예제 #1
0
파일: run.py 프로젝트: yarikoptic/mrtrix3
def function(fn, *args, **kwargs): #pylint: disable=unused-variable

  import inspect, sys
  from mrtrix3 import app

  fnstring = fn.__module__ + '.' + fn.__name__ + \
             '(' + ', '.join(['\'' + str(a) + '\'' if isinstance(a, str) else str(a) for a in args]) + \
             (', ' if (args and kwargs) else '') + \
             ', '.join([key+'='+str(value) for key, value in kwargs.items()]) + ')'

  if _lastFile:
    if _triggerContinue(args) or _triggerContinue(kwargs.values()):
      app.debug('Detected last file in function \'' + fnstring + '\'; this is the last run.command() / run.function() call that will be skipped')
    if app.verbosity:
      sys.stderr.write(app.colourExec + 'Skipping function:' + app.colourClear + ' ' + fnstring + '\n')
      sys.stderr.flush()
    return None

  if app.verbosity:
    sys.stderr.write(app.colourExec + 'Function:' + app.colourClear + ' ' + fnstring + '\n')
    sys.stderr.flush()

  # Now we need to actually execute the requested function
  try:
    if kwargs:
      result = fn(*args, **kwargs)
    else:
      result = fn(*args)
  except Exception as e: # pylint: disable=broad-except
    app.cleanup = False
    caller = inspect.getframeinfo(inspect.stack()[1][0])
    error_text = str(type(e).__name__) + ': ' + str(e)
    script_name = os.path.basename(sys.argv[0])
    app.console('')
    try:
      filename = caller.filename
      lineno = caller.lineno
    except AttributeError:
      filename = caller[1]
      lineno = caller[2]
    sys.stderr.write(script_name + ': ' + app.colourError + '[ERROR] Function failed: ' + fnstring + app.colourClear + app.colourDebug + ' (' + os.path.basename(filename) + ':' + str(lineno) + ')' + app.colourClear + '\n')
    sys.stderr.write(script_name + ': ' + app.colourConsole + 'Information from failed function:' + app.colourClear + '\n')
    for line in error_text.splitlines():
      sys.stderr.write(' ' * (len(script_name)+2) + line + '\n')
    app.console('')
    sys.stderr.flush()
    if app.tempDir:
      with open(os.path.join(app.tempDir, 'error.txt'), 'w') as outfile:
        outfile.write(fnstring + '\n\n' + error_text + '\n')
    app.complete()
    sys.exit(1)

  # Only now do we append to the script log, since the function has completed successfully
  if app.tempDir:
    with open(os.path.join(app.tempDir, 'log.txt'), 'a') as outfile:
      outfile.write(fnstring + '\n')

  return result
예제 #2
0
def waitFor(path):
    import os, time
    from mrtrix3 import app

    def inUse(path):
        import subprocess
        from distutils.spawn import find_executable
        if app.isWindows():
            if not os.access(path, os.W_OK):
                return None
            try:
                with open(path, 'rb+') as f:
                    pass
                return False
            except:
                return True
        if not find_executable('fuser'):
            return None
        # fuser returns zero if there IS at least one process accessing the file
        # A fatal error will result in a non-zero code -> inUse() = False, so waitFor() can return
        return not subprocess.call(['fuser', '-s', path],
                                   shell=False,
                                   stdin=None,
                                   stdout=None,
                                   stderr=None)

    if not os.path.exists(path):
        delay = 1.0 / 1024.0
        app.console('Waiting for creation of new file \"' + path + '\"')
        while not os.path.exists(path):
            time.sleep(delay)
            delay = max(60.0, delay * 2.0)
        app.debug('File \"' + path + '\" appears to have been created')
    if not os.path.isfile(path):
        app.debug('Path \"' + path +
                  '\" is not a file; not testing for finalization')
        return
    init_test = inUse(path)
    if init_test is None:
        app.debug('Unable to test for finalization of new file \"' + path +
                  '\"')
        return
    if not init_test:
        app.debug('File \"' + path + '\" immediately ready')
        return
    app.console('Waiting for finalization of new file \"' + path + '\"')
    delay = 1.0 / 1024.0
    while True:
        if inUse(path):
            time.sleep(delay)
            delay = max(60.0, delay * 2.0)
        else:
            app.debug('File \"' + path + '\" appears to have been finalized')
            return
예제 #3
0
def delTempFile(path):
  import os
  from mrtrix3 import app
  if not app._cleanup:
    return
  if app._verbosity > 2:
    app.console('Deleting temporary file: ' + path)
  try:
    os.remove(path)
  except OSError:
    app.debug('Unable to delete temporary file ' + path)
예제 #4
0
def delTempFile(path):
    import os
    from mrtrix3 import app
    if not app._cleanup:
        return
    if app._verbosity > 2:
        app.console('Deleting temporary file: ' + path)
    try:
        os.remove(path)
    except OSError:
        app.debug('Unable to delete temporary file ' + path)
예제 #5
0
def delTempFolder(path):
    import shutil
    from mrtrix3 import app
    if not app._cleanup:
        return
    if app._verbosity > 2:
        app.console('Deleting temporary folder: ' + path)
    try:
        shutil.rmtree(path)
    except OSError:
        app.debug('Unable to delete temprary folder ' + path)
예제 #6
0
def delTempFolder(path):
  import shutil
  from mrtrix3 import app
  if not app._cleanup:
    return
  if app._verbosity > 2:
    app.console('Deleting temporary folder: ' + path)
  try:
    shutil.rmtree(path)
  except OSError:
    app.debug('Unable to delete temprary folder ' + path)
예제 #7
0
def headerKeyValue(image_path, key):
  import subprocess
  from mrtrix3 import app, run
  command = [ run.exeName(run.versionMatch('mrinfo')), image_path, '-property', key ]
  if app._verbosity > 1:
    app.console('Command: \'' + ' '.join(command) + '\' (piping data to local storage)')
  proc = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=None)
  result, err = proc.communicate()
  result = result.rstrip().decode('utf-8')
  if app._verbosity > 1:
    app.console('Result: ' + result)
  return result
예제 #8
0
파일: fsl.py 프로젝트: MRtrix3/mrtrix3
def checkFirst(prefix, structures): #pylint: disable=unused-variable
  import os
  from mrtrix3 import app, file, path # pylint: disable=redefined-builtin
  vtk_files = [ prefix + '-' + struct + '_first.vtk' for struct in structures ]
  existing_file_count = sum([ os.path.exists(filename) for filename in vtk_files ])
  if existing_file_count != len(vtk_files):
    if 'SGE_ROOT' in os.environ:
      app.console('FSL FIRST job has been submitted to SGE; awaiting completion')
      app.console('(note however that FIRST may fail silently, and hence this script may hang indefinitely)')
      file.waitFor(vtk_files)
    else:
      app.error('FSL FIRST has failed; only ' + str(existing_file_count) + ' of ' + str(len(vtk_files)) + ' structures were segmented successfully (check ' + path.toTemp('first.logs', False) + ')')
예제 #9
0
def check_first(prefix, structures): #pylint: disable=unused-variable
  import os
  from mrtrix3 import app, MRtrixError, path
  vtk_files = [ prefix + '-' + struct + '_first.vtk' for struct in structures ]
  existing_file_count = sum([ os.path.exists(filename) for filename in vtk_files ])
  if existing_file_count != len(vtk_files):
    if 'SGE_ROOT' in os.environ and os.environ['SGE_ROOT']:
      app.console('FSL FIRST job may have been run via SGE; awaiting completion')
      app.console('(note however that FIRST may fail silently, and hence this script may hang indefinitely)')
      path.wait_for(vtk_files)
    else:
      raise MRtrixError('FSL FIRST has failed; ' + ('only ' if existing_file_count else '') + str(existing_file_count) + ' of ' + str(len(vtk_files)) + ' structures were segmented successfully (check ' + path.to_scratch('first.logs', False) + ')')
예제 #10
0
def mrinfo(image_path, field): #pylint: disable=unused-variable
  from mrtrix3 import app, run #pylint: disable=import-outside-toplevel
  command = [ run.exe_name(run.version_match('mrinfo')), image_path, '-' + field ]
  if app.VERBOSITY > 1:
    app.console('Command: \'' + ' '.join(command) + '\' (piping data to local storage)')
  proc = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=None) #pylint: disable=consider-using-with
  result = proc.communicate()[0].rstrip().decode('utf-8')
  if app.VERBOSITY > 1:
    app.console('Result: ' + result)
  # Don't exit on error; let the calling function determine whether or not
  #   the absence of the key is an issue
  return result
예제 #11
0
파일: image.py 프로젝트: MRtrix3/mrtrix3
def mrinfo(image_path, field): #pylint: disable=unused-variable
  import subprocess
  from mrtrix3 import app, run
  command = [ run.exeName(run.versionMatch('mrinfo')), image_path, '-' + field ]
  if app.verbosity > 1:
    app.console('Command: \'' + ' '.join(command) + '\' (piping data to local storage)')
  proc = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=None)
  result, dummy_err = proc.communicate()
  result = result.rstrip().decode('utf-8')
  if app.verbosity > 1:
    app.console('Result: ' + result)
  # Don't exit on error; let the calling function determine whether or not
  #   the absence of the key is an issue
  return result
예제 #12
0
def mrinfo(image_path, field): #pylint: disable=unused-variable
  import subprocess
  from mrtrix3 import app, run
  command = [ run.exeName(run.versionMatch('mrinfo')), image_path, '-' + field ]
  if app.verbosity > 1:
    app.console('Command: \'' + ' '.join(command) + '\' (piping data to local storage)')
  proc = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=None)
  result, dummy_err = proc.communicate()
  result = result.rstrip().decode('utf-8')
  if app.verbosity > 1:
    app.console('Result: ' + result)
  # Don't exit on error; let the calling function determine whether or not
  #   the absence of the key is an issue
  return result
예제 #13
0
def statistic(image_path, statistic, mask_path = ''):
  import subprocess
  from mrtrix3 import app, run
  command = [ run.exeName(run.versionMatch('mrstats')), image_path, '-output', statistic ]
  if mask_path:
    command.extend([ '-mask', mask_path ])
  if app._verbosity > 1:
    app.console('Command: \'' + ' '.join(command) + '\' (piping data to local storage)')
  proc = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=None)
  result, err = proc.communicate()
  result = result.rstrip().decode('utf-8')
  if app._verbosity > 1:
    app.console('Result: ' + result)
  return result
예제 #14
0
def statistics(image_path, **kwargs):  #pylint: disable=unused-variable
    from mrtrix3 import app, run  #pylint: disable=import-outside-toplevel
    mask = kwargs.pop('mask', None)
    allvolumes = kwargs.pop('allvolumes', False)
    ignorezero = kwargs.pop('ignorezero', False)
    if kwargs:
        raise TypeError(
            'Unsupported keyword arguments passed to image.statistics(): ' +
            str(kwargs))

    command = [run.exe_name(run.version_match('mrstats')), image_path]
    for stat in IMAGE_STATISTICS:
        command.extend(['-output', stat])
    if mask:
        command.extend(['-mask', mask])
    if allvolumes:
        command.append('-allvolumes')
    if ignorezero:
        command.append('-ignorezero')
    if app.VERBOSITY > 1:
        app.console('Command: \'' + ' '.join(command) +
                    '\' (piping data to local storage)')

