was found for input image ' + i) image.check_3d_nonunity(os.path.join(input_dir, i)) index = mask_prefixes.index(subj_prefix) input_list.append(Input(i, subj_prefix, mask_files[index])) app.make_scratch_dir() app.goto_scratch_dir() path.make_dir('fa') progress = app.ProgressBar('Computing FA images', len(input_list)) for i in input_list: run.command('dwi2tensor ' + path.quote(os.path.join(input_dir, i.filename)) + ' -mask ' + path.quote(os.path.join(mask_dir, i.mask_filename)) + ' - | tensor2metric - -fa ' + os.path.join('fa', i.prefix + '.mif')) progress.increment() progress.done() app.console('Generating FA population template') run.command('population_template fa fa_template.mif' + ' -mask_dir ' + mask_dir + ' -type rigid_affine_nonlinear' + ' -rigid_scale 0.25,0.5,0.8,1.0' + ' -affine_scale 0.7,0.8,1.0,1.0' + ' -nl_scale 0.5,0.75,1.0,1.0,1.0' + ' -nl_niter 5,5,5,5,5' + ' -warp_dir warps' + ' -linear_no_pause' + ' -scratch population_template' + ('' if app.DO_CLEANUP else ' -nocleanup')) app.console('Generating WM mask in template space') run.command('mrthreshold fa_template.mif -abs ' + app.ARGS.fa_threshold + ' template_wm_mask.mif') progress = app.ProgressBar('Intensity normalising subject images', len(input_list)) path.make_dir(path.from_user(app.ARGS.output_dir, False)) path.make_dir('wm_mask_warped') for i in input_list: run.command( 'mrtransform template_wm_mask.mif -interp nearest -warp_full ' + os.path.join('warps', i.prefix + '.mif') + ' ' + os.path.join('wm_mask_warped', i.prefix + '.mif') + ' -from 2 -template ' + os.path.join('fa', i.prefix + '.mif')) run.command('dwinormalise individual ' + path.quote(os.path.join(input_dir, i.filename)) + ' ' + os.path.join('wm_mask_warped', i.prefix + '.mif') + ' temp.mif') run.command( 'mrconvert temp.mif ' + path.from_user(os.path.join(app.ARGS.output_dir, i.filename)), mrconvert_keyval=path.from_user( os.path.join(input_dir, i.filename), False), force=app.FORCE_OVERWRITE) os.remove('temp.mif') progress.increment() progress.done() app.console('Exporting template images to user locations') run.command('mrconvert template_wm_mask.mif ' + path.from_user(app.ARGS.wm_mask), mrconvert_keyval='NULL', force=app.FORCE_OVERWRITE) run.command('mrconvert fa_template.mif ' + path.from_user(app.ARGS.fa_template), mrconvert_keyval='NULL', force=app.FORCE_OVERWRITE)
def execute(): import os from distutils.spawn import find_executable from mrtrix3 import app, file, fsl, image, run if app.isWindows(): app.error( '\'fsl\' algorithm of 5ttgen script cannot be run on Windows: FSL not available on Windows' ) fsl_path = os.environ.get('FSLDIR', '') if not fsl_path: app.error( 'Environment variable FSLDIR is not set; please run appropriate FSL configuration script' ) ssroi_cmd = 'standard_space_roi' if not find_executable(ssroi_cmd): ssroi_cmd = 'fsl5.0-standard_space_roi' if not find_executable(ssroi_cmd): app.error( 'Could not find FSL program standard_space_roi; please verify FSL install' ) bet_cmd = 'bet' if not find_executable(bet_cmd): bet_cmd = 'fsl5.0-bet' if not find_executable(bet_cmd): app.error( 'Could not find FSL program bet; please verify FSL install') fast_cmd = 'fast' if not find_executable(fast_cmd): fast_cmd = 'fsl5.0-fast' if not find_executable(fast_cmd): app.error( 'Could not find FSL program fast; please verify FSL install') first_cmd = 'run_first_all' if not find_executable(first_cmd): first_cmd = "fsl5.0-run_first_all" if not find_executable(first_cmd): app.error( 'Could not find FSL program run_first_all; please verify FSL install' ) first_atlas_path = os.path.join(fsl_path, 'data', 'first', 'models_336_bin') if not os.path.isdir(first_atlas_path): app.error( 'Atlases required for FSL\'s FIRST program not installed; please install fsl-first-data using your relevant package manager' ) fsl_suffix = fsl.suffix() sgm_structures = [ 'L_Accu', 'R_Accu', 'L_Caud', 'R_Caud', 'L_Pall', 'R_Pall', 'L_Puta', 'R_Puta', 'L_Thal', 'R_Thal' ] if app.args.sgm_amyg_hipp: sgm_structures.extend(['L_Amyg', 'R_Amyg', 'L_Hipp', 'R_Hipp']) run.command('mrconvert input.mif T1.nii -stride -1,+2,+3') fast_t1_input = 'T1.nii' fast_t2_input = '' # Decide whether or not we're going to do any brain masking if os.path.exists('mask.mif'): fast_t1_input = 'T1_masked' + fsl_suffix # Check to see if the mask matches the T1 image if image.match('T1.nii', 'mask.mif'): run.command('mrcalc T1.nii mask.mif -mult ' + fast_t1_input) mask_path = 'mask.mif' else: app.warn('Mask image does not match input image - re-gridding') run.command( 'mrtransform mask.mif mask_regrid.mif -template T1.nii') run.command('mrcalc T1.nii mask_regrid.mif ' + fast_t1_input) mask_path = 'mask_regrid.mif' if os.path.exists('T2.nii'): fast_t2_input = 'T2_masked' + fsl_suffix run.command('mrcalc T2.nii ' + mask_path + ' -mult ' + fast_t2_input) elif app.args.premasked: fast_t1_input = 'T1.nii' if os.path.exists('T2.nii'): fast_t2_input = 'T2.nii' else: # Use FSL command standard_space_roi to do an initial masking of the image before BET # Also reduce the FoV of the image # Using MNI 1mm dilated brain mask rather than the -b option in standard_space_roi (which uses the 2mm mask); the latter looks 'buggy' to me... Unfortunately even with the 1mm 'dilated' mask, it can still cut into some brain areas, hence the explicit dilation mni_mask_path = os.path.join(fsl_path, 'data', 'standard', 'MNI152_T1_1mm_brain_mask_dil.nii.gz') mni_mask_dilation = 0 if os.path.exists(mni_mask_path): mni_mask_dilation = 4 else: mni_mask_path = os.path.join( fsl_path, 'data', 'standard', 'MNI152_T1_2mm_brain_mask_dil.nii.gz') if os.path.exists(mni_mask_path): mni_mask_dilation = 2 if mni_mask_dilation: run.command('maskfilter ' + mni_mask_path + ' dilate mni_mask.nii -npass ' + str(mni_mask_dilation)) if app.args.nocrop: ssroi_roi_option = ' -roiNONE' else: ssroi_roi_option = ' -roiFOV' run.command( ssroi_cmd + ' T1.nii T1_preBET' + fsl_suffix + ' -maskMASK mni_mask.nii' + ssroi_roi_option, False) else: run.command(ssroi_cmd + ' T1.nii T1_preBET' + fsl_suffix + ' -b', False) # For whatever reason, the output file from standard_space_roi may not be # completed before BET is run file.waitFor('T1_preBET' + fsl_suffix) # BET fast_t1_input = 'T1_BET' + fsl_suffix run.command(bet_cmd + ' T1_preBET' + fsl_suffix + ' ' + fast_t1_input + ' -f 0.15 -R') if os.path.exists('T2.nii'): if app.args.nocrop: fast_t2_input = 'T2.nii' else: # Just a reduction of FoV, no sub-voxel interpolation going on run.command('mrtransform T2.nii T2_cropped.nii -template ' + fast_t1_input + ' -interp nearest') fast_t2_input = 'T2_cropped.nii' # Finish branching based on brain masking # FAST if fast_t2_input: run.command(fast_cmd + ' -S 2 ' + fast_t2_input + ' ' + fast_t1_input) else: run.command(fast_cmd + ' ' + fast_t1_input) fast_output_prefix = fast_t1_input.split('.')[0] # FIRST first_input_is_brain_extracted = '' if app.args.premasked: first_input_is_brain_extracted = ' -b' run.command(first_cmd + ' -s ' + ','.join(sgm_structures) + ' -i T1.nii -o first' + first_input_is_brain_extracted) # Test to see whether or not FIRST has succeeded # However if the expected image is absent, it may be due to FIRST being run # on SGE; in this case it is necessary to wait and see if the file appears. # But even in this case, FIRST may still fail, and the file will never appear... combined_image_path = 'first_all_none_firstseg' + fsl_suffix if not os.path.isfile(combined_image_path): if 'SGE_ROOT' in os.environ: app.console( 'FSL FIRST job has been submitted to SGE; awaiting completion') app.console( '(note however that FIRST may fail, and hence this script may hang indefinitely)' ) file.waitFor(combined_image_path) else: app.error( 'FSL FIRST has failed; not all structures were segmented successfully (check ' + path.toTemp('first.logs', False) + ')') # Convert FIRST meshes to partial volume images pve_image_list = [] for struct in sgm_structures: pve_image_path = 'mesh2pve_' + struct + '.mif' vtk_in_path = 'first-' + struct + '_first.vtk' vtk_temp_path = struct + '.vtk' run.command('meshconvert ' + vtk_in_path + ' ' + vtk_temp_path + ' -transform first2real T1.nii') run.command('mesh2pve ' + vtk_temp_path + ' ' + fast_t1_input + ' ' + pve_image_path) pve_image_list.append(pve_image_path) pve_cat = ' '.join(pve_image_list) run.command('mrmath ' + pve_cat + ' sum - | mrcalc - 1.0 -min all_sgms.mif') # Looks like FAST in 5.0 ignores FSLOUTPUTTYPE when writing the PVE images # Will have to wait and see whether this changes, and update the script accordingly if fast_cmd == 'fast': fast_suffix = fsl_suffix else: fast_suffix = '.nii.gz' # Combine the tissue images into the 5TT format within the script itself # Step 1: Run LCC on the WM image run.command( 'mrthreshold ' + fast_output_prefix + '_pve_2' + fast_suffix + ' - -abs 0.001 | maskfilter - connect - -connectivity | mrcalc 1 - 1 -gt -sub remove_unconnected_wm_mask.mif -datatype bit' ) # Step 2: Generate the images in the same fashion as the 5ttgen command run.command('mrcalc ' + fast_output_prefix + '_pve_0' + fast_suffix + ' remove_unconnected_wm_mask.mif -mult csf.mif') run.command('mrcalc 1.0 csf.mif -sub all_sgms.mif -min sgm.mif') run.command('mrcalc 1.0 csf.mif sgm.mif -add -sub ' + fast_output_prefix + '_pve_1' + fast_suffix + ' ' + fast_output_prefix + '_pve_2' + fast_suffix + ' -add -div multiplier.mif') run.command( 'mrcalc multiplier.mif -finite multiplier.mif 0.0 -if multiplier_noNAN.mif' ) run.command( 'mrcalc ' + fast_output_prefix + '_pve_1' + fast_suffix + ' multiplier_noNAN.mif -mult remove_unconnected_wm_mask.mif -mult cgm.mif' ) run.command( 'mrcalc ' + fast_output_prefix + '_pve_2' + fast_suffix + ' multiplier_noNAN.mif -mult remove_unconnected_wm_mask.mif -mult wm.mif' ) run.command('mrcalc 0 wm.mif -min path.mif') run.command( 'mrcat cgm.mif sgm.mif wm.mif csf.mif path.mif - -axis 3 | mrconvert - combined_precrop.mif -stride +2,+3,+4,+1' ) # Use mrcrop to reduce file size (improves caching of image data during tracking) if app.args.nocrop: run.command('mrconvert combined_precrop.mif result.mif') else: run.command( 'mrmath combined_precrop.mif sum - -axis 3 | mrthreshold - - -abs 0.5 | mrcrop combined_precrop.mif result.mif -mask -' )
def execute(): #pylint: disable=unused-variable bzero_threshold = float( CONFIG['BZeroThreshold']) if 'BZeroThreshold' in CONFIG else 10.0 # CHECK INPUTS AND OPTIONS app.console('-------') # Get b-values and number of volumes per b-value. bvalues = [ int(round(float(x))) for x in image.mrinfo('dwi.mif', 'shell_bvalues').split() ] bvolumes = [int(x) for x in image.mrinfo('dwi.mif', 'shell_sizes').split()] app.console( str(len(bvalues)) + ' unique b-value(s) detected: ' + ','.join(map(str, bvalues)) + ' with ' + ','.join(map(str, bvolumes)) + ' volumes') if len(bvalues) < 2: raise MRtrixError('Need at least 2 unique b-values (including b=0).') bvalues_option = ' -shells ' + ','.join(map(str, bvalues)) # Get lmax information (if provided). sfwm_lmax = [] if app.ARGS.lmax: sfwm_lmax = [int(x.strip()) for x in app.ARGS.lmax.split(',')] if not len(sfwm_lmax) == len(bvalues): raise MRtrixError('Number of lmax\'s (' + str(len(sfwm_lmax)) + ', as supplied to the -lmax option: ' + ','.join(map(str, sfwm_lmax)) + ') does not match number of unique b-values.') for sfl in sfwm_lmax: if sfl % 2: raise MRtrixError( 'Values supplied to the -lmax option must be even.') if sfl < 0: raise MRtrixError( 'Values supplied to the -lmax option must be non-negative.' ) sfwm_lmax_option = '' if sfwm_lmax: sfwm_lmax_option = ' -lmax ' + ','.join(map(str, sfwm_lmax)) # PREPARATION app.console('-------') app.console('Preparation:') # Erode (brain) mask. if app.ARGS.erode > 0: app.console('* Eroding brain mask by ' + str(app.ARGS.erode) + ' pass(es)...') run.command('maskfilter mask.mif erode eroded_mask.mif -npass ' + str(app.ARGS.erode), show=False) else: app.console('Not eroding brain mask.') run.command('mrconvert mask.mif eroded_mask.mif -datatype bit', show=False) statmaskcount = image.statistics('mask.mif', mask='mask.mif').count statemaskcount = image.statistics('eroded_mask.mif', mask='eroded_mask.mif').count app.console(' [ mask: ' + str(statmaskcount) + ' -> ' + str(statemaskcount) + ' ]') # Get volumes, compute mean signal and SDM per b-value; compute overall SDM; get rid of erroneous values. app.console('* Computing signal decay metric (SDM):') totvolumes = 0 fullsdmcmd = 'mrcalc' errcmd = 'mrcalc' zeropath = 'mean_b' + str(bvalues[0]) + '.mif' for ibv, bval in enumerate(bvalues): app.console(' * b=' + str(bval) + '...') meanpath = 'mean_b' + str(bval) + '.mif' run.command('dwiextract dwi.mif -shells ' + str(bval) + ' - | mrcalc - 0 -max - | mrmath - mean ' + meanpath + ' -axis 3', show=False) errpath = 'err_b' + str(bval) + '.mif' run.command('mrcalc ' + meanpath + ' -finite ' + meanpath + ' 0 -if 0 -le ' + errpath + ' -datatype bit', show=False) errcmd += ' ' + errpath if ibv > 0: errcmd += ' -add' sdmpath = 'sdm_b' + str(bval) + '.mif' run.command('mrcalc ' + zeropath + ' ' + meanpath + ' -divide -log ' + sdmpath, show=False) totvolumes += bvolumes[ibv] fullsdmcmd += ' ' + sdmpath + ' ' + str(bvolumes[ibv]) + ' -mult' if ibv > 1: fullsdmcmd += ' -add' fullsdmcmd += ' ' + str(totvolumes) + ' -divide full_sdm.mif' run.command(fullsdmcmd, show=False) app.console('* Removing erroneous voxels from mask and correcting SDM...') run.command( 'mrcalc full_sdm.mif -finite full_sdm.mif 0 -if 0 -le err_sdm.mif -datatype bit', show=False) errcmd += ' err_sdm.mif -add 0 eroded_mask.mif -if safe_mask.mif -datatype bit' run.command(errcmd, show=False) run.command('mrcalc safe_mask.mif full_sdm.mif 0 -if 10 -min safe_sdm.mif', show=False) statsmaskcount = image.statistics('safe_mask.mif', mask='safe_mask.mif').count