    try:
        from subprocess import DEVNULL  #pylint: disable=import-outside-toplevel
    except ImportError:
        DEVNULL = open(os.devnull, 'wb')
    proc = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=DEVNULL)
    stdout = proc.communicate()[0]
    if proc.returncode:
        raise MRtrixError(
            'Error trying to calculate statistics from image \'' + image_path +
            '\'')
    stdout_lines = [
        line.strip() for line in stdout.decode('cp437').splitlines()
    ]
    result = []
    for line in stdout_lines:
        line = line.replace('N/A', 'nan').split()
        assert len(line) == len(IMAGE_STATISTICS)
        result.append(
            ImageStatistics(float(line[0]), float(line[1]), float(line[2]),
                            float(line[3]), float(line[4]), float(line[5]),
                            int(line[6])))
    if len(result) == 1:
        result = result[0]
    if app.VERBOSITY > 1:
        app.console('Result: ' + str(result))
    return result
예제 #15
0
def statistic(image_path, stat, options=''): #pylint: disable=unused-variable
  import shlex, subprocess
  from mrtrix3 import app, run
  command = [ run.exeName(run.versionMatch('mrstats')), image_path, '-output', stat ]
  if options:
    command.extend(shlex.split(options))
  if app.verbosity > 1:
    app.console('Command: \'' + ' '.join(command) + '\' (piping data to local storage)')
  proc = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=None)
  result, dummy_err = proc.communicate()
  result = result.rstrip().decode('utf-8')
  if app.verbosity > 1:
    app.console('Result: ' + result)
  if proc.returncode:
    app.error('Error trying to calculate statistic \'' + stat + '\' from image \'' + image_path + '\'')
  return result
예제 #16
0
파일: image.py 프로젝트: MRtrix3/mrtrix3
def statistic(image_path, stat, options=''): #pylint: disable=unused-variable
  import shlex, subprocess
  from mrtrix3 import app, run
  command = [ run.exeName(run.versionMatch('mrstats')), image_path, '-output', stat ]
  if options:
    command.extend(shlex.split(options))
  if app.verbosity > 1:
    app.console('Command: \'' + ' '.join(command) + '\' (piping data to local storage)')
  proc = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=None)
  result, dummy_err = proc.communicate()
  result = result.rstrip().decode('utf-8')
  if app.verbosity > 1:
    app.console('Result: ' + result)
  if proc.returncode:
    app.error('Error trying to calculate statistic \'' + stat + '\' from image \'' + image_path + '\'')
  return result
예제 #17
0
 def __init__(self, image_path):
     from mrtrix3 import app, path, run  #pylint: disable=import-outside-toplevel
     filename = path.name_temporary('json')
     command = [
         run.exe_name(run.version_match('mrinfo')), image_path, '-json_all',
         filename
     ]
     if app.VERBOSITY > 1:
         app.console('Loading header for image file \'' + image_path + '\'')
     app.debug(str(command))
     result = subprocess.call(command, stdout=None, stderr=None)
     if result:
         raise MRtrixError(
             'Could not access header information for image \'' +
             image_path + '\'')
     try:
         with open(filename, 'r') as json_file:
             data = json.load(json_file)
     except UnicodeDecodeError:
         with open(filename, 'r') as json_file:
             data = json.loads(json_file.read().decode('utf-8',
                                                       errors='replace'))
     os.remove(filename)
     try:
         #self.__dict__.update(data)
         # Load the individual header elements manually, for a couple of reasons:
         # - So that pylint knows that they'll be there
         # - Write to private members, and give read-only access
         self._name = data['name']
         self._size = data['size']
         self._spacing = data['spacing']
         self._strides = data['strides']
         self._format = data['format']
         self._datatype = data['datatype']
         self._intensity_offset = data['intensity_offset']
         self._intensity_scale = data['intensity_scale']
         self._transform = data['transform']
         if not 'keyval' in data or not data['keyval']:
             self._keyval = {}
         else:
             self._keyval = data['keyval']
     except:
         raise MRtrixError(
             'Error in reading header information from file \'' +
             image_path + '\'')
     app.debug(str(vars(self)))
예제 #18
0
def checkFirst(prefix, structures):  #pylint: disable=unused-variable
    import os
    from mrtrix3 import app, file, path  # pylint: disable=redefined-builtin
    vtk_files = [prefix + '-' + struct + '_first.vtk' for struct in structures]
    existing_file_count = sum(
        [os.path.exists(filename) for filename in vtk_files])
    if existing_file_count != len(vtk_files):
        if 'SGE_ROOT' in os.environ:
            app.console(
                'FSL FIRST job has been submitted to SGE; awaiting completion')
            app.console(
                '(note however that FIRST may fail silently, and hence this script may hang indefinitely)'
            )
            file.waitFor(vtk_files)
        else:
            app.error('FSL FIRST has failed; only ' +
                      str(existing_file_count) + ' of ' + str(len(vtk_files)) +
                      ' structures were segmented successfully (check ' +
                      path.toTemp('first.logs', False) + ')')
예제 #19
0
파일: file.py 프로젝트: MRtrix3/mrtrix3
def delTemporary(path): #pylint: disable=unused-variable
  import shutil, os
  from mrtrix3 import app
  if not app.cleanup:
    return
  if os.path.isfile(path):
    temporary_type = 'file'
    func = os.remove
  elif os.path.isdir(path):
    temporary_type = 'directory'
    func = shutil.rmtree
  else:
    app.debug('Unknown target \'' + path + '\'')
    return
  if app.verbosity > 2:
    app.console('Deleting temporary ' + temporary_type + ': \'' + path + '\'')
  try:
    func(path)
  except OSError:
    app.debug('Unable to delete temporary ' + temporary_type + ': \'' + path + '\'')
예제 #20
0
def statistic(image_path, stat, options=''): #pylint: disable=unused-variable
  import shlex, subprocess
  from mrtrix3 import app, MRtrixError, run
  command = [ run.exe_name(run.version_match('mrstats')), image_path, '-output', stat ]
  if options:
    command.extend(shlex.split(options))
  if app.VERBOSITY > 1:
    app.console('Command: \'' + ' '.join(command) + '\' (piping data to local storage)')
  proc = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=None)
  result = [ line.strip() for line in proc.communicate()[0].decode('cp437').splitlines() ]
  if stat == 'count':
    result = [ int(i) for i in result ]
  else:
    result = [ float(f) for f in result ]
  if len(result) == 1:
    result = result[0]
  if app.VERBOSITY > 1:
    app.console('Result: ' + str(result))
  if proc.returncode:
    raise MRtrixError('Error trying to calculate statistic \'' + stat + '\' from image \'' + image_path + '\'')
  return result
예제 #21
0
 def __init__(self, image_path):
     import json, os, subprocess
     from mrtrix3 import app, path, run
     filename = path.newTemporary('json')
     command = [
         run.exeName(run.versionMatch('mrinfo')), image_path, '-json_all',
         filename
     ]
     if app.verbosity > 1:
         app.console('Loading header for image file \'' + image_path + '\'')
     app.debug(str(command))
     result = subprocess.call(command, stdout=None, stderr=None)
     if result:
         app.error('Could not access header information for image \'' +
                   image_path + '\'')
     with open(filename, 'r') as f:
         data = json.load(f)
     os.remove(filename)
     try:
         #self.__dict__.update(data)
         # Load the individual header elements manually, for a couple of reasons:
         # - So that pylint knows that they'll be there
         # - Write to private members, and give read-only access
         self._name = data['name']
         self._size = data['size']
         self._spacing = data['spacing']
         self._strides = data['strides']
         self._format = data['format']
         self._datatype = data['datatype']
         self._intensity_offset = data['intensity_offset']
         self._intensity_scale = data['intensity_scale']
         self._transform = data['transform']
         if not 'keyval' in data or not data['keyval']:
             self._keyval = {}
         else:
             self._keyval = data['keyval']
     except:
         app.error('Error in reading header information from file \'' +
                   image_path + '\'')
     app.debug(str(vars(self)))
예제 #22
0
파일: image.py 프로젝트: MRtrix3/mrtrix3
 def __init__(self, image_path):
   import json, os, subprocess
   from mrtrix3 import app, path, run
   filename = path.newTemporary('json')
   command = [ run.exeName(run.versionMatch('mrinfo')), image_path, '-json_all', filename ]
   if app.verbosity > 1:
     app.console('Loading header for image file \'' + image_path + '\'')
   app.debug(str(command))
   result = subprocess.call(command, stdout=None, stderr=None)
   if result:
     app.error('Could not access header information for image \'' + image_path + '\'')
   try:
     with open(filename, 'r') as f:
       data = json.load(f)
   except UnicodeDecodeError:
     with open(filename, 'r') as f:
       data = json.loads(f.read().decode('utf-8', errors='replace'))
   os.remove(filename)
   try:
     #self.__dict__.update(data)
     # Load the individual header elements manually, for a couple of reasons:
     # - So that pylint knows that they'll be there
     # - Write to private members, and give read-only access
     self._name = data['name']
     self._size = data['size']
     self._spacing = data['spacing']
     self._strides = data['strides']
     self._format = data['format']
     self._datatype = data['datatype']
     self._intensity_offset = data['intensity_offset']
     self._intensity_scale = data['intensity_scale']
     self._transform = data['transform']
     if not 'keyval' in data or not data['keyval']:
       self._keyval = { }
     else:
       self._keyval = data['keyval']
   except:
     app.error('Error in reading header information from file \'' + image_path + '\'')
   app.debug(str(vars(self)))
예제 #23
0
def delTemporary(path):  #pylint: disable=unused-variable
    import shutil, os
    from mrtrix3 import app
    if not app.cleanup:
        return
    if os.path.isfile(path):
        temporary_type = 'file'
        func = os.remove
    elif os.path.isdir(path):
        temporary_type = 'directory'
        func = shutil.rmtree
    else:
        app.debug('Unknown target \'' + path + '\'')
        return
    if app.verbosity > 2:
        app.console('Deleting temporary ' + temporary_type + ': \'' + path +
                    '\'')
    try:
        func(path)
    except OSError:
        app.debug('Unable to delete temporary ' + temporary_type + ': \'' +
                  path + '\'')
예제 #24
0
def headerField(image_path, field):
  import subprocess
  from mrtrix3 import app, run
  command = [ run.exeName(run.versionMatch('mrinfo')), image_path, '-' + field ]
  if app._verbosity > 1:
    app.console('Command: \'' + ' '.join(command) + '\' (piping data to local storage)')
  proc = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=None)
  result, err = proc.communicate()
  result = result.rstrip().decode('utf-8')
  if app._verbosity > 1:
    if '\n' in result:
      app.console('Result: (' + str(result.count('\n')+1) + ' lines)')
      app.debug(result)
    else:
      app.console('Result: ' + result)
  return result
예제 #25
0
def getScheme(image_path):
  import subprocess
  from mrtrix3 import app, run
  command = [ run.versionMatch('mrinfo'), image_path, '-petable' ]
  if app._verbosity > 1:
    app.console('Command: \'' + ' '.join(command) + '\' (piping data to local storage)')
  proc = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=None)
  result, err = proc.communicate()
  result = result.rstrip().decode('utf-8')
  if result:
    result = [ [ float(f) for f in line.split() ] for line in result.split('\n') ]
  if app._verbosity > 1:
    if not result:
      app.console('Result: No phase encoding table found')
    else:
      app.console('Result: ' + str(len(result)) + ' x ' + str(len(result[0])) + ' table')
      app.debug(str(result))
  return result
예제 #26
0
파일: run.py 프로젝트: MRtrix3/mrtrix3
def command(cmd, exitOnError=True): #pylint: disable=unused-variable

  import inspect, itertools, shlex, signal, string, subprocess, sys, tempfile
  from distutils.spawn import find_executable
  from mrtrix3 import app

  # This is the only global variable that is _modified_ within this function
  global _processes

  # Vectorise the command string, preserving anything encased within quotation marks
  if os.sep == '/': # Cheap POSIX compliance check
    cmdsplit = shlex.split(cmd)
  else: # Native Windows Python
    cmdsplit = [ entry.strip('\"') for entry in shlex.split(cmd, posix=False) ]

  if _lastFile:
    if _triggerContinue(cmdsplit):
      app.debug('Detected last file in command \'' + cmd + '\'; this is the last run.command() / run.function() call that will be skipped')
    if app.verbosity:
      sys.stderr.write(app.colourExec + 'Skipping command:' + app.colourClear + ' ' + cmd + '\n')
      sys.stderr.flush()
    return ('', '')

  # This splits the command string based on the piping character '|', such that each
  #   individual executable (along with its arguments) appears as its own list
  cmdstack = [ list(g) for k, g in itertools.groupby(cmdsplit, lambda s : s != '|') if k ]

  for line in cmdstack:
    is_mrtrix_exe = line[0] in _mrtrix_exe_list
    if is_mrtrix_exe:
      line[0] = versionMatch(line[0])
      if app.numThreads is not None:
        line.extend( [ '-nthreads', str(app.numThreads) ] )
      # Get MRtrix3 binaries to output additional INFO-level information if running in debug mode
      if app.verbosity == 3:
        line.append('-info')
      elif not app.verbosity:
        line.append('-quiet')
    else:
      line[0] = exeName(line[0])
    shebang = _shebang(line[0])
    if shebang:
      if not is_mrtrix_exe:
        # If a shebang is found, and this call is therefore invoking an
        #   interpreter, can't rely on the interpreter finding the script
        #   from PATH; need to find the full path ourselves.
        line[0] = find_executable(line[0])
      for item in reversed(shebang):
        line.insert(0, item)

  app.debug('To execute: ' + str(cmdstack))

  if app.verbosity:
    sys.stderr.write(app.colourExec + 'Command:' + app.colourClear + '  ' + cmd + '\n')
    sys.stderr.flush()

  # Disable interrupt signal handler while threads are running
  try:
    signal.signal(signal.SIGINT, signal.default_int_handler)
  except:
    pass

  # Construct temporary text files for holding stdout / stderr contents when appropriate
  #   (One entry per process; each is a tuple containing two entries, each of which is either a
  #   file-like object, or None)
  tempfiles = [ ]

  # Execute all processes
  assert not _processes
  for index, to_execute in enumerate(cmdstack):
    file_out = None
    file_err = None
    # If there's at least one command prior to this, need to receive the stdout from the prior command
    #   at the stdin of this command; otherwise, nothing to receive
    if index > 0:
      handle_in = _processes[index-1].stdout
    else:
      handle_in = None
    # If this is not the last command, then stdout needs to be piped to the next command;
    #   otherwise, write stdout to a temporary file so that the contents can be read later
    if index < len(cmdstack)-1:
      handle_out = subprocess.PIPE
    else:
      file_out = tempfile.TemporaryFile()
      handle_out = file_out.fileno()
    # If we're in debug / info mode, the contents of stderr will be read and printed to the terminal
    #   as the command progresses, hence this needs to go to a pipe; otherwise, write it to a temporary
    #   file so that the contents can be read later
    if app.verbosity > 1:
      handle_err = subprocess.PIPE
    else:
      file_err = tempfile.TemporaryFile()
      handle_err = file_err.fileno()
    # Set off the processes
    try:
      try:
        process = subprocess.Popen (to_execute, stdin=handle_in, stdout=handle_out, stderr=handle_err, env=_env, preexec_fn=os.setpgrp) # pylint: disable=bad-option-value,subprocess-popen-preexec-fn
      except AttributeError:
        process = subprocess.Popen (to_execute, stdin=handle_in, stdout=handle_out, stderr=handle_err, env=_env)
      _processes.append(process)
      tempfiles.append( ( file_out, file_err ) )
    # FileNotFoundError not defined in Python 2.7
    except OSError as e:
      if exitOnError:
        app.error('\'' + to_execute[0] + '\' not executed ("' + str(e) + '"); script cannot proceed')
      else:
        app.warn('\'' + to_execute[0] + '\' not executed ("' + str(e) + '")')
        for p in _processes:
          p.terminate()
        _processes = [ ]
        break

  return_stdout = ''
  return_stderr = ''
  error = False
  error_text = ''

  # Wait for all commands to complete
  # Switch how we monitor running processes / wait for them to complete
  #   depending on whether or not the user has specified -info or -debug option
  try:
    if app.verbosity > 1:
      for process in _processes:
        stderrdata = b''
        do_indent = True
        while True:
          # Have to read one character at a time: Waiting for a newline character using e.g. readline() will prevent MRtrix progressbars from appearing
          byte = process.stderr.read(1)
          stderrdata += byte
          char = byte.decode('cp1252', errors='ignore')
          if not char and process.poll() is not None:
            break
          if do_indent and char in string.printable and char != '\r' and char != '\n':
            sys.stderr.write('          ')
            do_indent = False
          elif char in [ '\r', '\n' ]:
            do_indent = True
          sys.stderr.write(char)
          sys.stderr.flush()
        stderrdata = stderrdata.decode('utf-8', errors='replace')
        return_stderr += stderrdata
        if process.returncode:
          error = True
          error_text += stderrdata
    else:
      for process in _processes:
        process.wait()
  except (KeyboardInterrupt, SystemExit):
    app.handler(signal.SIGINT, inspect.currentframe())

  # Re-enable interrupt signal handler
  try:
    signal.signal(signal.SIGINT, app.handler)
  except:
    pass

  # For any command stdout / stderr data that wasn't either passed to another command or
  #   printed to the terminal during execution, read it here.
  for index in range(len(cmdstack)):
    if tempfiles[index][0] is not None:
      tempfiles[index][0].flush()
      tempfiles[index][0].seek(0)
      stdout_text = tempfiles[index][0].read().decode('utf-8', errors='replace')
      return_stdout += stdout_text
      if _processes[index].returncode:
        error = True
        error_text += stdout_text
    if tempfiles[index][1] is not None:
      tempfiles[index][1].flush()
      tempfiles[index][1].seek(0)
      stderr_text = tempfiles[index][1].read().decode('utf-8', errors='replace')
      return_stderr += stderr_text
      if _processes[index].returncode:
        error = True
        error_text += stderr_text

  _processes = [ ]

  if error:
    if exitOnError:
      app.cleanup = False
      caller = inspect.getframeinfo(inspect.stack()[1][0])
      script_name = os.path.basename(sys.argv[0])
      app.console('')
      try:
        filename = caller.filename
        lineno = caller.lineno
      except AttributeError:
        filename = caller[1]
        lineno = caller[2]
      sys.stderr.write(script_name + ': ' + app.colourError + '[ERROR] Command failed: ' + cmd + app.colourClear + app.colourDebug + ' (' + os.path.basename(filename) + ':' + str(lineno) + ')' + app.colourClear + '\n')
      sys.stderr.write(script_name + ': ' + app.colourConsole + 'Output of failed command:' + app.colourClear + '\n')
      for line in error_text.splitlines():
        sys.stderr.write(' ' * (len(script_name)+2) + line + '\n')
      app.console('')
      sys.stderr.flush()
      if app.tempDir:
        with open(os.path.join(app.tempDir, 'error.txt'), 'w') as outfile:
          outfile.write(cmd + '\n\n' + error_text + '\n')
      app.complete()
      sys.exit(1)
    else:
      app.warn('Command failed: ' + cmd)

  # Only now do we append to the script log, since the command has completed successfully
  # Note: Writing the command as it was formed as the input to run.command():
  #   other flags may potentially change if this file is eventually used to resume the script
  if app.tempDir:
    with open(os.path.join(app.tempDir, 'log.txt'), 'a') as outfile:
      outfile.write(cmd + '\n')

  return (return_stdout, return_stderr)
예제 #27
0
파일: group.py 프로젝트: weimath/mrtrix3
def execute():  #pylint: disable=unused-variable
    class Input(object):
        def __init__(self, filename, prefix, mask_filename=''):
            self.filename = filename
            self.prefix = prefix
            self.mask_filename = mask_filename

    input_dir = path.from_user(app.ARGS.input_dir, False)
    if not os.path.exists(input_dir):
        raise MRtrixError('input directory not found')
    in_files = path.all_in_dir(input_dir, dir_path=False)
    if len(in_files) <= 1:
        raise MRtrixError(
            'not enough images found in input directory: more than one image is needed to perform a group-wise intensity normalisation'
        )

    app.console('performing global intensity normalisation on ' +
                str(len(in_files)) + ' input images')

    mask_dir = path.from_user(app.ARGS.mask_dir, False)
    if not os.path.exists(mask_dir):
        raise MRtrixError('mask directory not found')
    mask_files = path.all_in_dir(mask_dir, dir_path=False)
    if len(mask_files) != len(in_files):
        raise MRtrixError(
            'the number of images in the mask directory does not equal the number of images in the input directory'
        )
    mask_common_postfix = os.path.commonprefix([i[::-1]
                                                for i in mask_files])[::-1]
    mask_prefixes = []
    for mask_file in mask_files:
        mask_prefixes.append(mask_file.split(mask_common_postfix)[0])

    common_postfix = os.path.commonprefix([i[::-1] for i in in_files])[::-1]
    input_list = []
    for i in in_files:
        subj_prefix = i.split(common_postfix)[0]
        if subj_prefix not in mask_prefixes:
            raise MRtrixError(
                'no matching mask image was found for input image ' + i)
        image.check_3d_nonunity(os.path.join(input_dir, i))
        index = mask_prefixes.index(subj_prefix)
        input_list.append(Input(i, subj_prefix, mask_files[index]))

    app.make_scratch_dir()
    app.goto_scratch_dir()

    path.make_dir('fa')
    progress = app.ProgressBar('Computing FA images', len(input_list))
    for i in input_list:
        run.command('dwi2tensor ' +
                    path.quote(os.path.join(input_dir, i.filename)) +
                    ' -mask ' +
                    path.quote(os.path.join(mask_dir, i.mask_filename)) +
                    ' - | tensor2metric - -fa ' +
                    os.path.join('fa', i.prefix + '.mif'))
        progress.increment()
    progress.done()

    app.console('Generating FA population template')
    run.command('population_template fa fa_template.mif' + ' -mask_dir ' +
                mask_dir + ' -type rigid_affine_nonlinear' +
                ' -rigid_scale 0.25,0.5,0.8,1.0' +
                ' -affine_scale 0.7,0.8,1.0,1.0' +
                ' -nl_scale 0.5,0.75,1.0,1.0,1.0' + ' -nl_niter 5,5,5,5,5' +
                ' -warp_dir warps' + ' -linear_no_pause' +
                ' -scratch population_template' +
                ('' if app.DO_CLEANUP else ' -nocleanup'))

    app.console('Generating WM mask in template space')
    run.command('mrthreshold fa_template.mif -abs ' + app.ARGS.fa_threshold +
                ' template_wm_mask.mif')

    progress = app.ProgressBar('Intensity normalising subject images',
                               len(input_list))
    path.make_dir(path.from_user(app.ARGS.output_dir, False))
    path.make_dir('wm_mask_warped')
    for i in input_list:
        run.command(
            'mrtransform template_wm_mask.mif -interp nearest -warp_full ' +
            os.path.join('warps', i.prefix + '.mif') + ' ' +
            os.path.join('wm_mask_warped', i.prefix + '.mif') +
            ' -from 2 -template ' + os.path.join('fa', i.prefix + '.mif'))
        run.command('dwinormalise individual ' +
                    path.quote(os.path.join(input_dir, i.filename)) + ' ' +
                    os.path.join('wm_mask_warped', i.prefix + '.mif') +
                    ' temp.mif')
        run.command(
            'mrconvert temp.mif ' +
            path.from_user(os.path.join(app.ARGS.output_dir, i.filename)),
            mrconvert_keyval=path.from_user(
                os.path.join(input_dir, i.filename), False),
            force=app.FORCE_OVERWRITE)
        os.remove('temp.mif')
        progress.increment()
    progress.done()

    app.console('Exporting template images to user locations')
    run.command('mrconvert template_wm_mask.mif ' +
                path.from_user(app.ARGS.wm_mask),
                mrconvert_keyval='NULL',
                force=app.FORCE_OVERWRITE)
    run.command('mrconvert fa_template.mif ' +
                path.from_user(app.ARGS.fa_template),
                mrconvert_keyval='NULL',
                force=app.FORCE_OVERWRITE)
예제 #28
0
def execute():
    import os
    from distutils.spawn import find_executable
    from mrtrix3 import app, file, fsl, image, run

    if app.isWindows():
        app.error(
            '\'fsl\' algorithm of 5ttgen script cannot be run on Windows: FSL not available on Windows'
        )

    fsl_path = os.environ.get('FSLDIR', '')
    if not fsl_path:
        app.error(
            'Environment variable FSLDIR is not set; please run appropriate FSL configuration script'
        )

    ssroi_cmd = 'standard_space_roi'
    if not find_executable(ssroi_cmd):
        ssroi_cmd = 'fsl5.0-standard_space_roi'
        if not find_executable(ssroi_cmd):
            app.error(
                'Could not find FSL program standard_space_roi; please verify FSL install'
            )

    bet_cmd = 'bet'
    if not find_executable(bet_cmd):
        bet_cmd = 'fsl5.0-bet'
        if not find_executable(bet_cmd):
            app.error(
                'Could not find FSL program bet; please verify FSL install')

    fast_cmd = 'fast'
    if not find_executable(fast_cmd):
        fast_cmd = 'fsl5.0-fast'
        if not find_executable(fast_cmd):
            app.error(
                'Could not find FSL program fast; please verify FSL install')

    first_cmd = 'run_first_all'
    if not find_executable(first_cmd):
        first_cmd = "fsl5.0-run_first_all"
        if not find_executable(first_cmd):
            app.error(
                'Could not find FSL program run_first_all; please verify FSL install'
            )

    first_atlas_path = os.path.join(fsl_path, 'data', 'first',
                                    'models_336_bin')

    if not os.path.isdir(first_atlas_path):
        app.error(
            'Atlases required for FSL\'s FIRST program not installed; please install fsl-first-data using your relevant package manager'
        )

    fsl_suffix = fsl.suffix()

    sgm_structures = [
        'L_Accu', 'R_Accu', 'L_Caud', 'R_Caud', 'L_Pall', 'R_Pall', 'L_Puta',
        'R_Puta', 'L_Thal', 'R_Thal'
    ]
    if app.args.sgm_amyg_hipp:
        sgm_structures.extend(['L_Amyg', 'R_Amyg', 'L_Hipp', 'R_Hipp'])

    run.command('mrconvert input.mif T1.nii -stride -1,+2,+3')

    fast_t1_input = 'T1.nii'
    fast_t2_input = ''

    # Decide whether or not we're going to do any brain masking
    if os.path.exists('mask.mif'):

        fast_t1_input = 'T1_masked' + fsl_suffix

        # Check to see if the mask matches the T1 image
        if image.match('T1.nii', 'mask.mif'):
            run.command('mrcalc T1.nii mask.mif -mult ' + fast_t1_input)
            mask_path = 'mask.mif'
        else:
            app.warn('Mask image does not match input image - re-gridding')
            run.command(
                'mrtransform mask.mif mask_regrid.mif -template T1.nii')
            run.command('mrcalc T1.nii mask_regrid.mif ' + fast_t1_input)
            mask_path = 'mask_regrid.mif'

        if os.path.exists('T2.nii'):
            fast_t2_input = 'T2_masked' + fsl_suffix
            run.command('mrcalc T2.nii ' + mask_path + ' -mult ' +
                        fast_t2_input)

    elif app.args.premasked:

        fast_t1_input = 'T1.nii'
        if os.path.exists('T2.nii'):
            fast_t2_input = 'T2.nii'

    else:

        # Use FSL command standard_space_roi to do an initial masking of the image before BET
        # Also reduce the FoV of the image
        # Using MNI 1mm dilated brain mask rather than the -b option in standard_space_roi (which uses the 2mm mask); the latter looks 'buggy' to me... Unfortunately even with the 1mm 'dilated' mask, it can still cut into some brain areas, hence the explicit dilation
        mni_mask_path = os.path.join(fsl_path, 'data', 'standard',
                                     'MNI152_T1_1mm_brain_mask_dil.nii.gz')
        mni_mask_dilation = 0
        if os.path.exists(mni_mask_path):
            mni_mask_dilation = 4
        else:
            mni_mask_path = os.path.join(
                fsl_path, 'data', 'standard',
                'MNI152_T1_2mm_brain_mask_dil.nii.gz')
            if os.path.exists(mni_mask_path):
                mni_mask_dilation = 2
        if mni_mask_dilation:
            run.command('maskfilter ' + mni_mask_path +
                        ' dilate mni_mask.nii -npass ' +
                        str(mni_mask_dilation))
            if app.args.nocrop:
                ssroi_roi_option = ' -roiNONE'
            else:
                ssroi_roi_option = ' -roiFOV'
            run.command(
                ssroi_cmd + ' T1.nii T1_preBET' + fsl_suffix +
                ' -maskMASK mni_mask.nii' + ssroi_roi_option, False)
        else:
            run.command(ssroi_cmd + ' T1.nii T1_preBET' + fsl_suffix + ' -b',
                        False)

        # For whatever reason, the output file from standard_space_roi may not be
        #   completed before BET is run
        file.waitFor('T1_preBET' + fsl_suffix)

        # BET
        fast_t1_input = 'T1_BET' + fsl_suffix
        run.command(bet_cmd + ' T1_preBET' + fsl_suffix + ' ' + fast_t1_input +
                    ' -f 0.15 -R')

        if os.path.exists('T2.nii'):
            if app.args.nocrop:
                fast_t2_input = 'T2.nii'
            else:
                # Just a reduction of FoV, no sub-voxel interpolation going on
                run.command('mrtransform T2.nii T2_cropped.nii -template ' +
                            fast_t1_input + ' -interp nearest')
                fast_t2_input = 'T2_cropped.nii'

    # Finish branching based on brain masking

    # FAST
    if fast_t2_input:
        run.command(fast_cmd + ' -S 2 ' + fast_t2_input + ' ' + fast_t1_input)
    else:
        run.command(fast_cmd + ' ' + fast_t1_input)
    fast_output_prefix = fast_t1_input.split('.')[0]

    # FIRST
    first_input_is_brain_extracted = ''
    if app.args.premasked:
        first_input_is_brain_extracted = ' -b'
    run.command(first_cmd + ' -s ' + ','.join(sgm_structures) +
                ' -i T1.nii -o first' + first_input_is_brain_extracted)

    # Test to see whether or not FIRST has succeeded
    # However if the expected image is absent, it may be due to FIRST being run
    #   on SGE; in this case it is necessary to wait and see if the file appears.
    #   But even in this case, FIRST may still fail, and the file will never appear...
    combined_image_path = 'first_all_none_firstseg' + fsl_suffix
    if not os.path.isfile(combined_image_path):
        if 'SGE_ROOT' in os.environ:
            app.console(
                'FSL FIRST job has been submitted to SGE; awaiting completion')
            app.console(
                '(note however that FIRST may fail, and hence this script may hang indefinitely)'
            )
            file.waitFor(combined_image_path)
        else:
            app.error(
                'FSL FIRST has failed; not all structures were segmented successfully (check '
                + path.toTemp('first.logs', False) + ')')

    # Convert FIRST meshes to partial volume images
    pve_image_list = []
    for struct in sgm_structures:
        pve_image_path = 'mesh2pve_' + struct + '.mif'
        vtk_in_path = 'first-' + struct + '_first.vtk'
        vtk_temp_path = struct + '.vtk'
        run.command('meshconvert ' + vtk_in_path + ' ' + vtk_temp_path +
                    ' -transform first2real T1.nii')
        run.command('mesh2pve ' + vtk_temp_path + ' ' + fast_t1_input + ' ' +
                    pve_image_path)
        pve_image_list.append(pve_image_path)
    pve_cat = ' '.join(pve_image_list)
    run.command('mrmath ' + pve_cat +
                ' sum - | mrcalc - 1.0 -min all_sgms.mif')

    # Looks like FAST in 5.0 ignores FSLOUTPUTTYPE when writing the PVE images
    # Will have to wait and see whether this changes, and update the script accordingly
    if fast_cmd == 'fast':
        fast_suffix = fsl_suffix
    else:
        fast_suffix = '.nii.gz'

    # Combine the tissue images into the 5TT format within the script itself
    # Step 1: Run LCC on the WM image
    run.command(
        'mrthreshold ' + fast_output_prefix + '_pve_2' + fast_suffix +
        ' - -abs 0.001 | maskfilter - connect - -connectivity | mrcalc 1 - 1 -gt -sub remove_unconnected_wm_mask.mif -datatype bit'
    )
    # Step 2: Generate the images in the same fashion as the 5ttgen command
    run.command('mrcalc ' + fast_output_prefix + '_pve_0' + fast_suffix +
                ' remove_unconnected_wm_mask.mif -mult csf.mif')
    run.command('mrcalc 1.0 csf.mif -sub all_sgms.mif -min sgm.mif')
    run.command('mrcalc 1.0 csf.mif sgm.mif -add -sub ' + fast_output_prefix +
                '_pve_1' + fast_suffix + ' ' + fast_output_prefix + '_pve_2' +
                fast_suffix + ' -add -div multiplier.mif')
    run.command(
        'mrcalc multiplier.mif -finite multiplier.mif 0.0 -if multiplier_noNAN.mif'
    )
    run.command(
        'mrcalc ' + fast_output_prefix + '_pve_1' + fast_suffix +
        ' multiplier_noNAN.mif -mult remove_unconnected_wm_mask.mif -mult cgm.mif'
    )
    run.command(
        'mrcalc ' + fast_output_prefix + '_pve_2' + fast_suffix +
        ' multiplier_noNAN.mif -mult remove_unconnected_wm_mask.mif -mult wm.mif'
    )
    run.command('mrcalc 0 wm.mif -min path.mif')
    run.command(
        'mrcat cgm.mif sgm.mif wm.mif csf.mif path.mif - -axis 3 | mrconvert - combined_precrop.mif -stride +2,+3,+4,+1'
    )

    # Use mrcrop to reduce file size (improves caching of image data during tracking)
    if app.args.nocrop:
        run.command('mrconvert combined_precrop.mif result.mif')
    else:
        run.command(
            'mrmath combined_precrop.mif sum - -axis 3 | mrthreshold - - -abs 0.5 | mrcrop combined_precrop.mif result.mif -mask -'
        )
예제 #29
0
def execute():  #pylint: disable=unused-variable
    bzero_threshold = float(
        CONFIG['BZeroThreshold']) if 'BZeroThreshold' in CONFIG else 10.0

    # CHECK INPUTS AND OPTIONS
    app.console('-------')

    # Get b-values and number of volumes per b-value.
    bvalues = [
        int(round(float(x)))
        for x in image.mrinfo('dwi.mif', 'shell_bvalues').split()
    ]
    bvolumes = [int(x) for x in image.mrinfo('dwi.mif', 'shell_sizes').split()]
    app.console(
        str(len(bvalues)) + ' unique b-value(s) detected: ' +
        ','.join(map(str, bvalues)) + ' with ' + ','.join(map(str, bvolumes)) +
        ' volumes')
    if len(bvalues) < 2:
        raise MRtrixError('Need at least 2 unique b-values (including b=0).')
    bvalues_option = ' -shells ' + ','.join(map(str, bvalues))