app.console(' [ mask: ' + str(statemaskcount) + ' -> ' + str(statsmaskcount) + ' ]') # CRUDE SEGMENTATION app.console('-------') app.console('Crude segmentation:') # Compute FA and principal eigenvectors; crude WM versus GM-CSF separation based on FA. app.console('* Crude WM versus GM-CSF separation (at FA=' + str(app.ARGS.fa) + ')...') run.command( 'dwi2tensor dwi.mif - -mask safe_mask.mif | tensor2metric - -fa safe_fa.mif -vector safe_vecs.mif -modulate none -mask safe_mask.mif', show=False) run.command('mrcalc safe_mask.mif safe_fa.mif 0 -if ' + str(app.ARGS.fa) + ' -gt crude_wm.mif -datatype bit', show=False) run.command( 'mrcalc crude_wm.mif 0 safe_mask.mif -if _crudenonwm.mif -datatype bit', show=False) statcrudewmcount = image.statistics('crude_wm.mif', mask='crude_wm.mif').count statcrudenonwmcount = image.statistics('_crudenonwm.mif', mask='_crudenonwm.mif').count app.console(' [ ' + str(statsmaskcount) + ' -> ' + str(statcrudewmcount) + ' (WM) & ' + str(statcrudenonwmcount) + ' (GM-CSF) ]') # Crude GM versus CSF separation based on SDM. app.console('* Crude GM versus CSF separation...') crudenonwmmedian = image.statistics('safe_sdm.mif', mask='_crudenonwm.mif').median run.command( 'mrcalc _crudenonwm.mif safe_sdm.mif ' + str(crudenonwmmedian) + ' -subtract 0 -if - | mrthreshold - - -mask _crudenonwm.mif | mrcalc _crudenonwm.mif - 0 -if crude_csf.mif -datatype bit', show=False) run.command( 'mrcalc crude_csf.mif 0 _crudenonwm.mif -if crude_gm.mif -datatype bit', show=False) statcrudegmcount = image.statistics('crude_gm.mif', mask='crude_gm.mif').count statcrudecsfcount = image.statistics('crude_csf.mif', mask='crude_csf.mif').count app.console(' [ ' + str(statcrudenonwmcount) + ' -> ' + str(statcrudegmcount) + ' (GM) & ' + str(statcrudecsfcount) + ' (CSF) ]') # REFINED SEGMENTATION app.console('-------') app.console('Refined segmentation:') # Refine WM: remove high SDM outliers. app.console('* Refining WM...') crudewmmedian = image.statistics('safe_sdm.mif', mask='crude_wm.mif').median run.command('mrcalc crude_wm.mif safe_sdm.mif ' + str(crudewmmedian) + ' -subtract -abs 0 -if _crudewm_sdmad.mif', show=False) crudewmmad = image.statistics('_crudewm_sdmad.mif', mask='crude_wm.mif').median crudewmoutlthresh = crudewmmedian + (1.4826 * crudewmmad * 2.0) run.command('mrcalc crude_wm.mif safe_sdm.mif 0 -if ' + str(crudewmoutlthresh) + ' -gt _crudewmoutliers.mif -datatype bit', show=False) run.command( 'mrcalc _crudewmoutliers.mif 0 crude_wm.mif -if refined_wm.mif -datatype bit', show=False) statrefwmcount = image.statistics('refined_wm.mif', mask='refined_wm.mif').count app.console(' [ WM: ' + str(statcrudewmcount) + ' -> ' + str(statrefwmcount) + ' ]') # Refine GM: separate safer GM from partial volumed voxels. app.console('* Refining GM...') crudegmmedian = image.statistics('safe_sdm.mif', mask='crude_gm.mif').median run.command('mrcalc crude_gm.mif safe_sdm.mif 0 -if ' + str(crudegmmedian) + ' -gt _crudegmhigh.mif -datatype bit', show=False) run.command( 'mrcalc _crudegmhigh.mif 0 crude_gm.mif -if _crudegmlow.mif -datatype bit', show=False) run.command( 'mrcalc _crudegmhigh.mif safe_sdm.mif ' + str(crudegmmedian) + ' -subtract 0 -if - | mrthreshold - - -mask _crudegmhigh.mif -invert | mrcalc _crudegmhigh.mif - 0 -if _crudegmhighselect.mif -datatype bit', show=False) run.command( 'mrcalc _crudegmlow.mif safe_sdm.mif ' + str(crudegmmedian) + ' -subtract -neg 0 -if - | mrthreshold - - -mask _crudegmlow.mif -invert | mrcalc _crudegmlow.mif - 0 -if _crudegmlowselect.mif -datatype bit', show=False) run.command( 'mrcalc _crudegmhighselect.mif 1 _crudegmlowselect.mif -if refined_gm.mif -datatype bit', show=False) statrefgmcount = image.statistics('refined_gm.mif', mask='refined_gm.mif').count app.console(' [ GM: ' + str(statcrudegmcount) + ' -> ' + str(statrefgmcount) + ' ]') # Refine CSF: recover lost CSF from crude WM SDM outliers, separate safer CSF from partial volumed voxels. app.console('* Refining CSF...') crudecsfmin = image.statistics('safe_sdm.mif', mask='crude_csf.mif').min run.command('mrcalc _crudewmoutliers.mif safe_sdm.mif 0 -if ' + str(crudecsfmin) + ' -gt 1 crude_csf.mif -if _crudecsfextra.mif -datatype bit', show=False) run.command( 'mrcalc _crudecsfextra.mif safe_sdm.mif ' + str(crudecsfmin) + ' -subtract 0 -if - | mrthreshold - - -mask _crudecsfextra.mif | mrcalc _crudecsfextra.mif - 0 -if refined_csf.mif -datatype bit', show=False) statrefcsfcount = image.statistics('refined_csf.mif', mask='refined_csf.mif').count app.console(' [ CSF: ' + str(statcrudecsfcount) + ' -> ' + str(statrefcsfcount) + ' ]') # FINAL VOXEL SELECTION AND RESPONSE FUNCTION ESTIMATION app.console('-------') app.console('Final voxel selection and response function estimation:') # Get final voxels for CSF response function estimation from refined CSF. app.console('* CSF:') app.console(' * Selecting final voxels (' + str(app.ARGS.csf) + '% of refined CSF)...') voxcsfcount = int(round(statrefcsfcount * app.ARGS.csf / 100.0)) run.command( 'mrcalc refined_csf.mif safe_sdm.mif 0 -if - | mrthreshold - - -top ' + str(voxcsfcount) + ' -ignorezero | mrcalc refined_csf.mif - 0 -if - -datatype bit | mrconvert - voxels_csf.mif -axes 0,1,2', show=False) statvoxcsfcount = image.statistics('voxels_csf.mif', mask='voxels_csf.mif').count app.console(' [ CSF: ' + str(statrefcsfcount) + ' -> ' + str(statvoxcsfcount) + ' ]') # Estimate CSF response function app.console(' * Estimating response function...') run.command( 'amp2response dwi.mif voxels_csf.mif safe_vecs.mif response_csf.txt' + bvalues_option + ' -isotropic', show=False) # Get final voxels for GM response function estimation from refined GM. app.console('* GM:') app.console(' * Selecting final voxels (' + str(app.ARGS.gm) + '% of refined GM)...') voxgmcount = int(round(statrefgmcount * app.ARGS.gm / 100.0)) refgmmedian = image.statistics('safe_sdm.mif', mask='refined_gm.mif').median run.command( 'mrcalc refined_gm.mif safe_sdm.mif ' + str(refgmmedian) + ' -subtract -abs 1 -add 0 -if - | mrthreshold - - -bottom ' + str(voxgmcount) + ' -ignorezero | mrcalc refined_gm.mif - 0 -if - -datatype bit | mrconvert - voxels_gm.mif -axes 0,1,2', show=False) statvoxgmcount = image.statistics('voxels_gm.mif', mask='voxels_gm.mif').count app.console(' [ GM: ' + str(statrefgmcount) + ' -> ' + str(statvoxgmcount) + ' ]') # Estimate GM response function app.console(' * Estimating response function...') run.command( 'amp2response dwi.mif voxels_gm.mif safe_vecs.mif response_gm.txt' + bvalues_option + ' -isotropic', show=False) # Get final voxels for single-fibre WM response function estimation from refined WM. app.console('* Single-fibre WM:') app.console(' * Selecting final voxels' + ('' if app.ARGS.wm_algo == 'tax' else (' (' + str(app.ARGS.sfwm) + '% of refined WM)')) + '...') voxsfwmcount = int(round(statrefwmcount * app.ARGS.sfwm / 100.0)) if app.ARGS.wm_algo: recursive_cleanup_option = '' if not app.DO_CLEANUP: recursive_cleanup_option = ' -nocleanup' app.console(' Selecting WM single-fibre voxels using \'' + app.ARGS.wm_algo + '\' algorithm') if app.ARGS.wm_algo == 'tax' and app.ARGS.sfwm != 0.5: app.warn( 'Single-fibre WM response function selection algorithm "tax" will not honour requested WM voxel percentage' ) run.command( 'dwi2response ' + app.ARGS.wm_algo + ' dwi.mif _respsfwmss.txt -mask refined_wm.mif -voxels voxels_sfwm.mif' + ('' if app.ARGS.wm_algo == 'tax' else (' -number ' + str(voxsfwmcount))) + ' -scratch ' + path.quote(app.SCRATCH_DIR) + recursive_cleanup_option, show=False) else: app.console( ' Selecting WM single-fibre voxels using built-in (Dhollander et al., 2019) algorithm' ) run.command('mrmath dwi.mif mean mean_sig.mif -axis 3', show=False) refwmcoef = image.statistics('mean_sig.mif', mask='refined_wm.mif').median * math.sqrt( 4.0 * math.pi) if sfwm_lmax: isiso = [lm == 0 for lm in sfwm_lmax] else: isiso = [bv < bzero_threshold for bv in bvalues] with open('ewmrf.txt', 'w') as ewr: for iis in isiso: if iis: ewr.write("%s 0 0 0\n" % refwmcoef) else: ewr.write("%s -%s %s -%s\n" % (refwmcoef, refwmcoef, refwmcoef, refwmcoef)) run.command( 'dwi2fod msmt_csd dwi.mif ewmrf.txt abs_ewm2.mif response_csf.txt abs_csf2.mif -mask refined_wm.mif -lmax 2,0' + bvalues_option, show=False) run.command( 'mrconvert abs_ewm2.mif - -coord 3 0 | mrcalc - abs_csf2.mif -add abs_sum2.mif', show=False) run.command( 'sh2peaks abs_ewm2.mif - -num 1 -mask refined_wm.mif | peaks2amp - - | mrcalc - abs_sum2.mif -divide - | mrconvert - metric_sfwm2.mif -coord 3 0 -axes 0,1,2', show=False) run.command( 'mrcalc refined_wm.mif metric_sfwm2.mif 0 -if - | mrthreshold - - -top ' + str(voxsfwmcount * 2) + ' -ignorezero | mrcalc refined_wm.mif - 0 -if - -datatype bit | mrconvert - refined_sfwm.mif -axes 0,1,2', show=False) run.command( 'dwi2fod msmt_csd dwi.mif ewmrf.txt abs_ewm6.mif response_csf.txt abs_csf6.mif -mask refined_sfwm.mif -lmax 6,0' + bvalues_option, show=False) run.command( 'mrconvert abs_ewm6.mif - -coord 3 0 | mrcalc - abs_csf6.mif -add abs_sum6.mif', show=False) run.command( 'sh2peaks abs_ewm6.mif - -num 1 -mask refined_sfwm.mif | peaks2amp - - | mrcalc - abs_sum6.mif -divide - | mrconvert - metric_sfwm6.mif -coord 3 0 -axes 0,1,2', show=False) run.command( 'mrcalc refined_sfwm.mif metric_sfwm6.mif 0 -if - | mrthreshold - - -top ' + str(voxsfwmcount) + ' -ignorezero | mrcalc refined_sfwm.mif - 0 -if - -datatype bit | mrconvert - voxels_sfwm.mif -axes 0,1,2', show=False) statvoxsfwmcount = image.statistics('voxels_sfwm.mif', mask='voxels_sfwm.mif').count app.console(' [ WM: ' + str(statrefwmcount) + ' -> ' + str(statvoxsfwmcount) + ' (single-fibre) ]') # Estimate SF WM response function app.console(' * Estimating response function...') run.command( 'amp2response dwi.mif voxels_sfwm.mif safe_vecs.mif response_sfwm.txt' + bvalues_option + sfwm_lmax_option, show=False) # OUTPUT AND SUMMARY app.console('-------') app.console('Generating outputs...') # Generate 4D binary images with voxel selections at major stages in algorithm (RGB: WM=blue, GM=green, CSF=red). run.command( 'mrcat crude_csf.mif crude_gm.mif crude_wm.mif check_crude.mif -axis 3', show=False) run.command( 'mrcat refined_csf.mif refined_gm.mif refined_wm.mif check_refined.mif -axis 3', show=False) run.command( 'mrcat voxels_csf.mif voxels_gm.mif voxels_sfwm.mif check_voxels.mif -axis 3', show=False) # Copy results to output files run.function(shutil.copyfile, 'response_sfwm.txt', path.from_user(app.ARGS.out_sfwm, False), show=False) run.function(shutil.copyfile, 'response_gm.txt', path.from_user(app.ARGS.out_gm, False), show=False) run.function(shutil.copyfile, 'response_csf.txt', path.from_user(app.ARGS.out_csf, False), show=False) if app.ARGS.voxels: run.command('mrconvert check_voxels.mif ' + path.from_user(app.ARGS.voxels), mrconvert_keyval=path.from_user(app.ARGS.input, False), force=app.FORCE_OVERWRITE, show=False) app.console('-------')
def command(cmd, exitOnError=True): import inspect, itertools, os, shlex, subprocess, sys, tempfile from distutils.spawn import find_executable from mrtrix3 import app # This is the only global variable that is _modified_ within this function global _processes # Vectorise the command string, preserving anything encased within quotation marks cmdsplit = shlex.split(cmd) if app._lastFile: # Check to see if the last file produced in the previous script execution is # intended to be produced by this command; if it is, this will be the last # command that gets skipped by the -continue option # It's possible that the file might be defined in a '--option=XXX' style argument # It's also possible that the filename in the command string has the file extension omitted for entry in cmdsplit: if entry.startswith('--') and '=' in entry: cmdtotest = entry.split('=')[1] else: cmdtotest = entry filetotest = [ app._lastFile, os.path.splitext(app._lastFile)[0] ] if cmdtotest in filetotest: app.debug('Detected last file \'' + app._lastFile + '\' in command \'' + cmd + '\'; this is the last run.command() / run.function() call that will be skipped') app._lastFile = '' break if app._verbosity: sys.stderr.write(app.colourExec + 'Skipping command:' + app.colourClear + ' ' + cmd + '\n') sys.stderr.flush() return # This splits the command string based on the piping character '|', such that each # individual executable (along with its arguments) appears as its own list # Note that for Python2 support, it is necessary to convert groupby() output from # a generator to a list before it is passed to filter() cmdstack = [ list(g) for k, g in filter(lambda t : t[0], ((k, list(g)) for k, g in itertools.groupby(cmdsplit, lambda s : s is not '|') ) ) ] for line in cmdstack: is_mrtrix_exe = line[0] in _mrtrix_exe_list if is_mrtrix_exe: line[0] = versionMatch(line[0]) if app._nthreads is not None: line.extend( [ '-nthreads', str(app._nthreads) ] ) # Get MRtrix3 binaries to output additional INFO-level information if running in debug mode if app._verbosity == 3: line.append('-info') elif not app._verbosity: line.append('-quiet') else: line[0] = exeName(line[0]) shebang = _shebang(line[0]) if len(shebang): if not is_mrtrix_exe: # If a shebang is found, and this call is therefore invoking an # interpreter, can't rely on the interpreter finding the script # from PATH; need to find the full path ourselves. line[0] = find_executable(line[0]) for item in reversed(shebang): line.insert(0, item) if app._verbosity: sys.stderr.write(app.colourExec + 'Command:' + app.colourClear + ' ' + cmd + '\n') sys.stderr.flush() app.debug('To execute: ' + str(cmdstack)) # Construct temporary text files for holding stdout / stderr contents when appropriate # (One entry per process; each is a tuple containing two entries, each of which is