    # Get lmax information (if provided).
    sfwm_lmax = []
    if app.ARGS.lmax:
        sfwm_lmax = [int(x.strip()) for x in app.ARGS.lmax.split(',')]
        if not len(sfwm_lmax) == len(bvalues):
            raise MRtrixError('Number of lmax\'s (' + str(len(sfwm_lmax)) +
                              ', as supplied to the -lmax option: ' +
                              ','.join(map(str, sfwm_lmax)) +
                              ') does not match number of unique b-values.')
        for sfl in sfwm_lmax:
            if sfl % 2:
                raise MRtrixError(
                    'Values supplied to the -lmax option must be even.')
            if sfl < 0:
                raise MRtrixError(
                    'Values supplied to the -lmax option must be non-negative.'
                )
    sfwm_lmax_option = ''
    if sfwm_lmax:
        sfwm_lmax_option = ' -lmax ' + ','.join(map(str, sfwm_lmax))

    # PREPARATION
    app.console('-------')
    app.console('Preparation:')

    # Erode (brain) mask.
    if app.ARGS.erode > 0:
        app.console('* Eroding brain mask by ' + str(app.ARGS.erode) +
                    ' pass(es)...')
        run.command('maskfilter mask.mif erode eroded_mask.mif -npass ' +
                    str(app.ARGS.erode),
                    show=False)
    else:
        app.console('Not eroding brain mask.')
        run.command('mrconvert mask.mif eroded_mask.mif -datatype bit',
                    show=False)
    statmaskcount = image.statistics('mask.mif', mask='mask.mif').count
    statemaskcount = image.statistics('eroded_mask.mif',
                                      mask='eroded_mask.mif').count
    app.console('  [ mask: ' + str(statmaskcount) + ' -> ' +
                str(statemaskcount) + ' ]')

    # Get volumes, compute mean signal and SDM per b-value; compute overall SDM; get rid of erroneous values.
    app.console('* Computing signal decay metric (SDM):')
    totvolumes = 0
    fullsdmcmd = 'mrcalc'
    errcmd = 'mrcalc'
    zeropath = 'mean_b' + str(bvalues[0]) + '.mif'
    for ibv, bval in enumerate(bvalues):
        app.console(' * b=' + str(bval) + '...')
        meanpath = 'mean_b' + str(bval) + '.mif'
        run.command('dwiextract dwi.mif -shells ' + str(bval) +
                    ' - | mrcalc - 0 -max - | mrmath - mean ' + meanpath +
                    ' -axis 3',
                    show=False)
        errpath = 'err_b' + str(bval) + '.mif'
        run.command('mrcalc ' + meanpath + ' -finite ' + meanpath +
                    ' 0 -if 0 -le ' + errpath + ' -datatype bit',
                    show=False)
        errcmd += ' ' + errpath
        if ibv > 0:
            errcmd += ' -add'
            sdmpath = 'sdm_b' + str(bval) + '.mif'
            run.command('mrcalc ' + zeropath + ' ' + meanpath +
                        ' -divide -log ' + sdmpath,
                        show=False)
            totvolumes += bvolumes[ibv]
            fullsdmcmd += ' ' + sdmpath + ' ' + str(bvolumes[ibv]) + ' -mult'
            if ibv > 1:
                fullsdmcmd += ' -add'
    fullsdmcmd += ' ' + str(totvolumes) + ' -divide full_sdm.mif'
    run.command(fullsdmcmd, show=False)
    app.console('* Removing erroneous voxels from mask and correcting SDM...')
    run.command(
        'mrcalc full_sdm.mif -finite full_sdm.mif 0 -if 0 -le err_sdm.mif -datatype bit',
        show=False)
    errcmd += ' err_sdm.mif -add 0 eroded_mask.mif -if safe_mask.mif -datatype bit'
    run.command(errcmd, show=False)
    run.command('mrcalc safe_mask.mif full_sdm.mif 0 -if 10 -min safe_sdm.mif',
                show=False)
    statsmaskcount = image.statistics('safe_mask.mif',
                                      mask='safe_mask.mif').count
    app.console('  [ mask: ' + str(statemaskcount) + ' -> ' +
                str(statsmaskcount) + ' ]')

    # CRUDE SEGMENTATION
    app.console('-------')
    app.console('Crude segmentation:')

    # Compute FA and principal eigenvectors; crude WM versus GM-CSF separation based on FA.
    app.console('* Crude WM versus GM-CSF separation (at FA=' +
                str(app.ARGS.fa) + ')...')
    run.command(
        'dwi2tensor dwi.mif - -mask safe_mask.mif | tensor2metric - -fa safe_fa.mif -vector safe_vecs.mif -modulate none -mask safe_mask.mif',
        show=False)
    run.command('mrcalc safe_mask.mif safe_fa.mif 0 -if ' + str(app.ARGS.fa) +
                ' -gt crude_wm.mif -datatype bit',
                show=False)
    run.command(
        'mrcalc crude_wm.mif 0 safe_mask.mif -if _crudenonwm.mif -datatype bit',
        show=False)
    statcrudewmcount = image.statistics('crude_wm.mif',
                                        mask='crude_wm.mif').count
    statcrudenonwmcount = image.statistics('_crudenonwm.mif',
                                           mask='_crudenonwm.mif').count
    app.console('  [ ' + str(statsmaskcount) + ' -> ' + str(statcrudewmcount) +
                ' (WM) & ' + str(statcrudenonwmcount) + ' (GM-CSF) ]')

    # Crude GM versus CSF separation based on SDM.
    app.console('* Crude GM versus CSF separation...')
    crudenonwmmedian = image.statistics('safe_sdm.mif',
                                        mask='_crudenonwm.mif').median
    run.command(
        'mrcalc _crudenonwm.mif safe_sdm.mif ' + str(crudenonwmmedian) +
        ' -subtract 0 -if - | mrthreshold - - -mask _crudenonwm.mif | mrcalc _crudenonwm.mif - 0 -if crude_csf.mif -datatype bit',
        show=False)
    run.command(
        'mrcalc crude_csf.mif 0 _crudenonwm.mif -if crude_gm.mif -datatype bit',
        show=False)
    statcrudegmcount = image.statistics('crude_gm.mif',
                                        mask='crude_gm.mif').count
    statcrudecsfcount = image.statistics('crude_csf.mif',
                                         mask='crude_csf.mif').count
    app.console('  [ ' + str(statcrudenonwmcount) + ' -> ' +
                str(statcrudegmcount) + ' (GM) & ' + str(statcrudecsfcount) +
                ' (CSF) ]')

    # REFINED SEGMENTATION
    app.console('-------')
    app.console('Refined segmentation:')

    # Refine WM: remove high SDM outliers.
    app.console('* Refining WM...')
    crudewmmedian = image.statistics('safe_sdm.mif',
                                     mask='crude_wm.mif').median
    run.command('mrcalc crude_wm.mif safe_sdm.mif ' + str(crudewmmedian) +
                ' -subtract -abs 0 -if _crudewm_sdmad.mif',
                show=False)
    crudewmmad = image.statistics('_crudewm_sdmad.mif',
                                  mask='crude_wm.mif').median
    crudewmoutlthresh = crudewmmedian + (1.4826 * crudewmmad * 2.0)
    run.command('mrcalc crude_wm.mif safe_sdm.mif 0 -if ' +
                str(crudewmoutlthresh) +
                ' -gt _crudewmoutliers.mif -datatype bit',
                show=False)
    run.command(
        'mrcalc _crudewmoutliers.mif 0 crude_wm.mif -if refined_wm.mif -datatype bit',
        show=False)
    statrefwmcount = image.statistics('refined_wm.mif',
                                      mask='refined_wm.mif').count
    app.console('  [ WM: ' + str(statcrudewmcount) + ' -> ' +
                str(statrefwmcount) + ' ]')

    # Refine GM: separate safer GM from partial volumed voxels.
    app.console('* Refining GM...')
    crudegmmedian = image.statistics('safe_sdm.mif',
                                     mask='crude_gm.mif').median
    run.command('mrcalc crude_gm.mif safe_sdm.mif 0 -if ' +
                str(crudegmmedian) + ' -gt _crudegmhigh.mif -datatype bit',
                show=False)
    run.command(
        'mrcalc _crudegmhigh.mif 0 crude_gm.mif -if _crudegmlow.mif -datatype bit',
        show=False)
    run.command(
        'mrcalc _crudegmhigh.mif safe_sdm.mif ' + str(crudegmmedian) +
        ' -subtract 0 -if - | mrthreshold - - -mask _crudegmhigh.mif -invert | mrcalc _crudegmhigh.mif - 0 -if _crudegmhighselect.mif -datatype bit',
        show=False)
    run.command(
        'mrcalc _crudegmlow.mif safe_sdm.mif ' + str(crudegmmedian) +
        ' -subtract -neg 0 -if - | mrthreshold - - -mask _crudegmlow.mif -invert | mrcalc _crudegmlow.mif - 0 -if _crudegmlowselect.mif -datatype bit',
        show=False)
    run.command(
        'mrcalc _crudegmhighselect.mif 1 _crudegmlowselect.mif -if refined_gm.mif -datatype bit',
        show=False)
    statrefgmcount = image.statistics('refined_gm.mif',
                                      mask='refined_gm.mif').count
    app.console('  [ GM: ' + str(statcrudegmcount) + ' -> ' +
                str(statrefgmcount) + ' ]')

    # Refine CSF: recover lost CSF from crude WM SDM outliers, separate safer CSF from partial volumed voxels.
    app.console('* Refining CSF...')
    crudecsfmin = image.statistics('safe_sdm.mif', mask='crude_csf.mif').min
    run.command('mrcalc _crudewmoutliers.mif safe_sdm.mif 0 -if ' +
                str(crudecsfmin) +
                ' -gt 1 crude_csf.mif -if _crudecsfextra.mif -datatype bit',
                show=False)
    run.command(
        'mrcalc _crudecsfextra.mif safe_sdm.mif ' + str(crudecsfmin) +
        ' -subtract 0 -if - | mrthreshold - - -mask _crudecsfextra.mif | mrcalc _crudecsfextra.mif - 0 -if refined_csf.mif -datatype bit',
        show=False)
    statrefcsfcount = image.statistics('refined_csf.mif',
                                       mask='refined_csf.mif').count
    app.console('  [ CSF: ' + str(statcrudecsfcount) + ' -> ' +
                str(statrefcsfcount) + ' ]')

    # FINAL VOXEL SELECTION AND RESPONSE FUNCTION ESTIMATION
    app.console('-------')
    app.console('Final voxel selection and response function estimation:')

    # Get final voxels for CSF response function estimation from refined CSF.
    app.console('* CSF:')
    app.console(' * Selecting final voxels (' + str(app.ARGS.csf) +
                '% of refined CSF)...')
    voxcsfcount = int(round(statrefcsfcount * app.ARGS.csf / 100.0))
    run.command(
        'mrcalc refined_csf.mif safe_sdm.mif 0 -if - | mrthreshold - - -top ' +
        str(voxcsfcount) +
        ' -ignorezero | mrcalc refined_csf.mif - 0 -if - -datatype bit | mrconvert - voxels_csf.mif -axes 0,1,2',
        show=False)
    statvoxcsfcount = image.statistics('voxels_csf.mif',
                                       mask='voxels_csf.mif').count
    app.console('   [ CSF: ' + str(statrefcsfcount) + ' -> ' +
                str(statvoxcsfcount) + ' ]')
    # Estimate CSF response function
    app.console(' * Estimating response function...')
    run.command(
        'amp2response dwi.mif voxels_csf.mif safe_vecs.mif response_csf.txt' +
        bvalues_option + ' -isotropic',
        show=False)

    # Get final voxels for GM response function estimation from refined GM.
    app.console('* GM:')
    app.console(' * Selecting final voxels (' + str(app.ARGS.gm) +
                '% of refined GM)...')
    voxgmcount = int(round(statrefgmcount * app.ARGS.gm / 100.0))
    refgmmedian = image.statistics('safe_sdm.mif',
                                   mask='refined_gm.mif').median
    run.command(
        'mrcalc refined_gm.mif safe_sdm.mif ' + str(refgmmedian) +
        ' -subtract -abs 1 -add 0 -if - | mrthreshold - - -bottom ' +
        str(voxgmcount) +
        ' -ignorezero | mrcalc refined_gm.mif - 0 -if - -datatype bit | mrconvert - voxels_gm.mif -axes 0,1,2',
        show=False)
    statvoxgmcount = image.statistics('voxels_gm.mif',
                                      mask='voxels_gm.mif').count
    app.console('   [ GM: ' + str(statrefgmcount) + ' -> ' +
                str(statvoxgmcount) + ' ]')
    # Estimate GM response function
    app.console(' * Estimating response function...')
    run.command(
        'amp2response dwi.mif voxels_gm.mif safe_vecs.mif response_gm.txt' +
        bvalues_option + ' -isotropic',
        show=False)

    # Get final voxels for single-fibre WM response function estimation from refined WM.
    app.console('* Single-fibre WM:')
    app.console(' * Selecting final voxels' +
                ('' if app.ARGS.wm_algo == 'tax' else
                 (' (' + str(app.ARGS.sfwm) + '% of refined WM)')) + '...')
    voxsfwmcount = int(round(statrefwmcount * app.ARGS.sfwm / 100.0))

    if app.ARGS.wm_algo:
        recursive_cleanup_option = ''
        if not app.DO_CLEANUP:
            recursive_cleanup_option = ' -nocleanup'
        app.console('   Selecting WM single-fibre voxels using \'' +
                    app.ARGS.wm_algo + '\' algorithm')
        if app.ARGS.wm_algo == 'tax' and app.ARGS.sfwm != 0.5:
            app.warn(
                'Single-fibre WM response function selection algorithm "tax" will not honour requested WM voxel percentage'
            )
        run.command(
            'dwi2response ' + app.ARGS.wm_algo +
            ' dwi.mif _respsfwmss.txt -mask refined_wm.mif -voxels voxels_sfwm.mif'
            + ('' if app.ARGS.wm_algo == 'tax' else
               (' -number ' + str(voxsfwmcount))) + ' -scratch ' +
            path.quote(app.SCRATCH_DIR) + recursive_cleanup_option,
            show=False)
    else:
        app.console(
            '   Selecting WM single-fibre voxels using built-in (Dhollander et al., 2019) algorithm'
        )
        run.command('mrmath dwi.mif mean mean_sig.mif -axis 3', show=False)
        refwmcoef = image.statistics('mean_sig.mif',
                                     mask='refined_wm.mif').median * math.sqrt(
                                         4.0 * math.pi)
        if sfwm_lmax:
            isiso = [lm == 0 for lm in sfwm_lmax]
        else:
            isiso = [bv < bzero_threshold for bv in bvalues]
        with open('ewmrf.txt', 'w') as ewr:
            for iis in isiso:
                if iis:
                    ewr.write("%s 0 0 0\n" % refwmcoef)
                else:
                    ewr.write("%s -%s %s -%s\n" %
                              (refwmcoef, refwmcoef, refwmcoef, refwmcoef))
        run.command(
            'dwi2fod msmt_csd dwi.mif ewmrf.txt abs_ewm2.mif response_csf.txt abs_csf2.mif -mask refined_wm.mif -lmax 2,0'
            + bvalues_option,
            show=False)
        run.command(
            'mrconvert abs_ewm2.mif - -coord 3 0 | mrcalc - abs_csf2.mif -add abs_sum2.mif',
            show=False)
        run.command(
            'sh2peaks abs_ewm2.mif - -num 1 -mask refined_wm.mif | peaks2amp - - | mrcalc - abs_sum2.mif -divide - | mrconvert - metric_sfwm2.mif -coord 3 0 -axes 0,1,2',
            show=False)
        run.command(
            'mrcalc refined_wm.mif metric_sfwm2.mif 0 -if - | mrthreshold - - -top '
            + str(voxsfwmcount * 2) +
            ' -ignorezero | mrcalc refined_wm.mif - 0 -if - -datatype bit | mrconvert - refined_sfwm.mif -axes 0,1,2',
            show=False)
        run.command(
            'dwi2fod msmt_csd dwi.mif ewmrf.txt abs_ewm6.mif response_csf.txt abs_csf6.mif -mask refined_sfwm.mif -lmax 6,0'
            + bvalues_option,
            show=False)
        run.command(
            'mrconvert abs_ewm6.mif - -coord 3 0 | mrcalc - abs_csf6.mif -add abs_sum6.mif',
            show=False)
        run.command(
            'sh2peaks abs_ewm6.mif - -num 1 -mask refined_sfwm.mif | peaks2amp - - | mrcalc - abs_sum6.mif -divide - | mrconvert - metric_sfwm6.mif -coord 3 0 -axes 0,1,2',
            show=False)
        run.command(
            'mrcalc refined_sfwm.mif metric_sfwm6.mif 0 -if - | mrthreshold - - -top '
            + str(voxsfwmcount) +
            ' -ignorezero | mrcalc refined_sfwm.mif - 0 -if - -datatype bit | mrconvert - voxels_sfwm.mif -axes 0,1,2',
            show=False)

    statvoxsfwmcount = image.statistics('voxels_sfwm.mif',
                                        mask='voxels_sfwm.mif').count
    app.console('   [ WM: ' + str(statrefwmcount) + ' -> ' +
                str(statvoxsfwmcount) + ' (single-fibre) ]')
    # Estimate SF WM response function
    app.console(' * Estimating response function...')
    run.command(
        'amp2response dwi.mif voxels_sfwm.mif safe_vecs.mif response_sfwm.txt'
        + bvalues_option + sfwm_lmax_option,
        show=False)

    # OUTPUT AND SUMMARY
    app.console('-------')
    app.console('Generating outputs...')

    # Generate 4D binary images with voxel selections at major stages in algorithm (RGB: WM=blue, GM=green, CSF=red).
    run.command(
        'mrcat crude_csf.mif crude_gm.mif crude_wm.mif check_crude.mif -axis 3',
        show=False)
    run.command(
        'mrcat refined_csf.mif refined_gm.mif refined_wm.mif check_refined.mif -axis 3',
        show=False)
    run.command(
        'mrcat voxels_csf.mif voxels_gm.mif voxels_sfwm.mif check_voxels.mif -axis 3',
        show=False)

    # Copy results to output files
    run.function(shutil.copyfile,
                 'response_sfwm.txt',
                 path.from_user(app.ARGS.out_sfwm, False),
                 show=False)
    run.function(shutil.copyfile,
                 'response_gm.txt',
                 path.from_user(app.ARGS.out_gm, False),
                 show=False)
    run.function(shutil.copyfile,
                 'response_csf.txt',
                 path.from_user(app.ARGS.out_csf, False),
                 show=False)
    if app.ARGS.voxels:
        run.command('mrconvert check_voxels.mif ' +
                    path.from_user(app.ARGS.voxels),
                    mrconvert_keyval=path.from_user(app.ARGS.input, False),
                    force=app.FORCE_OVERWRITE,
                    show=False)
    app.console('-------')
예제 #30
0
파일: run.py 프로젝트: richardbeare/mrtrix3
def command(cmd, exitOnError=True):

  import inspect, itertools, os, shlex, subprocess, sys, tempfile
  from distutils.spawn import find_executable
  from mrtrix3 import app

  # This is the only global variable that is _modified_ within this function
  global _processes

  # Vectorise the command string, preserving anything encased within quotation marks
  cmdsplit = shlex.split(cmd)

  if app._lastFile:
    # Check to see if the last file produced in the previous script execution is
    #   intended to be produced by this command; if it is, this will be the last
    #   command that gets skipped by the -continue option
    # It's possible that the file might be defined in a '--option=XXX' style argument
    #   It's also possible that the filename in the command string has the file extension omitted
    for entry in cmdsplit:
      if entry.startswith('--') and '=' in entry:
        cmdtotest = entry.split('=')[1]
      else:
        cmdtotest = entry
      filetotest = [ app._lastFile, os.path.splitext(app._lastFile)[0] ]
      if cmdtotest in filetotest:
        app.debug('Detected last file \'' + app._lastFile + '\' in command \'' + cmd + '\'; this is the last run.command() / run.function() call that will be skipped')
        app._lastFile = ''
        break
    if app._verbosity:
      sys.stderr.write(app.colourExec + 'Skipping command:' + app.colourClear + ' ' + cmd + '\n')
      sys.stderr.flush()
    return

  # This splits the command string based on the piping character '|', such that each
  #   individual executable (along with its arguments) appears as its own list
  # Note that for Python2 support, it is necessary to convert groupby() output from
  #   a generator to a list before it is passed to filter()
  cmdstack = [ list(g) for k, g in filter(lambda t : t[0], ((k, list(g)) for k, g in itertools.groupby(cmdsplit, lambda s : s is not '|') ) ) ]

  for line in cmdstack:
    is_mrtrix_exe = line[0] in _mrtrix_exe_list
    if is_mrtrix_exe:
      line[0] = versionMatch(line[0])
      if app._nthreads is not None:
        line.extend( [ '-nthreads', str(app._nthreads) ] )
      # Get MRtrix3 binaries to output additional INFO-level information if running in debug mode
      if app._verbosity == 3:
        line.append('-info')
      elif not app._verbosity:
        line.append('-quiet')
    else:
      line[0] = exeName(line[0])
    shebang = _shebang(line[0])
    if len(shebang):
      if not is_mrtrix_exe:
        # If a shebang is found, and this call is therefore invoking an
        #   interpreter, can't rely on the interpreter finding the script
        #   from PATH; need to find the full path ourselves.
        line[0] = find_executable(line[0])
      for item in reversed(shebang):
        line.insert(0, item)

  if app._verbosity:
    sys.stderr.write(app.colourExec + 'Command:' + app.colourClear + '  ' + cmd + '\n')
    sys.stderr.flush()

  app.debug('To execute: ' + str(cmdstack))

  # Construct temporary text files for holding stdout / stderr contents when appropriate
  #   (One entry per process; each is a tuple containing two entries, each of which is either a
  #   file-like object, or None)
  tempfiles = [ ]

  # Execute all processes
  _processes = [ ]
  for index, command in enumerate(cmdstack):
    file_out = None
    file_err = None
    # If there's at least one command prior to this, need to receive the stdout from the prior command
    #   at the stdin of this command; otherwise, nothing to receive
    if index > 0:
      handle_in = _processes[index-1].stdout
    else:
      handle_in = None
    # If this is not the last command, then stdout needs to be piped to the next command;
    #   otherwise, write stdout to a temporary file so that the contents can be read later
    if index < len(cmdstack)-1:
      handle_out = subprocess.PIPE
    else:
      file_out = tempfile.TemporaryFile()
      handle_out = file_out.fileno()
    # If we're in debug / info mode, the contents of stderr will be read and printed to the terminal
    #   as the command progresses, hence this needs to go to a pipe; otherwise, write it to a temporary
    #   file so that the contents can be read later
    if app._verbosity > 1:
      handle_err = subprocess.PIPE
    else:
      file_err = tempfile.TemporaryFile()
      handle_err = file_err.fileno()
    # Set off the processes
    try:
      process = subprocess.Popen (command, stdin=handle_in, stdout=handle_out, stderr=handle_err, env=_env)
      _processes.append(process)
      tempfiles.append( ( file_out, file_err ) )
    # FileNotFoundError not defined in Python 2.7
    except OSError as e:
      if exitOnError:
        app.error('\'' + command[0] + '\' not executed ("' + str(e) + '"); script cannot proceed')
      else:
        app.warn('\'' + command[0] + '\' not executed ("' + str(e) + '")')
        for p in _processes:
          p.terminate()
        _processes = [ ]
        break
    except (KeyboardInterrupt, SystemExit):
      import inspect, signal
      app._handler(signal.SIGINT, inspect.currentframe())

  return_stdout = ''
  return_stderr = ''
  error = False
  error_text = ''

  # Wait for all commands to complete
  try:

    # Switch how we monitor running processes / wait for them to complete
    #   depending on whether or not the user has specified -verbose or -debug option
    if app._verbosity > 1:
      for process in _processes:
        stderrdata = ''
        while True:
          # Have to read one character at a time: Waiting for a newline character using e.g. readline() will prevent MRtrix progressbars from appearing
          line = process.stderr.read(1).decode('utf-8')
          sys.stderr.write(line)
          sys.stderr.flush()
          stderrdata += line
          if not line and process.poll() is not None:
            break
        return_stderr += stderrdata
        if process.returncode:
          error = True
          error_text += stderrdata
    else:
      for process in _processes:
        process.wait()

  except (KeyboardInterrupt, SystemExit):
    import inspect, signal
    app._handler(signal.SIGINT, inspect.currentframe())

  # For any command stdout / stderr data that wasn't either passed to another command or
  #   printed to the terminal during execution, read it here.
  for index in range(len(cmdstack)):
    if tempfiles[index][0] is not None:
      tempfiles[index][0].flush()
      tempfiles[index][0].seek(0)
      stdout_text = tempfiles[index][0].read().decode('utf-8')
      return_stdout += stdout_text
      if _processes[index].returncode:
        error = True
        error_text += stdout_text
    if tempfiles[index][1] is not None:
      tempfiles[index][1].flush()
      tempfiles[index][1].seek(0)
      stderr_text = tempfiles[index][1].read().decode('utf-8')
      return_stderr += stderr_text
      if _processes[index].returncode:
        error = True
        error_text += stderr_text

  _processes = [ ]

  if (error):
    app._cleanup = False
    if exitOnError:
      caller = inspect.getframeinfo(inspect.stack()[1][0])
      app.console('')
      sys.stderr.write(os.path.basename(sys.argv[0]) + ': ' + app.colourError + '[ERROR] Command failed: ' + cmd + app.colourClear + app.colourDebug + ' (' + os.path.basename(caller.filename) + ':' + str(caller.lineno) + ')' + app.colourClear + '\n')
      sys.stderr.write(os.path.basename(sys.argv[0]) + ': ' + app.colourConsole + 'Output of failed command:' + app.colourClear + '\n')
      sys.stderr.write(error_text)
      sys.stderr.flush()
      if app._tempDir:
        with open(os.path.join(app._tempDir, 'error.txt'), 'w') as outfile:
          outfile.write(cmd + '\n\n' + error_text + '\n')
      app.complete()
      sys.exit(1)
    else:
      app.warn('Command failed: ' + cmd)

  # Only now do we append to the script log, since the command has completed successfully
  # Note: Writing the command as it was formed as the input to run.command():
  #   other flags may potentially change if this file is eventually used to resume the script
  if app._tempDir:
    with open(os.path.join(app._tempDir, 'log.txt'), 'a') as outfile:
      outfile.write(cmd + '\n')

  return (return_stdout, return_stderr)
예제 #31
0
def execute():  #pylint: disable=unused-variable
    lmax_option = ''
    if app.ARGS.lmax:
        lmax_option = ' -lmax ' + app.ARGS.lmax

    if app.ARGS.max_iters < 2:
        raise MRtrixError('Number of iterations must be at least 2')

    progress = app.ProgressBar('Optimising')

    iter_voxels = app.ARGS.iter_voxels
    if iter_voxels == 0:
        iter_voxels = 10 * app.ARGS.number
    elif iter_voxels < app.ARGS.number:
        raise MRtrixError(
            'Number of selected voxels (-iter_voxels) must be greater than number of voxels desired (-number)'
        )

    iteration = 0
    while iteration < app.ARGS.max_iters:
        prefix = 'iter' + str(iteration) + '_'

        if iteration == 0:
            rf_in_path = 'init_RF.txt'
            mask_in_path = 'mask.mif'
            init_rf = '1 -1 1'
            with open(rf_in_path, 'w') as init_rf_file:
                init_rf_file.write(init_rf)
            iter_lmax_option = ' -lmax 4'
        else:
            rf_in_path = 'iter' + str(iteration - 1) + '_RF.txt'
            mask_in_path = 'iter' + str(iteration - 1) + '_SF_dilated.mif'
            iter_lmax_option = lmax_option

        # Run CSD
        run.command('dwi2fod csd dwi.mif ' + rf_in_path + ' ' + prefix +
                    'FOD.mif -mask ' + mask_in_path)
        # Get amplitudes of two largest peaks, and direction of largest
        run.command('fod2fixel ' + prefix + 'FOD.mif ' + prefix +
                    'fixel -peak peaks.mif -mask ' + mask_in_path +
                    ' -fmls_no_thresholds')
        app.cleanup(prefix + 'FOD.mif')
        if iteration:
            app.cleanup(mask_in_path)
        run.command('fixel2voxel ' + prefix + 'fixel/peaks.mif none ' +
                    prefix + 'amps.mif -number 2')
        run.command('mrconvert ' + prefix + 'amps.mif ' + prefix +
                    'first_peaks.mif -coord 3 0 -axes 0,1,2')
        run.command('mrconvert ' + prefix + 'amps.mif ' + prefix +
                    'second_peaks.mif -coord 3 1 -axes 0,1,2')
        app.cleanup(prefix + 'amps.mif')
        run.command('fixel2peaks ' + prefix + 'fixel/directions.mif ' +
                    prefix + 'first_dir.mif -number 1')
        app.cleanup(prefix + 'fixel')
        # Calculate the 'cost function' Donald derived for selecting single-fibre voxels
        # https://github.com/MRtrix3/mrtrix3/pull/426
        #  sqrt(|peak1|) * (1 - |peak2| / |peak1|)^2
        run.command('mrcalc ' + prefix + 'first_peaks.mif -sqrt 1 ' + prefix +
                    'second_peaks.mif ' + prefix +
                    'first_peaks.mif -div -sub 2 -pow -mult ' + prefix +
                    'CF.mif')
        app.cleanup(prefix + 'first_peaks.mif')
        app.cleanup(prefix + 'second_peaks.mif')
        voxel_count = image.statistics(prefix + 'CF.mif').count
        # Select the top-ranked voxels
        run.command('mrthreshold ' + prefix + 'CF.mif -top ' +
                    str(min([app.ARGS.number, voxel_count])) + ' ' + prefix +
                    'SF.mif')
        # Generate a new response function based on this selection
        run.command('amp2response dwi.mif ' + prefix + 'SF.mif ' + prefix +
                    'first_dir.mif ' + prefix + 'RF.txt' + iter_lmax_option)
        app.cleanup(prefix + 'first_dir.mif')

        new_rf = matrix.load_vector(prefix + 'RF.txt')
        progress.increment('Optimising (' + str(iteration + 1) +
                           ' iterations, RF: [ ' + ', '.join('{:.3f}'.format(n)
                                                             for n in new_rf) +
                           '] )')

        # Should we terminate?
        if iteration > 0:
            run.command('mrcalc ' + prefix + 'SF.mif iter' +
                        str(iteration - 1) + '_SF.mif -sub ' + prefix +
                        'SF_diff.mif')
            app.cleanup('iter' + str(iteration - 1) + '_SF.mif')
            max_diff = image.statistics(prefix + 'SF_diff.mif').max
            app.cleanup(prefix + 'SF_diff.mif')
            if not max_diff:
                app.cleanup(prefix + 'CF.mif')
                run.function(shutil.copyfile, prefix + 'RF.txt',
                             'response.txt')
                run.function(shutil.move, prefix + 'SF.mif', 'voxels.mif')
                break