either a # file-like object, or None) tempfiles = [ ] # Execute all processes _processes = [ ] for index, command in enumerate(cmdstack): file_out = None file_err = None # If there's at least one command prior to this, need to receive the stdout from the prior command # at the stdin of this command; otherwise, nothing to receive if index > 0: handle_in = _processes[index-1].stdout else: handle_in = None # If this is not the last command, then stdout needs to be piped to the next command; # otherwise, write stdout to a temporary file so that the contents can be read later if index < len(cmdstack)-1: handle_out = subprocess.PIPE else: file_out = tempfile.TemporaryFile() handle_out = file_out.fileno() # If we're in debug / info mode, the contents of stderr will be read and printed to the terminal # as the command progresses, hence this needs to go to a pipe; otherwise, write it to a temporary # file so that the contents can be read later if app._verbosity > 1: handle_err = subprocess.PIPE else: file_err = tempfile.TemporaryFile() handle_err = file_err.fileno() # Set off the processes try: process = subprocess.Popen (command, stdin=handle_in, stdout=handle_out, stderr=handle_err, env=_env) _processes.append(process) tempfiles.append( ( file_out, file_err ) ) # FileNotFoundError not defined in Python 2.7 except OSError as e: if exitOnError: app.error('\'' + command[0] + '\' not executed ("' + str(e) + '"); script cannot proceed') else: app.warn('\'' + command[0] + '\' not executed ("' + str(e) + '")') for p in _processes: p.terminate() _processes = [ ] break except (KeyboardInterrupt, SystemExit): import inspect, signal app._handler(signal.SIGINT, inspect.currentframe()) return_stdout = '' return_stderr = '' error = False error_text = '' # Wait for all commands to complete try: # Switch how we monitor running processes / wait for them to complete # depending on whether or not the user has specified -verbose or -debug option if app._verbosity > 1: for process in _processes: stderrdata = '' while True: # Have to read one character at a time: Waiting for a newline character using e.g. readline() will prevent MRtrix progressbars from appearing line = process.stderr.read(1).decode('utf-8') sys.stderr.write(line) sys.stderr.flush() stderrdata += line if not line and process.poll() is not None: break return_stderr += stderrdata if process.returncode: error = True error_text += stderrdata else: for process in _processes: process.wait() except (KeyboardInterrupt, SystemExit): import inspect, signal app._handler(signal.SIGINT, inspect.currentframe()) # For any command stdout / stderr data that wasn't either passed to another command or # printed to the terminal during execution, read it here. for index in range(len(cmdstack)): if tempfiles[index][0] is not None: tempfiles[index][0].flush() tempfiles[index][0].seek(0) stdout_text = tempfiles[index][0].read().decode('utf-8') return_stdout += stdout_text if _processes[index].returncode: error = True error_text += stdout_text if tempfiles[index][1] is not None: tempfiles[index][1].flush() tempfiles[index][1].seek(0) stderr_text = tempfiles[index][1].read().decode('utf-8') return_stderr += stderr_text if _processes[index].returncode: error = True error_text += stderr_text _processes = [ ] if (error): app._cleanup = False if exitOnError: caller = inspect.getframeinfo(inspect.stack()[1][0]) app.console('') sys.stderr.write(os.path.basename(sys.argv[0]) + ': ' + app.colourError + '[ERROR] Command failed: ' + cmd + app.colourClear + app.colourDebug + ' (' + os.path.basename(caller.filename) + ':' + str(caller.lineno) + ')' + app.colourClear + '\n') sys.stderr.write(os.path.basename(sys.argv[0]) + ': ' + app.colourConsole + 'Output of failed command:' + app.colourClear + '\n') sys.stderr.write(error_text) sys.stderr.flush() if app._tempDir: with open(os.path.join(app._tempDir, 'error.txt'), 'w') as outfile: outfile.write(cmd + '\n\n' + error_text + '\n') app.complete() sys.exit(1) else: app.warn('Command failed: ' + cmd) # Only now do we append to the script log, since the command has completed successfully # Note: Writing the command as it was formed as the input to run.command(): # other flags may potentially change if this file is eventually used to resume the script if app._tempDir: with open(os.path.join(app._tempDir, 'log.txt'), 'a') as outfile: outfile.write(cmd + '\n') return (return_stdout, return_stderr)
def execute(): #pylint: disable=unused-variable lmax_option = '' if app.ARGS.lmax: lmax_option = ' -lmax ' + app.ARGS.lmax if app.ARGS.max_iters < 2: raise MRtrixError('Number of iterations must be at least 2') progress = app.ProgressBar('Optimising') iter_voxels = app.ARGS.iter_voxels if iter_voxels == 0: iter_voxels = 10 * app.ARGS.number elif iter_voxels < app.ARGS.number: raise MRtrixError( 'Number of selected voxels (-iter_voxels) must be greater than number of voxels desired (-number)' ) iteration = 0 while iteration < app.ARGS.max_iters: prefix = 'iter' + str(iteration) + '_' if iteration == 0: rf_in_path = 'init_RF.txt' mask_in_path = 'mask.mif' init_rf = '1 -1 1' with open(rf_in_path, 'w') as init_rf_file: init_rf_file.write(init_rf) iter_lmax_option = ' -lmax 4' else: rf_in_path = 'iter' + str(iteration - 1) + '_RF.txt' mask_in_path = 'iter' + str(iteration - 1) + '_SF_dilated.mif' iter_lmax_option = lmax_option # Run CSD run.command('dwi2fod csd dwi.mif ' + rf_in_path + ' ' + prefix + 'FOD.mif -mask ' + mask_in_path) # Get amplitudes of two largest peaks, and direction of largest run.command('fod2fixel ' + prefix + 'FOD.mif ' + prefix + 'fixel -peak peaks.mif -mask ' + mask_in_path + ' -fmls_no_thresholds') app.cleanup(prefix + 'FOD.mif') if iteration: app.cleanup(mask_in_path) run.command('fixel2voxel ' + prefix + 'fixel/peaks.mif none ' + prefix + 'amps.mif -number 2') run.command('mrconvert ' + prefix + 'amps.mif ' + prefix + 'first_peaks.mif -coord 3 0 -axes 0,1,2') run.command('mrconvert ' + prefix + 'amps.mif ' + prefix + 'second_peaks.mif -coord 3 1 -axes 0,1,2') app.cleanup(prefix + 'amps.mif') run.command('fixel2peaks ' + prefix + 'fixel/directions.mif ' + prefix + 'first_dir.mif -number 1') app.cleanup(prefix + 'fixel') # Calculate the 'cost function' Donald derived for selecting single-fibre voxels # https://github.com/MRtrix3/mrtrix3/pull/426 # sqrt(|peak1|) * (1 - |peak2| / |peak1|)^2 run.command('mrcalc ' + prefix + 'first_peaks.mif -sqrt 1 ' + prefix + 'second_peaks.mif ' + prefix + 'first_peaks.mif -div -sub 2 -pow -mult ' + prefix + 'CF.mif') app.cleanup(prefix + 'first_peaks.mif') app.cleanup(prefix + 'second_peaks.mif') voxel_count = image.statistics(prefix + 'CF.mif').count # Select the top-ranked voxels run.command('mrthreshold ' + prefix + 'CF.mif -top ' + str(min([app.ARGS.number, voxel_count])) + ' ' + prefix + 'SF.mif') # Generate a new response function based on this selection run.command('amp2response dwi.mif ' + prefix + 'SF.mif ' + prefix + 'first_dir.mif ' + prefix + 'RF.txt' + iter_lmax_option) app.cleanup(prefix + 'first_dir.mif') new_rf = matrix.load_vector(prefix + 'RF.txt') progress.increment('Optimising (' + str(iteration + 1) + ' iterations, RF: [ ' + ', '.join('{:.3f}'.format(n) for n in new_rf) + '] )') # Should we terminate? if iteration > 0: run.command('mrcalc ' + prefix + 'SF.mif iter' + str(iteration - 1) + '_SF.mif -sub ' + prefix + 'SF_diff.mif') app.cleanup('iter' + str(iteration - 1) + '_SF.mif') max_diff = image.statistics(prefix + 'SF_diff.mif').max app.cleanup(prefix + 'SF_diff.mif') if not max_diff: app.cleanup(prefix + 'CF.mif') run.function(shutil.copyfile, prefix + 'RF.txt', 'response.txt') run.function(shutil.move, prefix + 'SF.mif', 'voxels.mif') break # Select a greater number of top single-fibre voxels, and dilate (within bounds of initial mask); # these are the voxels that will be re-tested in the next iteration run.command('mrthreshold ' + prefix + 'CF.mif -top ' + str(min([iter_voxels, voxel_count])) + ' - | maskfilter - dilate - -npass ' + str(app.ARGS.dilate) + ' | mrcalc mask.mif - -mult ' + prefix + 'SF_dilated.mif') app.cleanup(prefix + 'CF.mif') iteration += 1 progress.done() # If terminating due to running out of iterations, still need to put the results in the appropriate location if os.path.exists('response.txt'): app.console( 'Convergence of SF voxel selection detected at iteration ' + str(iteration + 1)) else: app.console('Exiting after maximum ' + str(app.ARGS.max_iters) + ' iterations') run.function(shutil.copyfile, 'iter' + str(app.ARGS.max_iters - 1) + '_RF.txt', 'response.txt') run.function(shutil.move, 'iter' + str(app.ARGS.max_iters - 1) + '_SF.mif', 'voxels.mif') run.function(shutil.copyfile, 'response.txt', path.from_user(app.ARGS.output, False)) if app.ARGS.voxels: run.command('mrconvert voxels.mif ' + path.from_user(app.ARGS.voxels), mrconvert_keyval=path.from_user(app.ARGS.input, False), force=app.FORCE_OVERWRITE)
def execute(): import math, os, shutil from mrtrix3 import app, image, path, run # Get b-values and number of volumes per b-value. bvalues = [ int(round(float(x))) for x in image.headerField('dwi.mif', 'shells').split() ] bvolumes = [ int(x) for x in image.headerField('dwi.mif', 'shellcounts').split() ] app.console(str(len(bvalues)) + ' unique b-value(s) detected: ' + ','.join(map(str,bvalues)) + ' with ' + ','.join(map(str,bvolumes)) + ' volumes.') if len(bvalues) < 2: app.error('Need at least 2 unique b-values (including b=0).') # Get lmax information (if provided). sfwm_lmax = [ ] if app.args.lmax: sfwm_lmax = [ int(x.strip()) for x in app.args.lmax.split(',') ] if not len(sfwm_lmax) == len(bvalues): app.error('Number of lmax\'s (' + str(len(sfwm_lmax)) + ', as supplied to the -lmax option: ' + ','.join(map(str,sfwm_lmax)) + ') does not match number of unique b-values.') for l in sfwm_lmax: if l%2: app.error('Values supplied to the -lmax option must be even.') if l<0: app.error('Values supplied to the -lmax option must be non-negative.') # Erode (brain) mask. if app.args.erode > 0: run.command('maskfilter mask.mif erode eroded_mask.mif -npass ' + str(app.args.erode)) else: run.command('mrconvert mask.mif eroded_mask.mif -datatype bit') # Get volumes, compute mean signal and SDM per b-value; compute overall SDM; get rid of erroneous values. totvolumes = 0 fullsdmcmd = 'mrcalc' errcmd = 'mrcalc' zeropath = 'mean_b' + str(bvalues[0]) + '.mif' for i, b in enumerate(bvalues): meanpath = 'mean_b' + str(b) + '.mif' run.command('dwiextract dwi.mif -shell ' + str(b) + ' - | mrmath - mean ' + meanpath + ' -axis 3') errpath = 'err_b' + str(b) + '.mif' run.command('mrcalc ' + meanpath + ' -finite ' + meanpath + ' 0 -if 0 -le ' + errpath + ' -datatype bit') errcmd += ' ' + errpath if i>0: errcmd += ' -add' sdmpath = 'sdm_b' + str(b) + '.mif' run.command('mrcalc ' + zeropath + ' ' + meanpath + ' -divide -log ' + sdmpath) totvolumes += bvolumes[i] fullsdmcmd += ' ' + sdmpath + ' ' + str(bvolumes[i]) + ' -mult' if i>1: fullsdmcmd += ' -add' fullsdmcmd += ' ' + str(totvolumes) + ' -divide full_sdm.mif' run.command(fullsdmcmd) run.command('mrcalc full_sdm.mif -finite full_sdm.mif 0 -if 0 -le err_sdm.mif -datatype bit') errcmd += ' err_sdm.mif -add 0 eroded_mask.mif -if safe_mask.mif -datatype bit' run.command(errcmd) run.command('mrcalc safe_mask.mif full_sdm.mif 0 -if 10 -min safe_sdm.mif') # Compute FA and principal eigenvectors; crude WM versus GM-CSF separation based on FA. run.command('dwi2tensor dwi.mif - -mask safe_mask.mif | tensor2metric - -fa safe_fa.mif -vector safe_vecs.mif -modulate none -mask safe_mask.mif') run.command('mrcalc safe_mask.mif safe_fa.mif 0 -if ' + str(app.args.fa) + ' -gt crude_wm.mif -datatype bit') run.command('mrcalc crude_wm.mif 0 safe_mask.mif -if _crudenonwm.mif -datatype bit') # Crude GM versus CSF separation based on SDM. crudenonwmmedian = image.statistic('safe_sdm.mif', 'median', '_crudenonwm.mif') run.command('mrcalc _crudenonwm.mif safe_sdm.mif ' + str(crudenonwmmedian) + ' -subtract 0 -if - | mrthreshold - - -mask _crudenonwm.mif | mrcalc _crudenonwm.mif - 0 -if crude_csf.mif -datatype bit') run.command('mrcalc crude_csf.mif 0 _crudenonwm.mif -if crude_gm.mif -datatype bit') # Refine WM: remove high SDM outliers. crudewmmedian = image.statistic('safe_sdm.mif', 'median', 'crude_wm.mif') run.command('mrcalc crude_wm.mif safe_sdm.mif 0 -if ' + str(crudewmmedian) + ' -gt _crudewmhigh.mif -datatype bit') run.command('mrcalc _crudewmhigh.mif 0 crude_wm.mif -if _crudewmlow.mif -datatype bit') crudewmQ1 = float(image.statistic('safe_sdm.mif', 'median', '_crudewmlow.mif')) crudewmQ3 = float(image.statistic('safe_sdm.mif', 'median', '_crudewmhigh.mif')) crudewmoutlthresh = crudewmQ3 + (crudewmQ3 - crudewmQ1) run.command('mrcalc crude_wm.mif safe_sdm.mif 0 -if ' + str(crudewmoutlthresh) + ' -gt _crudewmoutliers.mif -datatype bit') run.command('mrcalc _crudewmoutliers.mif 0 crude_wm.mif -if refined_wm.mif -datatype bit') # Refine GM: separate safer GM from partial volumed voxels. crudegmmedian = image.statistic('safe_sdm.mif', 'median', 'crude_gm.mif') run.command('mrcalc crude_gm.mif safe_sdm.mif 0 -if ' + str(crudegmmedian) + ' -gt _crudegmhigh.mif -datatype bit') run.command('mrcalc _crudegmhigh.mif 0 crude_gm.mif -if _crudegmlow.mif -datatype bit') run.command('mrcalc _crudegmhigh.mif safe_sdm.mif ' + str(crudegmmedian) + ' -subtract 0 -if - | mrthreshold - - -mask _crudegmhigh.mif -invert | mrcalc _crudegmhigh.mif - 0 -if _crudegmhighselect.mif -datatype bit') run.command('mrcalc _crudegmlow.mif safe_sdm.mif ' + str(crudegmmedian) + ' -subtract -neg 0 -if - | mrthreshold - - -mask _crudegmlow.mif -invert | mrcalc _crudegmlow.mif - 0 -if _crudegmlowselect.mif -datatype bit') run.command('mrcalc _crudegmhighselect.mif 1 _crudegmlowselect.mif -if