        # Select a greater number of top single-fibre voxels, and dilate (within bounds of initial mask);
        #   these are the voxels that will be re-tested in the next iteration
        run.command('mrthreshold ' + prefix + 'CF.mif -top ' +
                    str(min([iter_voxels, voxel_count])) +
                    ' - | maskfilter - dilate - -npass ' +
                    str(app.ARGS.dilate) + ' | mrcalc mask.mif - -mult ' +
                    prefix + 'SF_dilated.mif')
        app.cleanup(prefix + 'CF.mif')

        iteration += 1

    progress.done()

    # If terminating due to running out of iterations, still need to put the results in the appropriate location
    if os.path.exists('response.txt'):
        app.console(
            'Convergence of SF voxel selection detected at iteration ' +
            str(iteration + 1))
    else:
        app.console('Exiting after maximum ' + str(app.ARGS.max_iters) +
                    ' iterations')
        run.function(shutil.copyfile,
                     'iter' + str(app.ARGS.max_iters - 1) + '_RF.txt',
                     'response.txt')
        run.function(shutil.move,
                     'iter' + str(app.ARGS.max_iters - 1) + '_SF.mif',
                     'voxels.mif')

    run.function(shutil.copyfile, 'response.txt',
                 path.from_user(app.ARGS.output, False))
    if app.ARGS.voxels:
        run.command('mrconvert voxels.mif ' + path.from_user(app.ARGS.voxels),
                    mrconvert_keyval=path.from_user(app.ARGS.input, False),
                    force=app.FORCE_OVERWRITE)
예제 #32
0
def execute():
  import math, os, shutil
  from mrtrix3 import app, image, path, run



  # Get b-values and number of volumes per b-value.
  bvalues = [ int(round(float(x))) for x in image.headerField('dwi.mif', 'shells').split() ]
  bvolumes = [ int(x) for x in image.headerField('dwi.mif', 'shellcounts').split() ]
  app.console(str(len(bvalues)) + ' unique b-value(s) detected: ' + ','.join(map(str,bvalues)) + ' with ' + ','.join(map(str,bvolumes)) + ' volumes.')
  if len(bvalues) < 2:
    app.error('Need at least 2 unique b-values (including b=0).')


  # Get lmax information (if provided).
  sfwm_lmax = [ ]
  if app.args.lmax:
    sfwm_lmax = [ int(x.strip()) for x in app.args.lmax.split(',') ]
    if not len(sfwm_lmax) == len(bvalues):
      app.error('Number of lmax\'s (' + str(len(sfwm_lmax)) + ', as supplied to the -lmax option: ' + ','.join(map(str,sfwm_lmax)) + ') does not match number of unique b-values.')
    for l in sfwm_lmax:
      if l%2:
        app.error('Values supplied to the -lmax option must be even.')
      if l<0:
        app.error('Values supplied to the -lmax option must be non-negative.')


  # Erode (brain) mask.
  if app.args.erode > 0:
    run.command('maskfilter mask.mif erode eroded_mask.mif -npass ' + str(app.args.erode))
  else:
    run.command('mrconvert mask.mif eroded_mask.mif -datatype bit')


  # Get volumes, compute mean signal and SDM per b-value; compute overall SDM; get rid of erroneous values.
  totvolumes = 0
  fullsdmcmd = 'mrcalc'
  errcmd = 'mrcalc'
  zeropath = 'mean_b' + str(bvalues[0]) + '.mif'
  for i, b in enumerate(bvalues):
    meanpath = 'mean_b' + str(b) + '.mif'
    run.command('dwiextract dwi.mif -shell ' + str(b) + ' - | mrmath - mean ' + meanpath + ' -axis 3')
    errpath = 'err_b' + str(b) + '.mif'
    run.command('mrcalc ' + meanpath + ' -finite ' + meanpath + ' 0 -if 0 -le ' + errpath + ' -datatype bit')
    errcmd += ' ' + errpath
    if i>0:
      errcmd += ' -add'
      sdmpath = 'sdm_b' + str(b) + '.mif'
      run.command('mrcalc ' + zeropath + ' ' + meanpath +  ' -divide -log ' + sdmpath)
      totvolumes += bvolumes[i]
      fullsdmcmd += ' ' + sdmpath + ' ' + str(bvolumes[i]) + ' -mult'
      if i>1:
        fullsdmcmd += ' -add'
  fullsdmcmd += ' ' + str(totvolumes) + ' -divide full_sdm.mif'
  run.command(fullsdmcmd)
  run.command('mrcalc full_sdm.mif -finite full_sdm.mif 0 -if 0 -le err_sdm.mif -datatype bit')
  errcmd += ' err_sdm.mif -add 0 eroded_mask.mif -if safe_mask.mif -datatype bit'
  run.command(errcmd)
  run.command('mrcalc safe_mask.mif full_sdm.mif 0 -if 10 -min safe_sdm.mif')


  # Compute FA and principal eigenvectors; crude WM versus GM-CSF separation based on FA.
  run.command('dwi2tensor dwi.mif - -mask safe_mask.mif | tensor2metric - -fa safe_fa.mif -vector safe_vecs.mif -modulate none -mask safe_mask.mif')
  run.command('mrcalc safe_mask.mif safe_fa.mif 0 -if ' + str(app.args.fa) + ' -gt crude_wm.mif -datatype bit')
  run.command('mrcalc crude_wm.mif 0 safe_mask.mif -if _crudenonwm.mif -datatype bit')

  # Crude GM versus CSF separation based on SDM.
  crudenonwmmedian = image.statistic('safe_sdm.mif', 'median', '_crudenonwm.mif')
  run.command('mrcalc _crudenonwm.mif safe_sdm.mif ' + str(crudenonwmmedian) + ' -subtract 0 -if - | mrthreshold - - -mask _crudenonwm.mif | mrcalc _crudenonwm.mif - 0 -if crude_csf.mif -datatype bit')
  run.command('mrcalc crude_csf.mif 0 _crudenonwm.mif -if crude_gm.mif -datatype bit')


  # Refine WM: remove high SDM outliers.
  crudewmmedian = image.statistic('safe_sdm.mif', 'median', 'crude_wm.mif')
  run.command('mrcalc crude_wm.mif safe_sdm.mif 0 -if ' + str(crudewmmedian) + ' -gt _crudewmhigh.mif -datatype bit')
  run.command('mrcalc _crudewmhigh.mif 0 crude_wm.mif -if _crudewmlow.mif -datatype bit')
  crudewmQ1 = float(image.statistic('safe_sdm.mif', 'median', '_crudewmlow.mif'))
  crudewmQ3 = float(image.statistic('safe_sdm.mif', 'median', '_crudewmhigh.mif'))
  crudewmoutlthresh = crudewmQ3 + (crudewmQ3 - crudewmQ1)
  run.command('mrcalc crude_wm.mif safe_sdm.mif 0 -if ' + str(crudewmoutlthresh) + ' -gt _crudewmoutliers.mif -datatype bit')
  run.command('mrcalc _crudewmoutliers.mif 0 crude_wm.mif -if refined_wm.mif -datatype bit')

  # Refine GM: separate safer GM from partial volumed voxels.
  crudegmmedian = image.statistic('safe_sdm.mif', 'median', 'crude_gm.mif')
  run.command('mrcalc crude_gm.mif safe_sdm.mif 0 -if ' + str(crudegmmedian) + ' -gt _crudegmhigh.mif -datatype bit')
  run.command('mrcalc _crudegmhigh.mif 0 crude_gm.mif -if _crudegmlow.mif -datatype bit')
  run.command('mrcalc _crudegmhigh.mif safe_sdm.mif ' + str(crudegmmedian) + ' -subtract 0 -if - | mrthreshold - - -mask _crudegmhigh.mif -invert | mrcalc _crudegmhigh.mif - 0 -if _crudegmhighselect.mif -datatype bit')
  run.command('mrcalc _crudegmlow.mif safe_sdm.mif ' + str(crudegmmedian) + ' -subtract -neg 0 -if - | mrthreshold - - -mask _crudegmlow.mif -invert | mrcalc _crudegmlow.mif - 0 -if _crudegmlowselect.mif -datatype bit')
  run.command('mrcalc _crudegmhighselect.mif 1 _crudegmlowselect.mif -if refined_gm.mif -datatype bit')

  # Refine CSF: recover lost CSF from crude WM SDM outliers, separate safer CSF from partial volumed voxels.
  crudecsfmin = image.statistic('safe_sdm.mif', 'min', 'crude_csf.mif')
  run.command('mrcalc _crudewmoutliers.mif safe_sdm.mif 0 -if ' + str(crudecsfmin) + ' -gt 1 crude_csf.mif -if _crudecsfextra.mif -datatype bit')
  run.command('mrcalc _crudecsfextra.mif safe_sdm.mif ' + str(crudecsfmin) + ' -subtract 0 -if - | mrthreshold - - -mask _crudecsfextra.mif | mrcalc _crudecsfextra.mif - 0 -if refined_csf.mif -datatype bit')


  # Get final voxels for single-fibre WM response function estimation from WM using 'tournier' algorithm.
  refwmcount = float(image.statistic('refined_wm.mif', 'count', 'refined_wm.mif'))
  voxsfwmcount = int(round(refwmcount * app.args.sfwm / 100.0))
  app.console('Running \'tournier\' algorithm to select ' + str(voxsfwmcount) + ' single-fibre WM voxels.')
  cleanopt = ''
  if not app._cleanup:
    cleanopt = ' -nocleanup'
  run.command('dwi2response tournier dwi.mif _respsfwmss.txt -sf_voxels ' + str(voxsfwmcount) + ' -iter_voxels ' + str(voxsfwmcount * 10) + ' -mask refined_wm.mif -voxels voxels_sfwm.mif -tempdir ' + app._tempDir + cleanopt)

  # Get final voxels for GM response function estimation from GM.
  refgmmedian = image.statistic('safe_sdm.mif', 'median', 'refined_gm.mif')
  run.command('mrcalc refined_gm.mif safe_sdm.mif 0 -if ' + str(refgmmedian) + ' -gt _refinedgmhigh.mif -datatype bit')
  run.command('mrcalc _refinedgmhigh.mif 0 refined_gm.mif -if _refinedgmlow.mif -datatype bit')
  refgmhighcount = float(image.statistic('_refinedgmhigh.mif', 'count', '_refinedgmhigh.mif'))
  refgmlowcount = float(image.statistic('_refinedgmlow.mif', 'count', '_refinedgmlow.mif'))
  voxgmhighcount = int(round(refgmhighcount * app.args.gm / 100.0))
  voxgmlowcount = int(round(refgmlowcount * app.args.gm / 100.0))
  run.command('mrcalc _refinedgmhigh.mif safe_sdm.mif 0 -if - | mrthreshold - - -bottom ' + str(voxgmhighcount) + ' -ignorezero | mrcalc _refinedgmhigh.mif - 0 -if _refinedgmhighselect.mif -datatype bit')
  run.command('mrcalc _refinedgmlow.mif safe_sdm.mif 0 -if - | mrthreshold - - -top ' + str(voxgmlowcount) + ' -ignorezero | mrcalc _refinedgmlow.mif - 0 -if _refinedgmlowselect.mif -datatype bit')
  run.command('mrcalc _refinedgmhighselect.mif 1 _refinedgmlowselect.mif -if voxels_gm.mif -datatype bit')

  # Get final voxels for CSF response function estimation from CSF.
  refcsfcount = float(image.statistic('refined_csf.mif', 'count', 'refined_csf.mif'))
  voxcsfcount = int(round(refcsfcount * app.args.csf / 100.0))
  run.command('mrcalc refined_csf.mif safe_sdm.mif 0 -if - | mrthreshold - - -top ' + str(voxcsfcount) + ' -ignorezero | mrcalc refined_csf.mif - 0 -if voxels_csf.mif -datatype bit')


  # Show summary of voxels counts.
  textarrow = ' --> '
  app.console('Summary of voxel counts:')
  app.console('Mask: ' + str(int(image.statistic('mask.mif', 'count', 'mask.mif'))) + textarrow + str(int(image.statistic('eroded_mask.mif', 'count', 'eroded_mask.mif'))) + textarrow + str(int(image.statistic('safe_mask.mif', 'count', 'safe_mask.mif'))))
  app.console('WM: ' + str(int(image.statistic('crude_wm.mif', 'count', 'crude_wm.mif'))) + textarrow + str(int(image.statistic('refined_wm.mif', 'count', 'refined_wm.mif'))) + textarrow + str(int(image.statistic('voxels_sfwm.mif', 'count', 'voxels_sfwm.mif'))) + ' (SF)')
  app.console('GM: ' + str(int(image.statistic('crude_gm.mif', 'count', 'crude_gm.mif'))) + textarrow + str(int(image.statistic('refined_gm.mif', 'count', 'refined_gm.mif'))) + textarrow + str(int(image.statistic('voxels_gm.mif', 'count', 'voxels_gm.mif'))))
  app.console('CSF: ' + str(int(image.statistic('crude_csf.mif', 'count', 'crude_csf.mif'))) + textarrow + str(int(image.statistic('refined_csf.mif', 'count', 'refined_csf.mif'))) + textarrow + str(int(image.statistic('voxels_csf.mif', 'count', 'voxels_csf.mif'))))


  # Generate single-fibre WM, GM and CSF responses
  bvalues_option = ' -shell ' + ','.join(map(str,bvalues))
  sfwm_lmax_option = ''
  if sfwm_lmax:
    sfwm_lmax_option = ' -lmax ' + ','.join(map(str,sfwm_lmax))
  run.command('amp2response dwi.mif voxels_sfwm.mif safe_vecs.mif response_sfwm.txt' + bvalues_option + sfwm_lmax_option)
  run.command('amp2response dwi.mif voxels_gm.mif safe_vecs.mif response_gm.txt' + bvalues_option + ' -isotropic')
  run.command('amp2response dwi.mif voxels_csf.mif safe_vecs.mif response_csf.txt' + bvalues_option + ' -isotropic')
  run.function(shutil.copyfile, 'response_sfwm.txt', path.fromUser(app.args.out_sfwm, False))
  run.function(shutil.copyfile, 'response_gm.txt', path.fromUser(app.args.out_gm, False))
  run.function(shutil.copyfile, 'response_csf.txt', path.fromUser(app.args.out_csf, False))


  # Generate 4D binary images with voxel selections at major stages in algorithm (RGB as in MSMT-CSD paper).
  run.command('mrcat crude_csf.mif crude_gm.mif crude_wm.mif crude.mif -axis 3')
  run.command('mrcat refined_csf.mif refined_gm.mif refined_wm.mif refined.mif -axis 3')
  run.command('mrcat voxels_csf.mif voxels_gm.mif voxels_sfwm.mif voxels.mif -axis 3')
예제 #33
0
파일: tournier.py 프로젝트: MRtrix3/mrtrix3
def execute(): #pylint: disable=unused-variable
  import os, shutil
  from mrtrix3 import app, file, image, path, run #pylint: disable=redefined-builtin

  lmax_option = ''
  if app.args.lmax:
    lmax_option = ' -lmax ' + app.args.lmax

  if app.args.max_iters < 2:
    app.error('Number of iterations must be at least 2')

  for iteration in range(0, app.args.max_iters):
    prefix = 'iter' + str(iteration) + '_'

    if iteration == 0:
      RF_in_path = 'init_RF.txt'
      mask_in_path = 'mask.mif'
      init_RF = '1 -1 1'
      with open(RF_in_path, 'w') as f:
        f.write(init_RF)
      iter_lmax_option = ' -lmax 4'
    else:
      RF_in_path = 'iter' + str(iteration-1) + '_RF.txt'
      mask_in_path = 'iter' + str(iteration-1) + '_SF_dilated.mif'
      iter_lmax_option = lmax_option