refined_gm.mif -datatype bit') # Refine CSF: recover lost CSF from crude WM SDM outliers, separate safer CSF from partial volumed voxels. crudecsfmin = image.statistic('safe_sdm.mif', 'min', 'crude_csf.mif') run.command('mrcalc _crudewmoutliers.mif safe_sdm.mif 0 -if ' + str(crudecsfmin) + ' -gt 1 crude_csf.mif -if _crudecsfextra.mif -datatype bit') run.command('mrcalc _crudecsfextra.mif safe_sdm.mif ' + str(crudecsfmin) + ' -subtract 0 -if - | mrthreshold - - -mask _crudecsfextra.mif | mrcalc _crudecsfextra.mif - 0 -if refined_csf.mif -datatype bit') # Get final voxels for single-fibre WM response function estimation from WM using 'tournier' algorithm. refwmcount = float(image.statistic('refined_wm.mif', 'count', 'refined_wm.mif')) voxsfwmcount = int(round(refwmcount * app.args.sfwm / 100.0)) app.console('Running \'tournier\' algorithm to select ' + str(voxsfwmcount) + ' single-fibre WM voxels.') cleanopt = '' if not app._cleanup: cleanopt = ' -nocleanup' run.command('dwi2response tournier dwi.mif _respsfwmss.txt -sf_voxels ' + str(voxsfwmcount) + ' -iter_voxels ' + str(voxsfwmcount * 10) + ' -mask refined_wm.mif -voxels voxels_sfwm.mif -tempdir ' + app._tempDir + cleanopt) # Get final voxels for GM response function estimation from GM. refgmmedian = image.statistic('safe_sdm.mif', 'median', 'refined_gm.mif') run.command('mrcalc refined_gm.mif safe_sdm.mif 0 -if ' + str(refgmmedian) + ' -gt _refinedgmhigh.mif -datatype bit') run.command('mrcalc _refinedgmhigh.mif 0 refined_gm.mif -if _refinedgmlow.mif -datatype bit') refgmhighcount = float(image.statistic('_refinedgmhigh.mif', 'count', '_refinedgmhigh.mif')) refgmlowcount = float(image.statistic('_refinedgmlow.mif', 'count', '_refinedgmlow.mif')) voxgmhighcount = int(round(refgmhighcount * app.args.gm / 100.0)) voxgmlowcount = int(round(refgmlowcount * app.args.gm / 100.0)) run.command('mrcalc _refinedgmhigh.mif safe_sdm.mif 0 -if - | mrthreshold - - -bottom ' + str(voxgmhighcount) + ' -ignorezero | mrcalc _refinedgmhigh.mif - 0 -if _refinedgmhighselect.mif -datatype bit') run.command('mrcalc _refinedgmlow.mif safe_sdm.mif 0 -if - | mrthreshold - - -top ' + str(voxgmlowcount) + ' -ignorezero | mrcalc _refinedgmlow.mif - 0 -if _refinedgmlowselect.mif -datatype bit') run.command('mrcalc _refinedgmhighselect.mif 1 _refinedgmlowselect.mif -if voxels_gm.mif -datatype bit') # Get final voxels for CSF response function estimation from CSF. refcsfcount = float(image.statistic('refined_csf.mif', 'count', 'refined_csf.mif')) voxcsfcount = int(round(refcsfcount * app.args.csf / 100.0)) run.command('mrcalc refined_csf.mif safe_sdm.mif 0 -if - | mrthreshold - - -top ' + str(voxcsfcount) + ' -ignorezero | mrcalc refined_csf.mif - 0 -if voxels_csf.mif -datatype bit') # Show summary of voxels counts. textarrow = ' --> ' app.console('Summary of voxel counts:') app.console('Mask: ' + str(int(image.statistic('mask.mif', 'count', 'mask.mif'))) + textarrow + str(int(image.statistic('eroded_mask.mif', 'count', 'eroded_mask.mif'))) + textarrow + str(int(image.statistic('safe_mask.mif', 'count', 'safe_mask.mif')))) app.console('WM: ' + str(int(image.statistic('crude_wm.mif', 'count', 'crude_wm.mif'))) + textarrow + str(int(image.statistic('refined_wm.mif', 'count', 'refined_wm.mif'))) + textarrow + str(int(image.statistic('voxels_sfwm.mif', 'count', 'voxels_sfwm.mif'))) + ' (SF)') app.console('GM: ' + str(int(image.statistic('crude_gm.mif', 'count', 'crude_gm.mif'))) + textarrow + str(int(image.statistic('refined_gm.mif', 'count', 'refined_gm.mif'))) + textarrow + str(int(image.statistic('voxels_gm.mif', 'count', 'voxels_gm.mif')))) app.console('CSF: ' + str(int(image.statistic('crude_csf.mif', 'count', 'crude_csf.mif'))) + textarrow + str(int(image.statistic('refined_csf.mif', 'count', 'refined_csf.mif'))) + textarrow + str(int(image.statistic('voxels_csf.mif', 'count', 'voxels_csf.mif')))) # Generate single-fibre WM, GM and CSF responses bvalues_option = ' -shell ' + ','.join(map(str,bvalues)) sfwm_lmax_option = '' if sfwm_lmax: sfwm_lmax_option = ' -lmax ' + ','.join(map(str,sfwm_lmax)) run.command('amp2response dwi.mif voxels_sfwm.mif safe_vecs.mif response_sfwm.txt' + bvalues_option + sfwm_lmax_option) run.command('amp2response dwi.mif voxels_gm.mif safe_vecs.mif response_gm.txt' + bvalues_option + ' -isotropic') run.command('amp2response dwi.mif voxels_csf.mif safe_vecs.mif response_csf.txt' + bvalues_option + ' -isotropic') run.function(shutil.copyfile, 'response_sfwm.txt', path.fromUser(app.args.out_sfwm, False)) run.function(shutil.copyfile, 'response_gm.txt', path.fromUser(app.args.out_gm, False)) run.function(shutil.copyfile, 'response_csf.txt', path.fromUser(app.args.out_csf, False)) # Generate 4D binary images with voxel selections at major stages in algorithm (RGB as in MSMT-CSD paper). run.command('mrcat crude_csf.mif crude_gm.mif crude_wm.mif crude.mif -axis 3') run.command('mrcat refined_csf.mif refined_gm.mif refined_wm.mif refined.mif -axis 3') run.command('mrcat voxels_csf.mif voxels_gm.mif voxels_sfwm.mif voxels.mif -axis 3')
def execute(): #pylint: disable=unused-variable import os, shutil from mrtrix3 import app, file, image, path, run #pylint: disable=redefined-builtin lmax_option = '' if app.args.lmax: lmax_option = ' -lmax ' + app.args.lmax if app.args.max_iters < 2: app.error('Number of iterations must be at least 2') for iteration in range(0, app.args.max_iters): prefix = 'iter' + str(iteration) + '_' if iteration == 0: RF_in_path = 'init_RF.txt' mask_in_path = 'mask.mif' init_RF = '1 -1 1' with open(RF_in_path, 'w') as f: f.write(init_RF) iter_lmax_option = ' -lmax 4' else: RF_in_path = 'iter' + str(iteration-1) + '_RF.txt' mask_in_path = 'iter' + str(iteration-1) + '_SF_dilated.mif' iter_lmax_option = lmax_option # Run CSD run.command('dwi2fod csd dwi.mif ' + RF_in_path + ' ' + prefix + 'FOD.mif -mask ' + mask_in_path + iter_lmax_option) # Get amplitudes of two largest peaks, and direction of largest run.command('fod2fixel ' + prefix + 'FOD.mif ' + prefix + 'fixel -peak peaks.mif -mask ' + mask_in_path + ' -fmls_no_thresholds') file.delTemporary(prefix + 'FOD.mif') if iteration: file.delTemporary(mask_in_path) run.command('fixel2voxel ' + prefix + 'fixel/peaks.mif split_data ' + prefix + 'amps.mif -number 2') run.command('mrconvert ' + prefix + 'amps.mif ' + prefix + 'first_peaks.mif -coord 3 0 -axes 0,1,2') run.command('mrconvert ' + prefix + 'amps.mif ' + prefix + 'second_peaks.mif -coord 3 1 -axes 0,1,2') file.delTemporary(prefix + 'amps.mif') run.command('fixel2voxel ' + prefix + 'fixel/directions.mif split_dir ' + prefix + 'all_dirs.mif -number 1') file.delTemporary(prefix + 'fixel') run.command('mrconvert ' + prefix + 'all_dirs.mif ' + prefix + 'first_dir.mif -coord 3 0:2') file.delTemporary(prefix + 'all_dirs.mif') # Calculate the 'cost function' Donald derived for selecting single-fibre voxels # https://github.com/MRtrix3/mrtrix3/pull/426 # sqrt(|peak1|) * (1 - |peak2| / |peak1|)^2 run.command('mrcalc ' + prefix + 'first_peaks.mif -sqrt 1 ' + prefix + 'second_peaks.mif ' + prefix + 'first_peaks.mif -div -sub 2 -pow -mult '+ prefix + 'CF.mif') file.delTemporary(prefix + 'first_peaks.mif') file.delTemporary(prefix + 'second_peaks.mif') # Select the top-ranked voxels run.command('mrthreshold ' + prefix + 'CF.mif -top ' + str(app.args.sf_voxels) + ' ' + prefix + 'SF.mif') # Generate a new response function based on this selection run.command('amp2response dwi.mif ' + prefix + 'SF.mif ' + prefix + 'first_dir.mif ' + prefix + 'RF.txt' + iter_lmax_option) file.delTemporary(prefix + 'first_dir.mif') # Should we terminate? if iteration > 0: run.command('mrcalc ' + prefix + 'SF.mif iter' + str(iteration-1) + '_SF.mif -sub ' + prefix + 'SF_diff.mif') file.delTemporary('iter' + str(iteration-1) + '_SF.mif') max_diff = image.statistic(prefix + 'SF_diff.mif', 'max') file.delTemporary(prefix + 'SF_diff.mif') if int(max_diff) == 0: app.console('Convergence of SF voxel selection detected at iteration ' + str(iteration)) file.delTemporary(prefix + 'CF.mif') run.function(shutil.copyfile, prefix + 'RF.txt', 'response.txt') run.function(shutil.move, prefix + 'SF.mif', 'voxels.mif') break # Select a greater number of top single-fibre voxels, and dilate (within bounds of initial mask); # these are the voxels that will be re-tested in the next iteration run.command('mrthreshold ' + prefix + 'CF.mif -top ' + str(app.args.iter_voxels) + ' - | maskfilter - dilate - -npass ' + str(app.args.dilate) + ' | mrcalc mask.mif - -mult ' + prefix + 'SF_dilated.mif') file.delTemporary(prefix + 'CF.mif') # Commence the next iteration # If terminating due to running out of iterations, still need to put the results in the appropriate location if not os.path.exists('response.txt'): app.console('Exiting after maximum ' + str(app.args.max_iters) + ' iterations') run.function(shutil.copyfile, 'iter' + str(app.args.max_iters-1) + '_RF.txt', 'response.txt') run.function(shutil.move, 'iter' + str(app.args.max_iters-1) + '_SF.mif', 'voxels.mif') run.function(shutil.copyfile, 'response.txt', path.fromUser(app.args.output, False))
def command(cmd, exitOnError=True): #pylint: disable=unused-variable import inspect, itertools, shlex, signal, string, subprocess, sys, tempfile from distutils.spawn import find_executable from mrtrix3 import app # This is the only global variable that is _modified_ within this function global _processes # Vectorise the command string, preserving anything encased within quotation marks if os.sep == '/': # Cheap POSIX compliance check cmdsplit = shlex.split(cmd) else: # Native Windows Python cmdsplit = [ entry.strip('\"') for entry in shlex.split(cmd, posix=False) ] if _lastFile: if _triggerContinue(cmdsplit): app.debug( 'Detected last file in command \'' + cmd + '\'; this is the last run.command() / run.function() call that will be skipped' ) if app.verbosity: sys.stderr.write(app.colourExec + 'Skipping command:' + app.colourClear + ' ' + cmd + '\n') sys.stderr.flush() return ('', '') # This splits the command string based on the piping character '|', such that each # individual executable (along with its arguments) appears as its own list cmdstack = [ list(g) for k, g in itertools.groupby(cmdsplit, lambda s: s != '|') if k ] for line in cmdstack: is_mrtrix_exe = line[0] in _mrtrix_exe_list if is_mrtrix_exe: line[0] = versionMatch(line[0]) if app.numThreads is not None: line.extend(['-nthreads', str(app.numThreads)]) # Get MRtrix3 binaries to output additional INFO-level information if running in debug mode if app.verbosity == 3: line.append('-info') elif not app.verbosity: line.append('-quiet') else: line[0] = exeName(line[0]) shebang = _shebang(line[0]) if shebang: if not is_mrtrix_exe: # If a shebang is found, and this call is therefore invoking an # interpreter, can't rely on the interpreter finding the script # from PATH; need to find the full path ourselves. line[0] = find_executable(line[0]) for item in reversed(shebang): line.insert(0, item) app.debug('To execute: ' + str(cmdstack)) if app.verbosity: sys.stderr.write(app.colourExec + 'Command:' + app.colourClear + ' ' + cmd + '\n') sys.stderr.flush() # Disable interrupt signal handler while threads are running try: signal.signal(signal.SIGINT, signal.default_int_handler) except: pass # Construct temporary text files for holding stdout / stderr contents when appropriate # (One entry per process; each is a tuple containing two entries, each of which is either a # file-like object, or None) tempfiles = [] # Execute all processes assert not _processes for index, to_execute in enumerate(cmdstack): file_out = None file_err = None # If there's at least one command prior to this, need to receive the stdout from the prior command # at the stdin of this command; otherwise, nothing to receive if index > 0: handle_in = _processes[index - 1].stdout else: handle_in = None # If this is not the last command, then stdout needs to be piped to the next command; # otherwise, write stdout to a temporary file so that the contents can be read later if index < len(cmdstack) - 1: handle_out = subprocess.PIPE else: file_out = tempfile.TemporaryFile() handle_out = file_out.fileno() # If we're in debug / info mode, the contents of stderr will be read and printed to the terminal # as the command progresses, hence this needs to go to a pipe; otherwise, write it to a temporary # file so that the contents can be read later if app.verbosity > 1: handle_err = subprocess.PIPE else: file_err = tempfile.TemporaryFile() handle_err = file_err.fileno() # Set off the processes try: try: process = subprocess.Popen(to_execute, stdin=handle_in, stdout=handle_out, stderr=handle_err, env=_env, preexec_fn=os.setpgrp) # pylint: disable=bad-option-value,subprocess-popen-preexec-fn except AttributeError: process = subprocess.Popen(to_execute, stdin=handle_in, stdout=handle_out, stderr=handle_err, env=_env) _processes.append(process) tempfiles.append((file_out, file_err)) # FileNotFoundError not defined in Python 2.7 except OSError as e: if exitOnError: app.error('\'' + to_execute[0] + '\' not executed ("' + str(e) + '"); script cannot proceed') else: app.warn('\'' + to_execute[0] + '\' not executed ("' + str(e) + '")') for p in _processes: p.terminate() _processes = [] break return_stdout = '' return_stderr = '' error = False error_text = '' # Wait for all commands to complete # Switch how we monitor running processes / wait for them to complete # depending on whether or not the user has specified -info or -debug option try: if app.verbosity > 1: for process in _processes: stderrdata = b'' do_indent = True while True: # Have to read one character at a time: Waiting for a newline character using e.g. readline() will prevent MRtrix progressbars from