    # Run CSD
    run.command('dwi2fod csd dwi.mif ' + RF_in_path + ' ' + prefix + 'FOD.mif -mask ' + mask_in_path + iter_lmax_option)
    # Get amplitudes of two largest peaks, and direction of largest
    run.command('fod2fixel ' + prefix + 'FOD.mif ' + prefix + 'fixel -peak peaks.mif -mask ' + mask_in_path + ' -fmls_no_thresholds')
    file.delTemporary(prefix + 'FOD.mif')
    if iteration:
      file.delTemporary(mask_in_path)
    run.command('fixel2voxel ' + prefix + 'fixel/peaks.mif split_data ' + prefix + 'amps.mif -number 2')
    run.command('mrconvert ' + prefix + 'amps.mif ' + prefix + 'first_peaks.mif -coord 3 0 -axes 0,1,2')
    run.command('mrconvert ' + prefix + 'amps.mif ' + prefix + 'second_peaks.mif -coord 3 1 -axes 0,1,2')
    file.delTemporary(prefix + 'amps.mif')
    run.command('fixel2voxel ' + prefix + 'fixel/directions.mif split_dir ' + prefix + 'all_dirs.mif -number 1')
    file.delTemporary(prefix + 'fixel')
    run.command('mrconvert ' + prefix + 'all_dirs.mif ' + prefix + 'first_dir.mif -coord 3 0:2')
    file.delTemporary(prefix + 'all_dirs.mif')
    # Calculate the 'cost function' Donald derived for selecting single-fibre voxels
    # https://github.com/MRtrix3/mrtrix3/pull/426
    #  sqrt(|peak1|) * (1 - |peak2| / |peak1|)^2
    run.command('mrcalc ' + prefix + 'first_peaks.mif -sqrt 1 ' + prefix + 'second_peaks.mif ' + prefix + 'first_peaks.mif -div -sub 2 -pow -mult '+ prefix + 'CF.mif')
    file.delTemporary(prefix + 'first_peaks.mif')
    file.delTemporary(prefix + 'second_peaks.mif')
    # Select the top-ranked voxels
    run.command('mrthreshold ' + prefix + 'CF.mif -top ' + str(app.args.sf_voxels) + ' ' + prefix + 'SF.mif')
    # Generate a new response function based on this selection
    run.command('amp2response dwi.mif ' + prefix + 'SF.mif ' + prefix + 'first_dir.mif ' + prefix + 'RF.txt' + iter_lmax_option)
    file.delTemporary(prefix + 'first_dir.mif')
    # Should we terminate?
    if iteration > 0:
      run.command('mrcalc ' + prefix + 'SF.mif iter' + str(iteration-1) + '_SF.mif -sub ' + prefix + 'SF_diff.mif')
      file.delTemporary('iter' + str(iteration-1) + '_SF.mif')
      max_diff = image.statistic(prefix + 'SF_diff.mif', 'max')
      file.delTemporary(prefix + 'SF_diff.mif')
      if int(max_diff) == 0:
        app.console('Convergence of SF voxel selection detected at iteration ' + str(iteration))
        file.delTemporary(prefix + 'CF.mif')
        run.function(shutil.copyfile, prefix + 'RF.txt', 'response.txt')
        run.function(shutil.move, prefix + 'SF.mif', 'voxels.mif')
        break

    # Select a greater number of top single-fibre voxels, and dilate (within bounds of initial mask);
    #   these are the voxels that will be re-tested in the next iteration
    run.command('mrthreshold ' + prefix + 'CF.mif -top ' + str(app.args.iter_voxels) + ' - | maskfilter - dilate - -npass ' + str(app.args.dilate) + ' | mrcalc mask.mif - -mult ' + prefix + 'SF_dilated.mif')
    file.delTemporary(prefix + 'CF.mif')

  # Commence the next iteration

  # If terminating due to running out of iterations, still need to put the results in the appropriate location
  if not os.path.exists('response.txt'):
    app.console('Exiting after maximum ' + str(app.args.max_iters) + ' iterations')
    run.function(shutil.copyfile, 'iter' + str(app.args.max_iters-1) + '_RF.txt', 'response.txt')
    run.function(shutil.move, 'iter' + str(app.args.max_iters-1) + '_SF.mif', 'voxels.mif')

  run.function(shutil.copyfile, 'response.txt', path.fromUser(app.args.output, False))
예제 #34
0
def command(cmd, exitOnError=True):  #pylint: disable=unused-variable

    import inspect, itertools, shlex, signal, string, subprocess, sys, tempfile
    from distutils.spawn import find_executable
    from mrtrix3 import app

    # This is the only global variable that is _modified_ within this function
    global _processes

    # Vectorise the command string, preserving anything encased within quotation marks
    if os.sep == '/':  # Cheap POSIX compliance check
        cmdsplit = shlex.split(cmd)
    else:  # Native Windows Python
        cmdsplit = [
            entry.strip('\"') for entry in shlex.split(cmd, posix=False)
        ]

    if _lastFile:
        if _triggerContinue(cmdsplit):
            app.debug(
                'Detected last file in command \'' + cmd +
                '\'; this is the last run.command() / run.function() call that will be skipped'
            )
        if app.verbosity:
            sys.stderr.write(app.colourExec + 'Skipping command:' +
                             app.colourClear + ' ' + cmd + '\n')
            sys.stderr.flush()
        return ('', '')

    # This splits the command string based on the piping character '|', such that each
    #   individual executable (along with its arguments) appears as its own list
    cmdstack = [
        list(g) for k, g in itertools.groupby(cmdsplit, lambda s: s != '|')
        if k
    ]

    for line in cmdstack:
        is_mrtrix_exe = line[0] in _mrtrix_exe_list
        if is_mrtrix_exe:
            line[0] = versionMatch(line[0])
            if app.numThreads is not None:
                line.extend(['-nthreads', str(app.numThreads)])
            # Get MRtrix3 binaries to output additional INFO-level information if running in debug mode
            if app.verbosity == 3:
                line.append('-info')
            elif not app.verbosity:
                line.append('-quiet')
        else:
            line[0] = exeName(line[0])
        shebang = _shebang(line[0])
        if shebang:
            if not is_mrtrix_exe:
                # If a shebang is found, and this call is therefore invoking an
                #   interpreter, can't rely on the interpreter finding the script
                #   from PATH; need to find the full path ourselves.
                line[0] = find_executable(line[0])
            for item in reversed(shebang):
                line.insert(0, item)

    app.debug('To execute: ' + str(cmdstack))

    if app.verbosity:
        sys.stderr.write(app.colourExec + 'Command:' + app.colourClear + '  ' +
                         cmd + '\n')
        sys.stderr.flush()

    # Disable interrupt signal handler while threads are running
    try:
        signal.signal(signal.SIGINT, signal.default_int_handler)
    except:
        pass

    # Construct temporary text files for holding stdout / stderr contents when appropriate
    #   (One entry per process; each is a tuple containing two entries, each of which is either a
    #   file-like object, or None)
    tempfiles = []

    # Execute all processes
    assert not _processes
    for index, to_execute in enumerate(cmdstack):
        file_out = None
        file_err = None
        # If there's at least one command prior to this, need to receive the stdout from the prior command
        #   at the stdin of this command; otherwise, nothing to receive
        if index > 0:
            handle_in = _processes[index - 1].stdout
        else:
            handle_in = None
        # If this is not the last command, then stdout needs to be piped to the next command;
        #   otherwise, write stdout to a temporary file so that the contents can be read later
        if index < len(cmdstack) - 1:
            handle_out = subprocess.PIPE
        else:
            file_out = tempfile.TemporaryFile()
            handle_out = file_out.fileno()
        # If we're in debug / info mode, the contents of stderr will be read and printed to the terminal
        #   as the command progresses, hence this needs to go to a pipe; otherwise, write it to a temporary
        #   file so that the contents can be read later
        if app.verbosity > 1:
            handle_err = subprocess.PIPE
        else:
            file_err = tempfile.TemporaryFile()
            handle_err = file_err.fileno()
        # Set off the processes
        try:
            try:
                process = subprocess.Popen(to_execute,
                                           stdin=handle_in,
                                           stdout=handle_out,
                                           stderr=handle_err,
                                           env=_env,
                                           preexec_fn=os.setpgrp)  # pylint: disable=bad-option-value,subprocess-popen-preexec-fn
            except AttributeError:
                process = subprocess.Popen(to_execute,
                                           stdin=handle_in,
                                           stdout=handle_out,
                                           stderr=handle_err,
                                           env=_env)
            _processes.append(process)
            tempfiles.append((file_out, file_err))
        # FileNotFoundError not defined in Python 2.7
        except OSError as e:
            if exitOnError:
                app.error('\'' + to_execute[0] + '\' not executed ("' +
                          str(e) + '"); script cannot proceed')
            else:
                app.warn('\'' + to_execute[0] + '\' not executed ("' + str(e) +
                         '")')
                for p in _processes:
                    p.terminate()
                _processes = []
                break

    return_stdout = ''
    return_stderr = ''
    error = False
    error_text = ''

    # Wait for all commands to complete
    # Switch how we monitor running processes / wait for them to complete
    #   depending on whether or not the user has specified -info or -debug option
    try:
        if app.verbosity > 1:
            for process in _processes:
                stderrdata = b''
                do_indent = True
                while True:
                    # Have to read one character at a time: Waiting for a newline character using e.g. readline() will prevent MRtrix progressbars from appearing
                    byte = process.stderr.read(1)
                    stderrdata += byte
                    char = byte.decode('cp1252', errors='ignore')
                    if not char and process.poll() is not None:
                        break
                    if do_indent and char in string.printable and char != '\r' and char != '\n':
                        sys.stderr.write('          ')
                        do_indent = False
                    elif char in ['\r', '\n']:
                        do_indent = True
                    sys.stderr.write(char)
                    sys.stderr.flush()
                stderrdata = stderrdata.decode('utf-8', errors='replace')
                return_stderr += stderrdata
                if process.returncode:
                    error = True
                    error_text += stderrdata
        else:
            for process in _processes:
                process.wait()
    except (KeyboardInterrupt, SystemExit):
        app.handler(signal.SIGINT, inspect.currentframe())

    # Re-enable interrupt signal handler
    try:
        signal.signal(signal.SIGINT, app.handler)
    except:
        pass

    # For any command stdout / stderr data that wasn't either passed to another command or
    #   printed to the terminal during execution, read it here.
    for index in range(len(cmdstack)):
        if tempfiles[index][0] is not None:
            tempfiles[index][0].flush()
            tempfiles[index][0].seek(0)
            stdout_text = tempfiles[index][0].read().decode('utf-8',
                                                            errors='replace')
            return_stdout += stdout_text
            if _processes[index].returncode:
                error = True
                error_text += stdout_text
        if tempfiles[index][1] is not None:
            tempfiles[index][1].flush()
            tempfiles[index][1].seek(0)
            stderr_text = tempfiles[index][1].read().decode('utf-8',
                                                            errors='replace')
            return_stderr += stderr_text
            if _processes[index].returncode:
                error = True
                error_text += stderr_text

    _processes = []

    if error:
        if exitOnError:
            app.cleanup = False
            caller = inspect.getframeinfo(inspect.stack()[1][0])
            script_name = os.path.basename(sys.argv[0])
            app.console('')
            try:
                filename = caller.filename
                lineno = caller.lineno
            except AttributeError:
                filename = caller[1]
                lineno = caller[2]
            sys.stderr.write(script_name + ': ' + app.colourError +
                             '[ERROR] Command failed: ' + cmd +
                             app.colourClear + app.colourDebug + ' (' +
                             os.path.basename(filename) + ':' + str(lineno) +
                             ')' + app.colourClear + '\n')
            sys.stderr.write(script_name + ': ' + app.colourConsole +
                             'Output of failed command:' + app.colourClear +
                             '\n')
            for line in error_text.splitlines():
                sys.stderr.write(' ' * (len(script_name) + 2) + line + '\n')
            app.console('')
            sys.stderr.flush()
            if app.tempDir:
                with open(os.path.join(app.tempDir, 'error.txt'),
                          'w') as outfile:
                    outfile.write(cmd + '\n\n' + error_text + '\n')
            app.complete()
            sys.exit(1)
        else:
            app.warn('Command failed: ' + cmd)

    # Only now do we append to the script log, since the command has completed successfully
    # Note: Writing the command as it was formed as the input to run.command():
    #   other flags may potentially change if this file is eventually used to resume the script
    if app.tempDir:
        with open(os.path.join(app.tempDir, 'log.txt'), 'a') as outfile:
            outfile.write(cmd + '\n')

    return (return_stdout, return_stderr)
예제 #35
0
def execute():
  import math, os, shutil
  from mrtrix3 import app, file, image, path, run

  lmax_option = ''
  if app.args.lmax:
    lmax_option = ' -lmax ' + app.args.lmax

  convergence_change = 0.01 * app.args.convergence

  for iteration in range(0, app.args.max_iters):
    prefix = 'iter' + str(iteration) + '_'

    # How to initialise response function?
    # old dwi2response command used mean & standard deviation of DWI data; however
    #   this may force the output FODs to lmax=2 at the first iteration
    # Chantal used a tensor with low FA, but it'd be preferable to get the scaling right
    # Other option is to do as before, but get the ratio between l=0 and l=2, and
    #   generate l=4,6,... using that amplitude ratio
    if iteration == 0:
      RF_in_path = 'init_RF.txt'
      mask_in_path = 'mask.mif'
      # TODO This can be changed once #71 is implemented (mrstats statistics across volumes)
      volume_means = [float(x) for x in image.statistic('dwi.mif', 'mean', 'mask.mif').split()]
      mean = sum(volume_means) / float(len(volume_means))
      volume_stds = [float(x) for x in image.statistic('dwi.mif', 'std', 'mask.mif').split()]
      std = sum(volume_stds) / float(len(volume_stds))
      # Scale these to reflect the fact that we're moving to the SH basis
      mean *= math.sqrt(4.0 * math.pi)
      std  *= math.sqrt(4.0 * math.pi)
      # Now produce the initial response function
      # Let's only do it to lmax 4
      init_RF = [ str(mean), str(-0.5*std), str(0.25*std*std/mean) ]
      with open('init_RF.txt', 'w') as f:
        f.write(' '.join(init_RF))
    else:
      RF_in_path = 'iter' + str(iteration-1) + '_RF.txt'
      mask_in_path = 'iter' + str(iteration-1) + '_SF.mif'