appearing byte = process.stderr.read(1) stderrdata += byte char = byte.decode('cp1252', errors='ignore') if not char and process.poll() is not None: break if do_indent and char in string.printable and char != '\r' and char != '\n': sys.stderr.write(' ') do_indent = False elif char in ['\r', '\n']: do_indent = True sys.stderr.write(char) sys.stderr.flush() stderrdata = stderrdata.decode('utf-8', errors='replace') return_stderr += stderrdata if process.returncode: error = True error_text += stderrdata else: for process in _processes: process.wait() except (KeyboardInterrupt, SystemExit): app.handler(signal.SIGINT, inspect.currentframe()) # Re-enable interrupt signal handler try: signal.signal(signal.SIGINT, app.handler) except: pass # For any command stdout / stderr data that wasn't either passed to another command or # printed to the terminal during execution, read it here. for index in range(len(cmdstack)): if tempfiles[index][0] is not None: tempfiles[index][0].flush() tempfiles[index][0].seek(0) stdout_text = tempfiles[index][0].read().decode('utf-8', errors='replace') return_stdout += stdout_text if _processes[index].returncode: error = True error_text += stdout_text if tempfiles[index][1] is not None: tempfiles[index][1].flush() tempfiles[index][1].seek(0) stderr_text = tempfiles[index][1].read().decode('utf-8', errors='replace') return_stderr += stderr_text if _processes[index].returncode: error = True error_text += stderr_text _processes = [] if error: if exitOnError: app.cleanup = False caller = inspect.getframeinfo(inspect.stack()[1][0]) script_name = os.path.basename(sys.argv[0]) app.console('') try: filename = caller.filename lineno = caller.lineno except AttributeError: filename = caller[1] lineno = caller[2] sys.stderr.write(script_name + ': ' + app.colourError + '[ERROR] Command failed: ' + cmd + app.colourClear + app.colourDebug + ' (' + os.path.basename(filename) + ':' + str(lineno) + ')' + app.colourClear + '\n') sys.stderr.write(script_name + ': ' + app.colourConsole + 'Output of failed command:' + app.colourClear + '\n') for line in error_text.splitlines(): sys.stderr.write(' ' * (len(script_name) + 2) + line + '\n') app.console('') sys.stderr.flush() if app.tempDir: with open(os.path.join(app.tempDir, 'error.txt'), 'w') as outfile: outfile.write(cmd + '\n\n' + error_text + '\n') app.complete() sys.exit(1) else: app.warn('Command failed: ' + cmd) # Only now do we append to the script log, since the command has completed successfully # Note: Writing the command as it was formed as the input to run.command(): # other flags may potentially change if this file is eventually used to resume the script if app.tempDir: with open(os.path.join(app.tempDir, 'log.txt'), 'a') as outfile: outfile.write(cmd + '\n') return (return_stdout, return_stderr)
def execute(): import math, os, shutil from mrtrix3 import app, file, image, path, run lmax_option = '' if app.args.lmax: lmax_option = ' -lmax ' + app.args.lmax convergence_change = 0.01 * app.args.convergence for iteration in range(0, app.args.max_iters): prefix = 'iter' + str(iteration) + '_' # How to initialise response function? # old dwi2response command used mean & standard deviation of DWI data; however # this may force the output FODs to lmax=2 at the first iteration # Chantal used a tensor with low FA, but it'd be preferable to get the scaling right # Other option is to do as before, but get the ratio between l=0 and l=2, and # generate l=4,6,... using that amplitude ratio if iteration == 0: RF_in_path = 'init_RF.txt' mask_in_path = 'mask.mif' # TODO This can be changed once #71 is implemented (mrstats statistics across volumes) volume_means = [float(x) for x in image.statistic('dwi.mif', 'mean', 'mask.mif').split()] mean = sum(volume_means) / float(len(volume_means)) volume_stds = [float(x) for x in image.statistic('dwi.mif', 'std', 'mask.mif').split()] std = sum(volume_stds) / float(len(volume_stds)) # Scale these to reflect the fact that we're moving to the SH basis mean *= math.sqrt(4.0 * math.pi) std *= math.sqrt(4.0 * math.pi) # Now produce the initial response function # Let's only do it to lmax 4 init_RF = [ str(mean), str(-0.5*std), str(0.25*std*std/mean) ] with open('init_RF.txt', 'w') as f: f.write(' '.join(init_RF)) else: RF_in_path = 'iter' + str(iteration-1) + '_RF.txt' mask_in_path = 'iter' + str(iteration-1) + '_SF.mif' # Run CSD run.command('dwi2fod csd dwi.mif ' + RF_in_path + ' ' + prefix + 'FOD.mif -mask ' + mask_in_path) # Get amplitudes of two largest peaks, and directions of largest run.command('fod2fixel ' + prefix + 'FOD.mif ' + prefix + 'fixel -peak peaks.mif -mask ' + mask_in_path + ' -fmls_no_thresholds') file.delTempFile(prefix + 'FOD.mif') run.command('fixel2voxel ' + prefix + 'fixel/peaks.mif split_data ' + prefix + 'amps.mif') run.command('mrconvert ' + prefix + 'amps.mif ' + prefix + 'first_peaks.mif -coord 3 0 -axes 0,1,2') run.command('mrconvert ' + prefix + 'amps.mif ' + prefix + 'second_peaks.mif -coord 3 1 -axes 0,1,2') file.delTempFile(prefix + 'amps.mif') run.command('fixel2voxel ' + prefix + 'fixel/directions.mif split_dir ' + prefix + 'all_dirs.mif') file.delTempFolder(prefix + 'fixel') run.command('mrconvert ' + prefix + 'all_dirs.mif ' + prefix + 'first_dir.mif -coord 3 0:2') file.delTempFile(prefix + 'all_dirs.mif') # Revise single-fibre voxel selection based on ratio of tallest to second-tallest peak run.command('mrcalc ' + prefix + 'second_peaks.mif ' + prefix + 'first_peaks.mif -div ' + prefix + 'peak_ratio.mif') file.delTempFile(prefix + 'first_peaks.mif') file.delTempFile(prefix + 'second_peaks.mif') run.command('mrcalc ' + prefix + 'peak_ratio.mif ' + str(app.args.peak_ratio) + ' -lt ' + mask_in_path + ' -mult ' + prefix + 'SF.mif -datatype bit') file.delTempFile(prefix + 'peak_ratio.mif') # Make sure image isn't empty SF_voxel_count = int(image.statistic(prefix + 'SF.mif', 'count', prefix + 'SF.mif')) if not SF_voxel_count: app.error('Aborting: All voxels have been excluded from single-fibre selection') # Generate a new response function run.command('amp2response dwi.mif ' + prefix + 'SF.mif ' + prefix + 'first_dir.mif ' + prefix + 'RF.txt' + lmax_option) file.delTempFile(prefix + 'first_dir.mif') # Detect convergence # Look for a change > some percentage - don't bother looking at the masks if iteration > 0: with open(RF_in_path, 'r') as old_RF_file: old_RF = [ float(x) for x in old_RF_file.read().split() ] with open(prefix + 'RF.txt', 'r') as new_RF_file: new_RF = [ float(x) for x in new_RF_file.read().split() ] reiterate = False for index in range(0, len(old_RF)): mean = 0.5 * (old_RF[index] + new_RF[index]) diff = math.fabs(0.5 * (old_RF[index] - new_RF[index])) ratio = diff / mean if ratio > convergence_change: reiterate = True if not reiterate: app.console('Exiting at iteration ' + str(iteration) + ' with ' + str(SF_voxel_count) + ' SF voxels due to unchanged response function coefficients') run.function(shutil.copyfile, prefix + 'RF.txt', 'response.txt') run.function(shutil.copyfile, prefix + 'SF.mif', 'voxels.mif') break file.delTempFile(RF_in_path) file.delTempFile(mask_in_path) # Go to the next iteration # If we've terminated due to hitting the iteration limiter, we still need to copy the output file(s) to the correct location if not os.path.exists('response.txt'): app.console('Exiting after maximum ' + str(app.args.max_iters-1) + ' iterations with ' + str(SF_voxel_count) + ' SF voxels') run.function(shutil.copyfile, 'iter' + str(app.args.max_iters-1) + '_RF.txt', 'response.txt') run.function(shutil.copyfile, 'iter' + str(app.args.max_iters-1) + '_SF.mif', 'voxels.mif') run.function(shutil.copyfile, 'response.txt', path.fromUser(app.args.output, False))
'sub-' + sub_index for sub_index in app.args.participant_label ] for subject_dir in subjects_to_analyze: if not os.path.isdir(os.path.join(app.args.bids_dir, subject_dir)): app.error('Unable to find directory for subject: ' + subject_dir) # Run all subjects sequentially else: subject_dirs = glob.glob(os.path.join(app.args.bids_dir, 'sub-*')) subjects_to_analyze = [ 'sub-' + directory.split("-")[-1] for directory in subject_dirs ] if not subjects_to_analyze: app.error('Could not find any subjects in BIDS directory') for subject_label in subjects_to_analyze: app.console('Commencing execution for subject ' + subject_label) runSubject(app.args.bids_dir, subject_label, os.path.abspath(app.args.output_dir)) # Running group level elif app.args.analysis_level == 'group': if app.args.participant_label: app.error( 'Cannot use --participant_label option when performing group analysis' ) runGroup(os.path.abspath(app.args.output_dir)) app.complete()
def execute(): #pylint: disable=unused-variable import os, shutil from mrtrix3 import app, file, image, path, run #pylint: disable=redefined-builtin lmax_option = '' if app.args.lmax: lmax_option = ' -lmax ' + app.args.lmax if app.args.max_iters < 2: app.error('Number of iterations must be at least 2') for iteration in range(0, app.args.max_iters): prefix = 'iter' + str(iteration) + '_' if iteration == 0: RF_in_path = 'init_RF.txt' mask_in_path = 'mask.mif' init_RF = '1 -1 1' with open(RF_in_path, 'w') as f: f.write(init_RF) iter_lmax_option = ' -lmax 4' else: RF_in_path = 'iter' + str(iteration - 1) + '_RF.txt' mask_in_path = 'iter' + str(iteration - 1) + '_SF_dilated.mif' iter_lmax_option = lmax_option # Run CSD run.command('dwi2fod csd dwi.mif ' + RF_in_path + ' ' + prefix + 'FOD.mif -mask ' + mask_in_path + iter_lmax_option) # Get amplitudes of two largest peaks, and direction of largest run.command('fod2fixel ' + prefix + 'FOD.mif ' + prefix + 'fixel -peak peaks.mif -mask ' + mask_in_path + ' -fmls_no_thresholds') file.delTemporary(prefix + 'FOD.mif') if iteration: file.delTemporary(mask_in_path) run.command('fixel2voxel ' + prefix + 'fixel/peaks.mif split_data ' + prefix + 'amps.mif -number 2') run.command('mrconvert ' + prefix + 'amps.mif ' + prefix + 'first_peaks.mif -coord 3 0 -axes 0,1,2') run.command('mrconvert ' + prefix + 'amps.mif ' + prefix + 'second_peaks.mif -coord 3 1 -axes 0,1,2') file.delTemporary(prefix + 'amps.mif') run.command('fixel2voxel ' + prefix + 'fixel/directions.mif split_dir ' + prefix + 'all_dirs.mif -number 1') file.delTemporary(prefix + 'fixel') run.command('mrconvert ' + prefix + 'all_dirs.mif ' + prefix + 'first_dir.mif -coord 3 0:2') file.delTemporary(prefix + 'all_dirs.mif') # Calculate the 'cost function' Donald derived for selecting single-fibre voxels # https://github.com/MRtrix3/mrtrix3/pull/426 # sqrt(|peak1|) * (1 - |peak2| / |peak1|)^2 run.command('mrcalc ' + prefix + 'first_peaks.mif -sqrt 1 ' + prefix + 'second_peaks.mif ' + prefix + 'first_peaks.mif -div -sub 2 -pow -mult ' + prefix + 'CF.mif') file.delTemporary(prefix + 'first_peaks.mif') file.delTemporary(prefix + 'second_peaks.mif') # Select the top-ranked voxels run.command('mrthreshold ' + prefix + 'CF.mif -top ' + str(app.args.sf_voxels) + ' ' + prefix + 'SF.mif') # Generate a new response function based on this selection run.command('amp2response dwi.mif ' + prefix + 'SF.mif ' + prefix + 'first_dir.mif ' + prefix + 'RF.txt' + iter_lmax_option) file.delTemporary(prefix + 'first_dir.mif') # Should we terminate? if iteration > 0: run.command('mrcalc ' + prefix + 'SF.mif iter' + str(iteration - 1) + '_SF.mif -sub ' + prefix + 'SF_diff.mif') file.delTemporary('iter' + str(iteration - 1) + '_SF.mif') max_diff = image.statistic(prefix + 'SF_diff.mif', 'max') file.delTemporary(prefix + 'SF_diff.mif') if int(max_diff) == 0: app.console( 'Convergence of SF voxel selection detected at iteration ' + str(iteration)) file.delTemporary(prefix + 'CF.mif') run.function(shutil.copyfile, prefix + 'RF.txt', 'response.txt') run.function(shutil.move, prefix + 'SF.mif', 'voxels.mif') break # Select a greater number of top single-fibre voxels, and dilate (within bounds of initial mask); # these are the voxels that will be re-tested in the next iteration run.command('mrthreshold ' + prefix + 'CF.mif -top ' + str(app.args.iter_voxels) + ' - | maskfilter - dilate - -npass ' + str(app.args.dilate) + ' | mrcalc mask.mif - -mult ' + prefix + 'SF_dilated.mif') file.delTemporary(prefix + 'CF.mif') # Commence the next iteration # If terminating due to running out of iterations, still need to put the results in the appropriate location if not os.path.exists('response.txt'): app.console('Exiting after maximum ' + str(app.args.max_iters) + ' iterations') run.function(shutil.copyfile, 'iter' + str(app.args.max_iters - 1) + '_RF.txt', 'response.txt') run.function(shutil.move, 'iter' + str(app.args.max_iters - 1) + '_SF.mif', 'voxels.mif') run.function(shutil.copyfile, 'response.txt', path.fromUser(app.args.output, False))
def runSubject(bids_dir, label, output_prefix): output_dir = os.path.join(output_prefix, label) if os.path.exists(output_dir): shutil.rmtree(output_dir) os.makedirs(output_dir) os.makedirs(os.path.join(output_dir, 'connectome')) os.makedirs(os.path.join(output_dir, 'dwi')) fsl_path = os.environ.get('FSLDIR', '') if not fsl_path: app.error( 'Environment variable FSLDIR is not set; please run appropriate FSL configuration script' ) flirt_cmd = fsl.exeName('flirt') fslanat_cmd = fsl.exeName('fsl_anat') fsl_suffix = fsl.suffix() unring_cmd = 'unring.a64' if not find_executable(unring_cmd): app.console('Command \'' + unring_cmd + '\' not found; cannot perform Gibbs ringing removal') unring_cmd = '' dwibiascorrect_algo = '-ants' if not find_executable('N4BiasFieldCorrection'): # Can't use findFSLBinary() here, since we want to proceed even if it's not found if find_executable('fast') or find_executable('fsl5.0-fast'): dwibiascorrect_algo = '-fsl' app.console('Could not find ANTs program N4BiasFieldCorrection; ' 'using FSL FAST for bias field correction') else: dwibiascorrect_algo = '' app.warn( 'Could not find ANTs program \'N4BiasFieldCorrection\' or FSL program \'fast\'; ' 'will proceed without performing DWI bias field correction') if not app.args.parcellation: app.error( 'For participant-level analysis, desired parcellation must be provided using the -parcellation option' ) parc_image_path = '' parc_lut_file = '' mrtrix_lut_file = os.path.join( os.path.dirname(os.path.abspath(app.__file__)), os.pardir, os.pardir, 'share', 'mrtrix3', 'labelconvert') if app.args.parcellation == 'fs_2005' or app.args.parcellation == 'fs_2009': if not 'FREESURFER_HOME' in os.environ: app.error( 'Environment variable FREESURFER_HOME not set; please verify FreeSurfer installation' ) if not find_executable('recon-all'): app.error( 'Could not find FreeSurfer script recon-all; please verify FreeSurfer installation' ) parc_lut_file = os.path.join(os.environ['FREESURFER_HOME'], 'FreeSurferColorLUT.txt') if app.args.parcellation == 'fs_2005': mrtrix_lut_file = os.path.join(mrtrix_lut_file, 'fs_default.txt') else: mrtrix_lut_file = os.path.join(mrtrix_lut_file, 'fs_a2009s.txt') if app.args.parcellation == 'aal' or app.args.parcellation == 'aal2': mni152_path = os.path.join(fsl_path, 'data', 'standard', 'MNI152_T1_1mm.nii.gz') if not os.path.isfile(mni152_path): app.error( 'Could not find MNI152 template image within FSL installation (expected location: ' + mni152_path + ')') if app.args.parcellation == 'aal': parc_image_path = os.path.abspath( os.path.join(os.sep, 'opt', 'aal', 'ROI_MNI_V4.nii')) parc_lut_file = os.path.abspath( os.path.join(os.sep, 'opt', 'aal', 'ROI_MNI_V4.txt')) mrtrix_lut_file = os.path.join(mrtrix_lut_file, 'aal.txt') else: parc_image_path = os.path.abspath( os.path.join(os.sep, 'opt', 'aal', 'ROI_MNI_V5.nii')) parc_lut_file = os.path.abspath( os.path.join(os.sep, 'opt', 'aal', 'ROI_MNI_V5.txt')) mrtrix_lut_file = os.path.join(mrtrix_lut_file, 'aal2.txt') if parc_image_path and not os.path.isfile(parc_image_path): if app.args.atlas_path: parc_image_path = [ parc_image_path, os.path.join(os.path.dirname(app.args.atlas_path), os.path.basename(parc_image_path)) ] if os.path.isfile(parc_image_path[1]): parc_image_path = parc_image_path[1] else: app.error( 'Could not find parcellation image (tested locations: ' + str(parc_image_path) + ')') else: app.error( 'Could not find parcellation image (expected location: ' + parc_image_path + ')') if not os.path.isfile(parc_lut_file): if app.args.atlas_path: parc_lut_file = [ parc_lut_file, os.path.join(os.path.dirname(app.args.atlas_path), os.path.basename(parc_lut_file)) ] if os.path.isfile(parc_lut_file[1]): parc_lut_file = parc_lut_file[1] else: app.error( 'Could not find parcellation lookup table file (tested locations: ' + str(parc_lut_file) + ')') else: app.error( 'Could not find parcellation lookup table file (expected location: ' + parc_lut_file + ')') if not os.path.exists(mrtrix_lut_file): app.error( 'Could not find MRtrix3 connectome lookup table file (expected location: ' + mrtrix_lut_file + ')') app.makeTempDir() # Need to perform an initial import of JSON data using mrconvert; so let's grab the diffusion gradient table as well # If no bvec/bval present, need to go down the directory listing # Only try to import JSON file if it's actually present # direction in the acquisition they'll need to be split across multiple files # May need to concatenate more than one input DWI, since if there's more than one phase-encode direction # in the acquired DWIs (i.e. not just those used for estimating the inhomogeneity field), they will # need to be stored as separate NIfTI files in the 'dwi/' directory. dwi_image_list = glob.glob( os.path.join(bids_dir, label, 'dwi', label) + '*_dwi.nii*') dwi_index = 1 for entry in dwi_image_list: # os.path.split() falls over with .nii.gz extensions; only removes the .gz prefix = entry.split(os.extsep)[0] if os.path.isfile(prefix + '.bval') and os.path.isfile(prefix + '.bvec'): prefix = prefix + '.' else: prefix = os.path.join(bids_dir, 'dwi') if not (os.path.isfile(prefix + 'bval') and os.path.isfile(prefix + 'bvec')): app.error( 'Unable to locate valid diffusion gradient table for image \'' + entry + '\'') grad_import_option = ' -fslgrad ' + prefix + 'bvec ' + prefix + 'bval' json_path = prefix + 'json' if os.path.isfile(json_path): json_import_option = ' -json_import ' + json_path else: json_import_option = '' run.command('mrconvert ' + entry + grad_import_option + json_import_option + ' ' + path.toTemp('dwi' + str(dwi_index) + '.mif', True)) dwi_index += 1 # Go hunting for reversed phase-encode data dedicated to field map estimation fmap_image_list = [] fmap_dir = os.path.join(bids_dir, label, 'fmap') fmap_index = 1 if os.path.isdir(fmap_dir): if app.args.preprocessed: app.error('fmap/ directory detected for subject \'' + label + '\' despite use of ' + option_prefix + 'preprocessed option') fmap_image_list = glob.glob( os.path.join(fmap_dir, label) + '_dir-*_epi.nii*') for entry in fmap_image_list: prefix = entry.split(os.extsep)[0] json_path = prefix + '.json' with open(json_path, 'r') as f: json_elements = json.load(f) if 'IntendedFor' in json_elements and not any( i.endswith(json_elements['IntendedFor']) for i in dwi_image_list): app.console('Image \'' + entry + '\' is not intended for use with DWIs; skipping') continue if os.path.isfile(json_path): json_import_option = ' -json_import ' + json_path # fmap files will not come with any gradient encoding in the JSON; # therefore we need to add it manually ourselves so that mrcat / mrconvert can # appropriately handle the table once these images are concatenated with the DWIs fmap_image_size = image.Header(entry).size() fmap_image_num_volumes = 1 if len( fmap_image_size) == 3 else fmap_image_size[3] run.command('mrconvert ' + entry + json_import_option + ' -set_property dw_scheme \"' + '\\n'.join(['0,0,1,0'] * fmap_image_num_volumes) + '\" ' + path.toTemp('fmap' + str(fmap_index) + '.mif', True)) fmap_index += 1 else: app.warn('No corresponding .json file found for image \'' + entry + '\'; skipping') fmap_image_list = [ 'fmap' + str(index) + '.mif' for index in range(1, fmap_index) ] # If there's no data in fmap/ directory, need to check to see if there's any phase-encoding # contrast within the input DWI(s) elif len(dwi_image_list) < 2 and not app.args.preprocessed: app.error( 'Inadequate data for pre-processing of subject \'' + label + '\': No phase-encoding contrast in input DWIs or fmap/ directory') dwi_image_list = [ 'dwi' + str(index) + '.mif' for index in range(1, dwi_index) ] # Import anatomical image run.command('mrconvert ' + os.path.join(bids_dir, label, 'anat', label + '_T1w.nii.gz') + ' ' + path.toTemp('T1.mif', True)) cwd = os.getcwd() app.gotoTempDir() dwipreproc_se_epi = '' dwipreproc_se_epi_option = '' # For automated testing, down-sampled images are used. However, this invalidates the requirements of # both MP-PCA denoising and Gibbs ringing removal. In addition, eddy can still take a long time # despite the down-sampling. Therefore, provide images that have been pre-processed to the stage # where it is still only DWI, JSON & bvecs/bvals that need to be provided. if app.args.preprocessed: if len(dwi_image_list) > 1: app.error( 'If DWIs have been pre-processed, then only a single DWI file should need to be provided' ) app.console( 'Skipping MP-PCA denoising, ' + ('Gibbs ringing removal, ' if unring_cmd else '') + 'distortion correction and bias field correction due to use of ' + option_prefix + 'preprocessed option') run.function(os.rename, dwi_image_list[0], 'dwi.mif') else: # Do initial image pre-processing (denoising, Gibbs ringing removal if available, distortion correction & bias field correction) as normal # Concatenate any SE EPI images with the DWIs before denoising (& unringing), then # separate them again after the fact dwidenoise_input = 'dwidenoise_input.mif' fmap_num_volumes = 0 if fmap_image_list: run.command('mrcat ' + ' '.join(fmap_image_list) + ' fmap_cat.mif -axis 3') for i in fmap_image_list: file.delTemporary(i) fmap_num_volumes = image.Header('fmap_cat.mif').size()[3] dwidenoise_input = 'all_cat.mif' run.command('mrcat fmap_cat.mif ' + ' '.join(dwi_image_list) + ' ' + dwidenoise_input + ' -axis 3') file.delTemporary('fmap_cat.mif') else: # Even if no explicit fmap images, may still need to concatenate multiple DWI inputs if len(dwi_image_list) > 1: run.command('mrcat ' + ' '.join(dwi_image_list) + ' ' + dwidenoise_input + ' -axis 3') else: run.function(shutil.move, dwi_image_list[0], dwidenoise_input) for i in dwi_image_list: file.delTemporary(i) # Step 1: Denoise run.command('dwidenoise ' + dwidenoise_input + ' dwi_denoised.' + ('nii' if unring_cmd else 'mif')) if unring_cmd: run.command('mrinfo ' + dwidenoise_input + ' -json_keyval input.json') file.delTemporary(dwidenoise_input) # Step 2: Gibbs ringing removal (if available) if unring_cmd: run.command(unring_cmd + ' dwi_denoised.nii dwi_unring' + fsl_suffix + ' -n 100') file.delTemporary('dwi_denoised.nii') unring_output_path = fsl.findImage('dwi_unring') run.command('mrconvert ' + unring_output_path + ' dwi_unring.mif -json_import input.json') file.delTemporary(unring_output_path) file.delTemporary('input.json') # If fmap images and DWIs have been concatenated, now is the time to split them back apart dwipreproc_input = 'dwi_unring.mif' if unring_cmd else 'dwi_denoised.mif' if fmap_num_volumes: cat_input = 'dwi_unring.mif' if unring_cmd else 'dwi_denoised.mif' dwipreproc_se_epi = 'se_epi.mif' run.command('mrconvert ' + cat_input + ' ' + dwipreproc_se_epi + ' -coord 3 0:' + str(fmap_num_volumes - 1)) cat_num_volumes = image.Header(cat_input).size()[3] run.command('mrconvert ' + cat_input + ' dwipreproc_in.mif -coord 3 ' + str(fmap_num_volumes) + ':' + str(cat_num_volumes - 1)) file.delTemporary(dwipreproc_input) dwipreproc_input = 'dwipreproc_in.mif' dwipreproc_se_epi_option = ' -se_epi ' + dwipreproc_se_epi # Step 3: Distortion correction run.command('dwipreproc ' + dwipreproc_input + ' dwi_preprocessed.mif -rpe_header' + dwipreproc_se_epi_option) file.delTemporary(dwipreproc_input) if dwipreproc_se_epi: file.delTemporary(dwipreproc_se_epi) # Step 4: Bias field correction if dwibiascorrect_algo: run.command('dwibiascorrect dwi_preprocessed.mif dwi.mif ' + dwibiascorrect_algo) file.delTemporary('dwi_preprocessed.mif') else: run.function(shutil.move, 'dwi_preprocessed.mif', 'dwi.mif') # No longer branching based on whether or not -preprocessed was specified # Step 5: Generate a brain mask for DWI run.command('dwi2mask dwi.mif dwi_mask.mif') # Step 6: Perform brain extraction on the T1 image in its original space # (this is necessary for histogram matching prior to registration) # Use fsl_anat script run.command('mrconvert T1.mif T1.nii -stride -1,+2,+3') run.command(fslanat_cmd + ' -i T1.nii --noseg --nosubcortseg') run.command('mrconvert ' + fsl.findImage('T1.anat' + os.sep + 'T1_biascorr_brain_mask') + ' T1_mask.mif -datatype bit') run.command('mrconvert ' + fsl.findImage('T1.anat' + os.sep + 'T1_biascorr_brain') + ' T1_biascorr_brain.mif') file.delTemporary('T1.anat') # Step 7: Generate target images for T1->DWI registration run.command('dwiextract dwi.mif -bzero - | ' 'mrcalc - 0.0 -max - | ' 'mrmath - mean -axis 3 dwi_meanbzero.mif') run.command( 'mrcalc 1 dwi_meanbzero.mif -div dwi_mask.mif -mult - | ' 'mrhistmatch - T1_biascorr_brain.mif dwi_pseudoT1.mif -mask_input dwi_mask.mif -mask_target T1_mask.mif' ) run.command( 'mrcalc 1 T1_biascorr_brain.mif -div T1_mask.mif -mult - | ' 'mrhistmatch - dwi_meanbzero.mif T1_pseudobzero.mif -mask_input T1_mask.mif -mask_target dwi_mask.mif' ) # Step 8: Perform T1->DWI registration # Note that two registrations are performed: Even though we have a symmetric registration, # generation of the two histogram-matched images means that you will get slightly different # answers depending on which synthesized image & original image you use. run.command( 'mrregister T1_biascorr_brain.mif dwi_pseudoT1.mif -type rigid -mask1 T1_mask.mif -mask2 dwi_mask.mif -rigid rigid_T1_to_pseudoT1.txt' ) file.delTemporary('T1_biascorr_brain.mif') run.command( 'mrregister T1_pseudobzero.mif dwi_meanbzero.mif -type rigid -mask1 T1_mask.mif -mask2 dwi_mask.mif -rigid rigid_pseudobzero_to_bzero.txt' ) file.delTemporary('dwi_meanbzero.mif') run.command( 'transformcalc rigid_T1_to_pseudoT1.txt rigid_pseudobzero_to_bzero.txt average rigid_T1_to_dwi.txt' ) file.delTemporary('rigid_T1_to_pseudoT1.txt') file.delTemporary('rigid_pseudobzero_to_bzero.txt') run.command( 'mrtransform T1.mif T1_registered.mif -linear rigid_T1_to_dwi.txt') file.delTemporary('T1.mif') # Note: Since we're using a mask from fsl_anat (which crops the FoV), but using it as input to 5ttge fsl # (which is receiving the raw T1), we need to resample in order to have the same dimensions between these two run.command( 'mrtransform T1_mask.mif T1_mask_registered.mif -linear rigid_T1_to_dwi.txt -template T1_registered.mif -interp nearest' ) file.delTemporary('T1_mask.mif') # Step 9: Generate 5TT image for ACT run.command( '5ttgen fsl T1_registered.mif 5TT.mif -mask T1_mask_registered.mif') file.delTemporary('T1_mask_registered.mif') # Step 10: Estimate response functions for spherical deconvolution run.command( 'dwi2response dhollander dwi.mif response_wm.txt response_gm.txt response_csf.txt -mask dwi_mask.mif' ) # Step 11: Determine whether we are working with single-shell or multi-shell data shells = [ int(round(float(value))) for value in image.mrinfo('dwi.mif', 'shellvalues').strip().split() ] multishell = (len(shells) > 2) # Step 12: Perform spherical deconvolution # Use a dilated mask for spherical deconvolution as a 'safety margin' - # ACT should be responsible for stopping streamlines before they reach the edge of the DWI mask run.command('maskfilter dwi_mask.mif dilate dwi_mask_dilated.mif -npass 3') if multishell: run.command( 'dwi2fod msmt_csd dwi.mif response_wm.txt FOD_WM.mif response_gm.txt FOD_GM.mif response_csf.txt FOD_CSF.mif ' '-mask dwi_mask_dilated.mif -lmax 10,0,0') file.delTemporary('FOD_GM.mif') file.delTemporary('FOD_CSF.mif') else: # Still use the msmt_csd algorithm with single-shell data: Use hard non-negativity constraint # Also incorporate the CSF response to provide some fluid attenuation run.command( 'dwi2fod msmt_csd dwi.mif response_wm.txt FOD_WM.mif response_csf.txt FOD_CSF.mif ' '-mask dwi_mask_dilated.mif -lmax 10,0') file.delTemporary('FOD_CSF.mif') # Step 13: Generate the grey matter parcellation # The necessary steps here will vary significantly depending on the parcellation scheme selected run.command( 'mrconvert T1_registered.mif T1_registered.nii -stride +1,+2,+3') if app.args.parcellation == 'fs_2005' or app.args.parcellation == 'fs_2009': # Run FreeSurfer pipeline on this subject's T1 image run.command('recon-all -sd ' + app.tempDir + ' -subjid freesurfer -i T1_registered.nii') run.command('recon-all -sd ' + app.tempDir + ' -subjid freesurfer -all') # Grab the relevant parcellation image and target lookup table for conversion parc_image_path = os.path.join('freesurfer', 'mri') if app.args.parcellation == 'fs_2005': parc_image_path = os.path.join(parc_image_path, 'aparc+aseg.mgz') else: parc_image_path = os.path.join(parc_image_path, 'aparc.a2009s+aseg.mgz') # Perform the index conversion run.command('labelconvert ' + parc_image_path + ' ' + parc_lut_file + ' ' + mrtrix_lut_file + ' parc_init.mif') if app.cleanup: run.function(shutil.rmtree, 'freesurfer') # Fix the sub-cortical grey matter parcellations using FSL FIRST run.command('labelsgmfix parc_init.mif T1_registered.mif ' + mrtrix_lut_file + ' parc.mif') file.delTemporary('parc_init.mif') elif app.args.parcellation == 'aal' or app.args.parcellation == 'aal2': # Can use MNI152 image provided with FSL for registration run.command(flirt_cmd + ' -ref ' + mni152_path + ' -in T1_registered.nii -omat T1_to_MNI_FLIRT.mat -dof 12') run.command('transformconvert T1_to_MNI_FLIRT.mat T1_registered.nii ' + mni152_path + ' flirt_import T1_to_MNI_MRtrix.mat') file.delTemporary('T1_to_MNI_FLIRT.mat') run.command( 'transformcalc T1_to_MNI_MRtrix.mat invert MNI_to_T1_MRtrix.mat') file.delTemporary('T1_to_MNI_MRtrix.mat') run.command('mrtransform ' + parc_image_path + ' AAL.mif -linear MNI_to_T1_MRtrix.mat ' '-template T1_registered.mif -interp nearest') file.delTemporary('MNI_to_T1_MRtrix.mat') run.command('labelconvert AAL.mif ' + parc_lut_file + ' ' + mrtrix_lut_file + ' parc.mif') file.delTemporary('AAL.mif') else: app.error('Unknown parcellation scheme requested: ' + app.args.parcellation) file.delTemporary('T1_registered.nii') # Step 14: Generate the tractogram # If not manually specified, determine the appropriate number of streamlines based on the number of nodes in the parcellation: # mean edge weight of 1,000 streamlines # A smaller FOD amplitude threshold of 0.06 (default 0.1) is used for tracking due to the use of the msmt_csd # algorithm, which imposes a hard rather than soft non-negativity constraint num_nodes = int(image.statistic('parc.mif', 'max')) num_streamlines = 1000 * num_nodes * num_nodes if app.args.streamlines: num_streamlines = app.args.streamlines run.command( 'tckgen FOD_WM.mif tractogram.tck -act 5TT.mif -backtrack -crop_at_gmwmi -cutoff 0.06 -maxlength 250 -power 0.33 ' '-select ' + str(num_streamlines) + ' -seed_dynamic FOD_WM.mif') # Step 15: Use SIFT2 to determine streamline weights fd_scale_gm_option = '' if not multishell: fd_scale_gm_option = ' -fd_scale_gm' run.command( 'tcksift2 tractogram.tck FOD_WM.mif weights.csv -act 5TT.mif -out_mu mu.txt' + fd_scale_gm_option) # Step 16: Generate a TDI (to verify that SIFT2 has worked correctly) with open('mu.txt', 'r') as f: mu = float(f.read()) run.command( 'tckmap tractogram.tck -tck_weights_in weights.csv -template FOD_WM.mif -precise - | ' 'mrcalc - ' + str(mu) + ' -mult tdi.mif') # Step 17: Generate the connectome # Only provide the standard density-weighted connectome for now run.command( 'tck2connectome tractogram.tck parc.mif connectome.csv -tck_weights_in weights.csv' ) file.delTemporary('weights.csv') # Move necessary files to output directory run.function( shutil.copy, 'connectome.csv', os.path.join(output_dir, 'connectome', label + '_connectome.csv')) run.command('mrconvert dwi.mif ' + os.path.join(output_dir, 'dwi', label + '_dwi.nii.gz') + ' -export_grad_fsl ' + os.path.join(output_dir, 'dwi', label + '_dwi.bvec') + ' ' + os.path.join(output_dir, 'dwi', label + '_dwi.bval') + ' -json_export ' + os.path.join(output_dir, 'dwi', label + '_dwi.json')) run.command('mrconvert tdi.mif ' + os.path.join(output_dir, 'dwi', label + '_tdi.nii.gz')) run.function(shutil.copy, 'mu.txt', os.path.join(output_dir, 'connectome', label + '_mu.txt')) run.function(shutil.copy, 'response_wm.txt', os.path.join(output_dir, 'dwi', label + '_response.txt')) # Manually wipe and zero the temp directory (since we might be processing more than one subject) os.chdir(cwd) if app.cleanup: app.console('Deleting temporary directory ' + app.tempDir) # Can't use run.function() here; it'll try to write to the log file that resides in the temp directory just deleted shutil.rmtree(app.tempDir) else: app.console('Contents of temporary directory kept, location: ' + app.tempDir) app.tempDir = ''
def execute(): #pylint: disable=unused-variable import math, os, shutil from mrtrix3 import app, image, matrix, MRtrixError, path, run lmax_option = '' if app.ARGS.lmax: lmax_option = ' -lmax ' + app.ARGS.lmax convergence_change = 0.01 * app.ARGS.convergence progress = app.ProgressBar('Optimising') iteration = 0 while iteration < app.ARGS.max_iters: prefix = 'iter' + str(iteration) + '_' # How to initialise response function? # old dwi2response command used mean & standard deviation of DWI data; however # this may force the output FODs to lmax=2 at the first iteration # Chantal used a tensor with low FA, but it'd be preferable to get the scaling right # Other option is to do as before, but get the ratio between l=0 and l=2, and # generate l=4,6,... using that amplitude ratio if iteration == 0: rf_in_path = 'init_RF.txt' mask_in_path = 'mask.mif' # Grab the mean and standard deviation across all volumes in a single mrstats call # Also scale them to reflect the fact that we're moving to the SH basis mean = image.statistic('dwi.mif', 'mean', '-mask mask.mif -allvolumes') * math.sqrt( 4.0 * math.pi) std = image.statistic('dwi.mif', 'std', '-mask mask.mif -allvolumes') * math.sqrt( 4.0 * math.pi) # Now produce the initial response function # Let's only do it to lmax 4 init_rf = [ str(mean), str(-0.5 * std), str(0.25 * std * std / mean) ] with open('init_RF.txt', 'w') as init_rf_file: init_rf_file.write(' '.join(init_rf)) else: rf_in_path = 'iter' + str(iteration - 1) + '_RF.txt' mask_in_path = 'iter' + str(iteration - 1) + '_SF.mif' # Run CSD run.command('dwi2fod csd dwi.mif ' + rf_in_path + ' ' + prefix + 'FOD.mif -mask ' + mask_in_path) # Get amplitudes of two largest peaks, and directions of largest run.command('fod2fixel ' + prefix + 'FOD.mif ' + prefix + 'fixel -peak peaks.mif -mask ' + mask_in_path + ' -fmls_no_thresholds') app.cleanup(prefix + 'FOD.mif') run.command('fixel2voxel ' + prefix + 'fixel/peaks.mif split_data ' + prefix + 'amps.mif') run.command('mrconvert ' + prefix + 'amps.mif ' + prefix + 'first_peaks.mif -coord 3 0 -axes 0,1,2') run.command('mrconvert ' + prefix + 'amps.mif ' + prefix + 'second_peaks.mif -coord 3 1 -axes 0,1,2') app.cleanup(prefix + 'amps.mif') run.command('fixel2voxel ' + prefix + 'fixel/directions.mif split_dir ' + prefix + 'all_dirs.mif') app.cleanup(prefix + 'fixel') run.command('mrconvert ' + prefix + 'all_dirs.mif ' + prefix + 'first_dir.mif -coord 3 0:2') app.cleanup(prefix + 'all_dirs.mif') # Revise single-fibre voxel selection based on ratio of tallest to second-tallest peak run.command('mrcalc ' + prefix + 'second_peaks.mif ' + prefix + 'first_peaks.mif -div ' + prefix + 'peak_ratio.mif') app.cleanup(prefix + 'first_peaks.mif') app.cleanup(prefix + 'second_peaks.mif') run.command('mrcalc ' + prefix + 'peak_ratio.mif ' + str(app.ARGS.peak_ratio) + ' -lt ' + mask_in_path + ' -mult ' + prefix + 'SF.mif -datatype bit') app.cleanup(prefix + 'peak_ratio.mif') # Make sure image isn't empty sf_voxel_count = image.statistic(prefix + 'SF.mif', 'count', '-mask ' + prefix + 'SF.mif') if not sf_voxel_count: raise MRtrixError( 'Aborting: All voxels have been excluded from single-fibre selection' ) # Generate a new response function run.command('amp2response dwi.mif ' + prefix + 'SF.mif ' + prefix + 'first_dir.mif ' + prefix + 'RF.txt' + lmax_option) app.cleanup(prefix + 'first_dir.mif') new_rf = matrix.load_vector(prefix + 'RF.txt') progress.increment('Optimising (' + str(iteration + 1) + ' iterations, ' + str(sf_voxel_count) + ' voxels, RF: [ ' + ', '.join('{:.3f}'.format(n) for n in new_rf) + '] )') # Detect convergence # Look for a change > some percentage - don't bother looking at the masks if iteration > 0: old_rf = matrix.load_vector(rf_in_path) reiterate = False for old_value, new_value in zip(old_rf, new_rf): mean = 0.5 * (old_value + new_value) diff = math.fabs(0.5 * (old_value - new_value)) ratio = diff / mean if ratio > convergence_change: reiterate = True if not reiterate: run.function(shutil.copyfile, prefix + 'RF.txt', 'response.txt') run.function(shutil.copyfile, prefix + 'SF.mif', 'voxels.mif') break app.cleanup(rf_in_path) app.cleanup(mask_in_path) iteration += 1 progress.done() # If we've terminated due to hitting the iteration limiter, we still need to copy the output file(s) to the correct location if os.path.exists('response.txt'): app.console('Exited at iteration ' + str(iteration + 1) + ' with ' + str(sf_voxel_count) + ' SF voxels due to unchanged RF coefficients') else: app.console('Exited after maximum ' + str(app.ARGS.max_iters) + ' iterations with ' + str(sf_voxel_count) + ' SF voxels') run.function(shutil.copyfile, 'iter' + str(app.ARGS.max_iters - 1) + '_RF.txt', 'response.txt') run.function(shutil.copyfile, 'iter' + str(app.ARGS.max_iters - 1) + '_SF.mif', 'voxels.mif') run.function(shutil.copyfile, 'response.txt', path.from_user(app.ARGS.output, False)) if app.ARGS.voxels: run.command('mrconvert voxels.mif ' + path.from_user(app.ARGS.voxels), mrconvert_keyval=path.from_user(app.ARGS.input), force=app.FORCE_OVERWRITE)
def runGroup(output_dir): # Check presence of all required input files before proceeding # Pre-calculate paths of all files since many will be used in more than one location class subjectPaths(object): def __init__(self, label): self.in_dwi = os.path.join(output_dir, label, 'dwi', label + '_dwi.nii.gz') self.in_bvec = os.path.join(output_dir, label, 'dwi', label + '_dwi.bvec') self.in_bval = os.path.join(output_dir, label, 'dwi', label + '_dwi.bval') self.in_json = os.path.join(output_dir, label, 'dwi', label + '_dwi.json') self.in_rf = os.path.join(output_dir, label, 'dwi', label + '_response.txt') self.in_connectome = os.path.join(output_dir, label, 'connectome', label + '_connectome.csv') self.in_mu = os.path.join(output_dir, label, 'connectome', label + '_mu.txt') for entry in vars(self).values(): if not os.path.exists(entry): app.error( 'Unable to find critical subject data (expected location: ' + entry + ')') with open(self.in_mu, 'r') as f: self.mu = float(f.read()) self.RF = [] with open(self.in_rf, 'r') as f: for line in f: self.RF.append([float(v) for v in line.split()]) self.temp_mask = os.path.join('masks', label + '.mif') self.temp_fa = os.path.join('images', label + '.mif') self.temp_bzero = os.path.join('bzeros', label + '.mif') self.temp_warp = os.path.join('warps', label + '.mif') self.temp_voxels = os.path.join('voxels', label + '.mif') self.median_bzero = 0.0 self.dwiintensitynorm_factor = 1.0 self.RF_multiplier = 1.0 self.global_multiplier = 1.0 self.temp_connectome = os.path.join('connectomes', label + '.csv') self.out_scale_bzero = os.path.join( output_dir, label, 'connectome', label + '_scalefactor_bzero.csv') self.out_scale_RF = os.path.join( output_dir, label, 'connectome', label + '_scalefactor_response.csv') self.out_connectome = os.path.join( output_dir, label, 'connectome', label + '_connectome_scaled.csv') self.label = label subject_list = [ 'sub-' + sub_dir.split("-")[-1] for sub_dir in glob.glob(os.path.join(output_dir, 'sub-*')) ] if not subject_list: app.error( 'No processed subject data found in output directory for group analysis' ) subjects = [] for label in subject_list: subjects.append(subjectPaths(label)) app.makeTempDir() app.gotoTempDir() # First pass through subject data in group analysis: # - Grab DWI data (written back from single-subject analysis back into BIDS format) # - Generate mask and FA images to be used in populate template generation # - Generate mean b=0 image for each subject for later use progress = app.progressBar('Importing and preparing subject data', len(subjects)) run.function(os.makedirs, 'bzeros') run.function(os.makedirs, 'images') run.function(os.makedirs, 'masks') for s in subjects: grad_import_option = ' -fslgrad ' + s.in_bvec + ' ' + s.in_bval run.command('dwi2mask ' + s.in_dwi + ' ' + s.temp_mask + grad_import_option) run.command('dwi2tensor ' + s.in_dwi + ' - -mask ' + s.temp_mask + grad_import_option + ' | tensor2metric - -fa ' + s.temp_fa) run.command('dwiextract ' + s.in_dwi + grad_import_option + ' - -bzero | mrmath - mean ' + s.temp_bzero + ' -axis 3') progress.increment() progress.done() # First group-level calculation: Generate the population FA template app.console( 'Generating population template for inter-subject intensity normalisation WM mask derivation' ) run.command( 'population_template images -mask_dir masks -warp_dir warps template.mif ' '-type rigid_affine_nonlinear -rigid_scale 0.25,0.5,0.8,1.0 -affine_scale 0.7,0.8,1.0,1.0 ' '-nl_scale 0.5,0.75,1.0,1.0,1.0 -nl_niter 5,5,5,5,5 -linear_no_pause') file.delTemporary('images') file.delTemporary('masks') # Second pass through subject data in group analysis: # - Warp template FA image back to subject space & threshold to define a WM mask in subject space # - Calculate the median subject b=0 value within this mask # - Store this in a file, and contribute to calculation of the mean of these values across subjects # - Contribute to the group average response function progress = app.progressBar( 'Generating group-average response function and intensity normalisation factors', len(subjects) + 1) run.function(os.makedirs, 'voxels') sum_median_bzero = 0.0 sum_RF = [] for s in subjects: run.command('mrtransform template.mif -warp_full ' + s.temp_warp + ' - -from 2 -template ' + s.temp_bzero + ' | ' 'mrthreshold - ' + s.temp_voxels + ' -abs 0.4') s.median_bzero = float( image.statistic(s.temp_bzero, 'median', '-mask ' + s.temp_voxels)) file.delTemporary(s.temp_bzero) file.delTemporary(s.temp_voxels) file.delTemporary(s.temp_warp) sum_median_bzero += s.median_bzero if sum_RF: sum_RF = [[a + b for a, b in zip(one, two)] for one, two in zip(sum_RF, s.RF)] else: sum_RF = s.RF progress.increment() file.delTemporary('bzeros') file.delTemporary('voxels') file.delTemporary('warps') progress.done() # Second group-level calculation: # - Calculate the mean of median b=0 values # - Calculate the mean response function, and extract the l=0 values from it mean_median_bzero = sum_median_bzero / len(subjects) mean_RF = [[v / len(subjects) for v in line] for line in sum_RF] mean_RF_lzero = [line[0] for line in mean_RF] # Third pass through subject data in group analysis: # - Scale the connectome strengths: # - Multiply by SIFT proportionality coefficient mu # - Multiply by (mean median b=0) / (subject median b=0) # - Multiply by (subject RF size) / (mean RF size) # (needs to account for multi-shell data) # - Write the result to file progress = app.progressBar( 'Applying normalisation scaling to subject connectomes', len(subjects)) run.function(os.makedirs, 'connectomes') for s in subjects: RF_lzero = [line[0] for line in s.RF] s.RF_multiplier = 1.0 for (mean, subj) in zip(mean_RF_lzero, RF_lzero): s.RF_multiplier = s.RF_multiplier * subj / mean # Don't want to be scaling connectome independently for differences in RF l=0 terms across all shells; # use the geometric mean of the per-shell scale factors s.RF_multiplier = math.pow(s.RF_multiplier, 1.0 / len(mean_RF_lzero)) s.bzero_multiplier = mean_median_bzero / s.median_bzero s.global_multiplier = s.mu * s.bzero_multiplier * s.RF_multiplier connectome = [] with open(s.in_connectome, 'r') as f: for line in f: connectome.append([float(v) for v in line.split()]) with open(s.temp_connectome, 'w') as f: for line in connectome: f.write(' '.join([str(v * s.global_multiplier) for v in line]) + '\n') progress.increment() progress.done() # Third group-level calculation: Generate the group mean connectome # For any higher-level analysis (e.g. NBSE, computing connectome global measures, etc.), # trying to incorporate such analysis into this particular pipeline script is likely to # overly complicate the interface, and not actually provide much in terms of # convenience / reproducibility guarantees. The primary functionality of this group-level # analysis is therefore to achieve inter-subject connection density normalisation; users # then have the flexibility to subsequently analyse the data however they choose (ideally # based on subject classification data provided with the BIDS-compliant dataset). progress = app.progressBar('Calculating group mean connectome', len(subjects) + 1) mean_connectome = [] for s in subjects: connectome = [] with open(s.temp_connectome, 'r') as f: for line in f: connectome.append([float(v) for v in line.split()]) if mean_connectome: mean_connectome = [[c1 + c2 for c1, c2 in zip(r1, r2)] for r1, r2 in zip(mean_connectome, connectome)] else: mean_connectome = connectome progress.increment() mean_connectome = [[v / len(subjects) for v in row] for row in mean_connectome] progress.done() # Write results of interest back to the output directory; # both per-subject and group information progress = app.progressBar('Writing results to output directory', len(subjects) + 2) for s in subjects: run.function(shutil.copyfile, s.temp_connectome, s.out_connectome) with open(s.out_scale_bzero, 'w') as f: f.write(str(s.bzero_multiplier)) with open(s.out_scale_RF, 'w') as f: f.write(str(s.RF_multiplier)) progress.increment() with open(os.path.join(output_dir, 'mean_response.txt'), 'w') as f: for row in mean_RF: f.write(' '.join([str(v) for v in row]) + '\n') progress.increment() with open(os.path.join(output_dir, 'mean_connectome.csv'), 'w') as f: for row in mean_connectome: f.write(' '.join([str(v) for v in row]) + '\n') progress.done()
def execute(): import math, os, shutil from mrtrix3 import app, image, path, run # Ideally want to use the oversampling-based regridding of the 5TT image from the SIFT model, not mrtransform # May need to commit 5ttregrid... # Verify input 5tt image run.command('5ttcheck 5tt.mif', False) # Get shell information shells = [ int(round(float(x))) for x in image.headerField('dwi.mif', 'shells').split() ] if len(shells) < 3: app.warn('Less than three b-value shells; response functions will not be applicable in resolving three tissues using MSMT-CSD algorithm') # Get lmax information (if provided) wm_lmax = [ ] if app.args.lmax: wm_lmax = [ int(x.strip()) for x in app.args.lmax.split(',') ] if not len(wm_lmax) == len(shells): app.error('Number of manually-defined lmax\'s (' + str(len(wm_lmax)) + ') does not match number of b-value shells (' + str(len(shells)) + ')') for l in wm_lmax: if l%2: app.error('Values for lmax must be even') if l<0: app.error('Values for lmax must be non-negative') run.command('dwi2tensor dwi.mif - -mask mask.mif | tensor2metric - -fa fa.mif -vector vector.mif') if not os.path.exists('dirs.mif'): run.function(shutil.copy, 'vector.mif', 'dirs.mif') run.command('mrtransform 5tt.mif 5tt_regrid.mif -template fa.mif -interp linear') # Basic tissue masks run.command('mrconvert 5tt_regrid.mif - -coord 3 2 -axes 0,1,2 | mrcalc - ' + str(app.args.pvf) + ' -gt mask.mif -mult wm_mask.mif') run.command('mrconvert 5tt_regrid.mif - -coord 3 0 -axes 0,1,2 | mrcalc - ' + str(app.args.pvf) + ' -gt fa.mif ' + str(app.args.fa) + ' -lt -mult mask.mif -mult gm_mask.mif') run.command('mrconvert 5tt_regrid.mif - -coord 3 3 -axes 0,1,2 | mrcalc - ' + str(app.args.pvf) + ' -gt fa.mif ' + str(app.args.fa) + ' -lt -mult mask.mif -mult csf_mask.mif') # Revise WM mask to only include single-fibre voxels app.console('Calling dwi2response recursively to select WM single-fibre voxels using \'' + app.args.wm_algo + '\' algorithm') recursive_cleanup_option='' if not app._cleanup: recursive_cleanup_option = ' -nocleanup' run.command('dwi2response ' + app.args.wm_algo + ' dwi.mif wm_ss_response.txt -mask wm_mask.mif -voxels wm_sf_mask.mif -tempdir ' + app._tempDir + recursive_cleanup_option) # Check for empty masks wm_voxels = int(image.statistic('wm_sf_mask.mif', 'count', 'wm_sf_mask.mif')) gm_voxels = int(image.statistic('gm_mask.mif', 'count', 'gm_mask.mif')) csf_voxels = int(image.statistic('csf_mask.mif', 'count', 'csf_mask.mif')) empty_masks = [ ] if not wm_voxels: empty_masks.append('WM') if not gm_voxels: empty_masks.append('GM') if not csf_voxels: empty_masks.append('CSF') if empty_masks: message = ','.join(empty_masks) message += ' tissue mask' if len(empty_masks) > 1: message += 's' message += ' empty; cannot estimate response function' if len(empty_masks) > 1: message += 's' app.error(message) # For each of the three tissues, generate a multi-shell response bvalues_option = ' -shell ' + ','.join(map(str,shells)) sfwm_lmax_option = '' if wm_lmax: sfwm_lmax_option = ' -lmax ' + ','.join(map(str,wm_lmax)) run.command('amp2response dwi.mif wm_sf_mask.mif dirs.mif wm.txt' + bvalues_option + sfwm_lmax_option) run.command('amp2response dwi.mif gm_mask.mif dirs.mif gm.txt' + bvalues_option + ' -isotropic') run.command('amp2response dwi.mif csf_mask.mif dirs.mif csf.txt' + bvalues_option + ' -isotropic') run.function(shutil.copyfile, 'wm.txt', path.fromUser(app.args.out_wm, False)) run.function(shutil.copyfile, 'gm.txt', path.fromUser(app.args.out_gm, False)) run.function(shutil.copyfile, 'csf.txt', path.fromUser(app.args.out_csf, False)) # Generate output 4D binary image with voxel selections; RGB as in MSMT-CSD paper run.command('mrcat csf_mask.mif gm_mask.mif wm_sf_mask.mif voxels.mif -axis 3')
def execute(): #pylint: disable=unused-variable # Ideally want to use the oversampling-based regridding of the 5TT image from the SIFT model, not mrtransform # May need to commit 5ttregrid... # Verify input 5tt image verification_text = '' try: verification_text = run.command('5ttcheck 5tt.mif').stderr except run.MRtrixCmdError as except_5ttcheck: verification_text = except_5ttcheck.stderr if 'WARNING' in verification_text or 'ERROR' in verification_text: app.warn('Command 5ttcheck indicates problems with provided input 5TT image \'' + app.ARGS.in_5tt + '\':') for line in verification_text.splitlines(): app.warn(line) app.warn('These may or may not interfere with the dwi2response msmt_5tt script') # Get shell information shells = [ int(round(float(x))) for x in image.mrinfo('dwi.mif', 'shell_bvalues').split() ] if len(shells) < 3: app.warn('Less than three b-values; response functions will not be applicable in resolving three tissues using MSMT-CSD algorithm') # Get lmax information (if provided) wm_lmax = [ ] if app.ARGS.lmax: wm_lmax = [ int(x.strip()) for x in app.ARGS.lmax.split(',') ] if not len(wm_lmax) == len(shells): raise MRtrixError('Number of manually-defined lmax\'s (' + str(len(wm_lmax)) + ') does not match number of b-values (' + str(len(shells)) + ')') for shell_l in wm_lmax: if shell_l % 2: raise MRtrixError('Values for lmax must be even') if shell_l < 0: raise MRtrixError('Values for lmax must be non-negative') run.command('dwi2tensor dwi.mif - -mask mask.mif | tensor2metric - -fa fa.mif -vector vector.mif') if not os.path.exists('dirs.mif'): run.function(shutil.copy, 'vector.mif', 'dirs.mif') run.command('mrtransform 5tt.mif 5tt_regrid.mif -template fa.mif -interp linear') # Basic tissue masks run.command('mrconvert 5tt_regrid.mif - -coord 3 2 -axes 0,1,2 | mrcalc - ' + str(app.ARGS.pvf) + ' -gt mask.mif -mult wm_mask.mif') run.command('mrconvert 5tt_regrid.mif - -coord 3 0 -axes 0,1,2 | mrcalc - ' + str(app.ARGS.pvf) + ' -gt fa.mif ' + str(app.ARGS.fa) + ' -lt -mult mask.mif -mult gm_mask.mif') run.command('mrconvert 5tt_regrid.mif - -coord 3 3 -axes 0,1,2 | mrcalc - ' + str(app.ARGS.pvf) + ' -gt fa.mif ' + str(app.ARGS.fa) + ' -lt -mult mask.mif -mult csf_mask.mif') # Revise WM mask to only include single-fibre voxels recursive_cleanup_option='' if not app.DO_CLEANUP: recursive_cleanup_option = ' -nocleanup' if not app.ARGS.sfwm_fa_threshold: app.console('Selecting WM single-fibre voxels using \'' + app.ARGS.wm_algo + '\' algorithm') run.command('dwi2response ' + app.ARGS.wm_algo + ' dwi.mif wm_ss_response.txt -mask wm_mask.mif -voxels wm_sf_mask.mif -scratch ' + path.quote(app.SCRATCH_DIR) + recursive_cleanup_option) else: app.console('Selecting WM single-fibre voxels using \'fa\' algorithm with a hard FA threshold of ' + str(app.ARGS.sfwm_fa_threshold)) run.command('dwi2response fa dwi.mif wm_ss_response.txt -mask wm_mask.mif -threshold ' + str(app.ARGS.sfwm_fa_threshold) + ' -voxels wm_sf_mask.mif -scratch ' + path.quote(app.SCRATCH_DIR) + recursive_cleanup_option) # Check for empty masks wm_voxels = image.statistics('wm_sf_mask.mif', mask='wm_sf_mask.mif').count gm_voxels = image.statistics('gm_mask.mif', mask='gm_mask.mif').count csf_voxels = image.statistics('csf_mask.mif', mask='csf_mask.mif').count empty_masks = [ ] if not wm_voxels: empty_masks.append('WM') if not gm_voxels: empty_masks.append('GM') if not csf_voxels: empty_masks.append('CSF') if empty_masks: message = ','.join(empty_masks) message += ' tissue mask' if len(empty_masks) > 1: message += 's' message += ' empty; cannot estimate response function' if len(empty_masks) > 1: message += 's' raise MRtrixError(message) # For each of the three tissues, generate a multi-shell response bvalues_option = ' -shells ' + ','.join(map(str,shells)) sfwm_lmax_option = '' if wm_lmax: sfwm_lmax_option = ' -lmax ' + ','.join(map(str,wm_lmax)) run.command('amp2response dwi.mif wm_sf_mask.mif dirs.mif wm.txt' + bvalues_option + sfwm_lmax_option) run.command('amp2response dwi.mif gm_mask.mif dirs.mif gm.txt' + bvalues_option + ' -isotropic') run.command('amp2response dwi.mif csf_mask.mif dirs.mif csf.txt' + bvalues_option + ' -isotropic') run.function(shutil.copyfile, 'wm.txt', path.from_user(app.ARGS.out_wm, False)) run.function(shutil.copyfile, 'gm.txt', path.from_user(app.ARGS.out_gm, False)) run.function(shutil.copyfile, 'csf.txt', path.from_user(app.ARGS.out_csf, False)) # Generate output 4D binary image with voxel selections; RGB as in MSMT-CSD paper run.command('mrcat csf_mask.mif gm_mask.mif wm_sf_mask.mif voxels.mif -axis 3') if app.ARGS.voxels: run.command('mrconvert voxels.mif ' + path.from_user(app.ARGS.voxels), mrconvert_keyval=path.from_user(app.ARGS.input, False), force=app.FORCE_OVERWRITE)