    # Run CSD
    run.command('dwi2fod csd dwi.mif ' + RF_in_path + ' ' + prefix + 'FOD.mif -mask ' + mask_in_path)
    # Get amplitudes of two largest peaks, and directions of largest
    run.command('fod2fixel ' + prefix + 'FOD.mif ' + prefix + 'fixel -peak peaks.mif -mask ' + mask_in_path + ' -fmls_no_thresholds')
    file.delTempFile(prefix + 'FOD.mif')
    run.command('fixel2voxel ' + prefix + 'fixel/peaks.mif split_data ' + prefix + 'amps.mif')
    run.command('mrconvert ' + prefix + 'amps.mif ' + prefix + 'first_peaks.mif -coord 3 0 -axes 0,1,2')
    run.command('mrconvert ' + prefix + 'amps.mif ' + prefix + 'second_peaks.mif -coord 3 1 -axes 0,1,2')
    file.delTempFile(prefix + 'amps.mif')
    run.command('fixel2voxel ' + prefix + 'fixel/directions.mif split_dir ' + prefix + 'all_dirs.mif')
    file.delTempFolder(prefix + 'fixel')
    run.command('mrconvert ' + prefix + 'all_dirs.mif ' + prefix + 'first_dir.mif -coord 3 0:2')
    file.delTempFile(prefix + 'all_dirs.mif')
    # Revise single-fibre voxel selection based on ratio of tallest to second-tallest peak
    run.command('mrcalc ' + prefix + 'second_peaks.mif ' + prefix + 'first_peaks.mif -div ' + prefix + 'peak_ratio.mif')
    file.delTempFile(prefix + 'first_peaks.mif')
    file.delTempFile(prefix + 'second_peaks.mif')
    run.command('mrcalc ' + prefix + 'peak_ratio.mif ' + str(app.args.peak_ratio) + ' -lt ' + mask_in_path + ' -mult ' + prefix + 'SF.mif -datatype bit')
    file.delTempFile(prefix + 'peak_ratio.mif')
    # Make sure image isn't empty
    SF_voxel_count = int(image.statistic(prefix + 'SF.mif', 'count', prefix + 'SF.mif'))
    if not SF_voxel_count:
      app.error('Aborting: All voxels have been excluded from single-fibre selection')
    # Generate a new response function
    run.command('amp2response dwi.mif ' + prefix + 'SF.mif ' + prefix + 'first_dir.mif ' + prefix + 'RF.txt' + lmax_option)
    file.delTempFile(prefix + 'first_dir.mif')

    # Detect convergence
    # Look for a change > some percentage - don't bother looking at the masks
    if iteration > 0:
      with open(RF_in_path, 'r') as old_RF_file:
        old_RF = [ float(x) for x in old_RF_file.read().split() ]
      with open(prefix + 'RF.txt', 'r') as new_RF_file:
        new_RF = [ float(x) for x in new_RF_file.read().split() ]
      reiterate = False
      for index in range(0, len(old_RF)):
        mean = 0.5 * (old_RF[index] + new_RF[index])
        diff = math.fabs(0.5 * (old_RF[index] - new_RF[index]))
        ratio = diff / mean
        if ratio > convergence_change:
          reiterate = True
      if not reiterate:
        app.console('Exiting at iteration ' + str(iteration) + ' with ' + str(SF_voxel_count) + ' SF voxels due to unchanged response function coefficients')
        run.function(shutil.copyfile, prefix + 'RF.txt', 'response.txt')
        run.function(shutil.copyfile, prefix + 'SF.mif', 'voxels.mif')
        break

    file.delTempFile(RF_in_path)
    file.delTempFile(mask_in_path)
  # Go to the next iteration

  # If we've terminated due to hitting the iteration limiter, we still need to copy the output file(s) to the correct location
  if not os.path.exists('response.txt'):
    app.console('Exiting after maximum ' + str(app.args.max_iters-1) + ' iterations with ' + str(SF_voxel_count) + ' SF voxels')
    run.function(shutil.copyfile, 'iter' + str(app.args.max_iters-1) + '_RF.txt', 'response.txt')
    run.function(shutil.copyfile, 'iter' + str(app.args.max_iters-1) + '_SF.mif', 'voxels.mif')

  run.function(shutil.copyfile, 'response.txt', path.fromUser(app.args.output, False))
예제 #36
0
            'sub-' + sub_index for sub_index in app.args.participant_label
        ]
        for subject_dir in subjects_to_analyze:
            if not os.path.isdir(os.path.join(app.args.bids_dir, subject_dir)):
                app.error('Unable to find directory for subject: ' +
                          subject_dir)
    # Run all subjects sequentially
    else:
        subject_dirs = glob.glob(os.path.join(app.args.bids_dir, 'sub-*'))
        subjects_to_analyze = [
            'sub-' + directory.split("-")[-1] for directory in subject_dirs
        ]
        if not subjects_to_analyze:
            app.error('Could not find any subjects in BIDS directory')

    for subject_label in subjects_to_analyze:
        app.console('Commencing execution for subject ' + subject_label)
        runSubject(app.args.bids_dir, subject_label,
                   os.path.abspath(app.args.output_dir))

# Running group level
elif app.args.analysis_level == 'group':

    if app.args.participant_label:
        app.error(
            'Cannot use --participant_label option when performing group analysis'
        )
    runGroup(os.path.abspath(app.args.output_dir))

app.complete()
예제 #37
0
def execute():  #pylint: disable=unused-variable
    import os, shutil
    from mrtrix3 import app, file, image, path, run  #pylint: disable=redefined-builtin

    lmax_option = ''
    if app.args.lmax:
        lmax_option = ' -lmax ' + app.args.lmax

    if app.args.max_iters < 2:
        app.error('Number of iterations must be at least 2')

    for iteration in range(0, app.args.max_iters):
        prefix = 'iter' + str(iteration) + '_'

        if iteration == 0:
            RF_in_path = 'init_RF.txt'
            mask_in_path = 'mask.mif'
            init_RF = '1 -1 1'
            with open(RF_in_path, 'w') as f:
                f.write(init_RF)
            iter_lmax_option = ' -lmax 4'
        else:
            RF_in_path = 'iter' + str(iteration - 1) + '_RF.txt'
            mask_in_path = 'iter' + str(iteration - 1) + '_SF_dilated.mif'
            iter_lmax_option = lmax_option

        # Run CSD
        run.command('dwi2fod csd dwi.mif ' + RF_in_path + ' ' + prefix +
                    'FOD.mif -mask ' + mask_in_path + iter_lmax_option)
        # Get amplitudes of two largest peaks, and direction of largest
        run.command('fod2fixel ' + prefix + 'FOD.mif ' + prefix +
                    'fixel -peak peaks.mif -mask ' + mask_in_path +
                    ' -fmls_no_thresholds')
        file.delTemporary(prefix + 'FOD.mif')
        if iteration:
            file.delTemporary(mask_in_path)
        run.command('fixel2voxel ' + prefix + 'fixel/peaks.mif split_data ' +
                    prefix + 'amps.mif -number 2')
        run.command('mrconvert ' + prefix + 'amps.mif ' + prefix +
                    'first_peaks.mif -coord 3 0 -axes 0,1,2')
        run.command('mrconvert ' + prefix + 'amps.mif ' + prefix +
                    'second_peaks.mif -coord 3 1 -axes 0,1,2')
        file.delTemporary(prefix + 'amps.mif')
        run.command('fixel2voxel ' + prefix +
                    'fixel/directions.mif split_dir ' + prefix +
                    'all_dirs.mif -number 1')
        file.delTemporary(prefix + 'fixel')
        run.command('mrconvert ' + prefix + 'all_dirs.mif ' + prefix +
                    'first_dir.mif -coord 3 0:2')
        file.delTemporary(prefix + 'all_dirs.mif')
        # Calculate the 'cost function' Donald derived for selecting single-fibre voxels
        # https://github.com/MRtrix3/mrtrix3/pull/426
        #  sqrt(|peak1|) * (1 - |peak2| / |peak1|)^2
        run.command('mrcalc ' + prefix + 'first_peaks.mif -sqrt 1 ' + prefix +
                    'second_peaks.mif ' + prefix +
                    'first_peaks.mif -div -sub 2 -pow -mult ' + prefix +
                    'CF.mif')
        file.delTemporary(prefix + 'first_peaks.mif')
        file.delTemporary(prefix + 'second_peaks.mif')
        # Select the top-ranked voxels
        run.command('mrthreshold ' + prefix + 'CF.mif -top ' +
                    str(app.args.sf_voxels) + ' ' + prefix + 'SF.mif')
        # Generate a new response function based on this selection
        run.command('amp2response dwi.mif ' + prefix + 'SF.mif ' + prefix +
                    'first_dir.mif ' + prefix + 'RF.txt' + iter_lmax_option)
        file.delTemporary(prefix + 'first_dir.mif')
        # Should we terminate?
        if iteration > 0:
            run.command('mrcalc ' + prefix + 'SF.mif iter' +
                        str(iteration - 1) + '_SF.mif -sub ' + prefix +
                        'SF_diff.mif')
            file.delTemporary('iter' + str(iteration - 1) + '_SF.mif')
            max_diff = image.statistic(prefix + 'SF_diff.mif', 'max')
            file.delTemporary(prefix + 'SF_diff.mif')
            if int(max_diff) == 0:
                app.console(
                    'Convergence of SF voxel selection detected at iteration '
                    + str(iteration))
                file.delTemporary(prefix + 'CF.mif')
                run.function(shutil.copyfile, prefix + 'RF.txt',
                             'response.txt')
                run.function(shutil.move, prefix + 'SF.mif', 'voxels.mif')
                break

        # Select a greater number of top single-fibre voxels, and dilate (within bounds of initial mask);
        #   these are the voxels that will be re-tested in the next iteration
        run.command('mrthreshold ' + prefix + 'CF.mif -top ' +
                    str(app.args.iter_voxels) +
                    ' - | maskfilter - dilate - -npass ' +
                    str(app.args.dilate) + ' | mrcalc mask.mif - -mult ' +
                    prefix + 'SF_dilated.mif')
        file.delTemporary(prefix + 'CF.mif')

    # Commence the next iteration

    # If terminating due to running out of iterations, still need to put the results in the appropriate location
    if not os.path.exists('response.txt'):
        app.console('Exiting after maximum ' + str(app.args.max_iters) +
                    ' iterations')
        run.function(shutil.copyfile,
                     'iter' + str(app.args.max_iters - 1) + '_RF.txt',
                     'response.txt')
        run.function(shutil.move,
                     'iter' + str(app.args.max_iters - 1) + '_SF.mif',
                     'voxels.mif')

    run.function(shutil.copyfile, 'response.txt',
                 path.fromUser(app.args.output, False))
예제 #38
0
def runSubject(bids_dir, label, output_prefix):

    output_dir = os.path.join(output_prefix, label)
    if os.path.exists(output_dir):
        shutil.rmtree(output_dir)
    os.makedirs(output_dir)
    os.makedirs(os.path.join(output_dir, 'connectome'))
    os.makedirs(os.path.join(output_dir, 'dwi'))

    fsl_path = os.environ.get('FSLDIR', '')
    if not fsl_path:
        app.error(
            'Environment variable FSLDIR is not set; please run appropriate FSL configuration script'
        )

    flirt_cmd = fsl.exeName('flirt')
    fslanat_cmd = fsl.exeName('fsl_anat')
    fsl_suffix = fsl.suffix()

    unring_cmd = 'unring.a64'
    if not find_executable(unring_cmd):
        app.console('Command \'' + unring_cmd +
                    '\' not found; cannot perform Gibbs ringing removal')
        unring_cmd = ''

    dwibiascorrect_algo = '-ants'
    if not find_executable('N4BiasFieldCorrection'):
        # Can't use findFSLBinary() here, since we want to proceed even if it's not found
        if find_executable('fast') or find_executable('fsl5.0-fast'):
            dwibiascorrect_algo = '-fsl'
            app.console('Could not find ANTs program N4BiasFieldCorrection; '
                        'using FSL FAST for bias field correction')
        else:
            dwibiascorrect_algo = ''
            app.warn(
                'Could not find ANTs program \'N4BiasFieldCorrection\' or FSL program \'fast\'; '
                'will proceed without performing DWI bias field correction')

    if not app.args.parcellation:
        app.error(
            'For participant-level analysis, desired parcellation must be provided using the -parcellation option'
        )

    parc_image_path = ''
    parc_lut_file = ''
    mrtrix_lut_file = os.path.join(
        os.path.dirname(os.path.abspath(app.__file__)), os.pardir, os.pardir,
        'share', 'mrtrix3', 'labelconvert')

    if app.args.parcellation == 'fs_2005' or app.args.parcellation == 'fs_2009':
        if not 'FREESURFER_HOME' in os.environ:
            app.error(
                'Environment variable FREESURFER_HOME not set; please verify FreeSurfer installation'
            )
        if not find_executable('recon-all'):
            app.error(
                'Could not find FreeSurfer script recon-all; please verify FreeSurfer installation'
            )
        parc_lut_file = os.path.join(os.environ['FREESURFER_HOME'],
                                     'FreeSurferColorLUT.txt')
        if app.args.parcellation == 'fs_2005':
            mrtrix_lut_file = os.path.join(mrtrix_lut_file, 'fs_default.txt')
        else:
            mrtrix_lut_file = os.path.join(mrtrix_lut_file, 'fs_a2009s.txt')

    if app.args.parcellation == 'aal' or app.args.parcellation == 'aal2':
        mni152_path = os.path.join(fsl_path, 'data', 'standard',
                                   'MNI152_T1_1mm.nii.gz')
        if not os.path.isfile(mni152_path):
            app.error(
                'Could not find MNI152 template image within FSL installation (expected location: '
                + mni152_path + ')')
        if app.args.parcellation == 'aal':
            parc_image_path = os.path.abspath(
                os.path.join(os.sep, 'opt', 'aal', 'ROI_MNI_V4.nii'))
            parc_lut_file = os.path.abspath(
                os.path.join(os.sep, 'opt', 'aal', 'ROI_MNI_V4.txt'))
            mrtrix_lut_file = os.path.join(mrtrix_lut_file, 'aal.txt')
        else:
            parc_image_path = os.path.abspath(
                os.path.join(os.sep, 'opt', 'aal', 'ROI_MNI_V5.nii'))
            parc_lut_file = os.path.abspath(
                os.path.join(os.sep, 'opt', 'aal', 'ROI_MNI_V5.txt'))
            mrtrix_lut_file = os.path.join(mrtrix_lut_file, 'aal2.txt')

    if parc_image_path and not os.path.isfile(parc_image_path):
        if app.args.atlas_path:
            parc_image_path = [
                parc_image_path,
                os.path.join(os.path.dirname(app.args.atlas_path),
                             os.path.basename(parc_image_path))
            ]
            if os.path.isfile(parc_image_path[1]):
                parc_image_path = parc_image_path[1]
            else:
                app.error(
                    'Could not find parcellation image (tested locations: ' +
                    str(parc_image_path) + ')')
        else:
            app.error(
                'Could not find parcellation image (expected location: ' +
                parc_image_path + ')')
    if not os.path.isfile(parc_lut_file):
        if app.args.atlas_path:
            parc_lut_file = [
                parc_lut_file,
                os.path.join(os.path.dirname(app.args.atlas_path),
                             os.path.basename(parc_lut_file))
            ]
            if os.path.isfile(parc_lut_file[1]):
                parc_lut_file = parc_lut_file[1]
            else:
                app.error(
                    'Could not find parcellation lookup table file (tested locations: '
                    + str(parc_lut_file) + ')')
        else:
            app.error(
                'Could not find parcellation lookup table file (expected location: '
                + parc_lut_file + ')')
    if not os.path.exists(mrtrix_lut_file):
        app.error(
            'Could not find MRtrix3 connectome lookup table file (expected location: '
            + mrtrix_lut_file + ')')

    app.makeTempDir()

    # Need to perform an initial import of JSON data using mrconvert; so let's grab the diffusion gradient table as well
    # If no bvec/bval present, need to go down the directory listing
    # Only try to import JSON file if it's actually present
    #   direction in the acquisition they'll need to be split across multiple files
    # May need to concatenate more than one input DWI, since if there's more than one phase-encode direction
    #   in the acquired DWIs (i.e. not just those used for estimating the inhomogeneity field), they will
    #   need to be stored as separate NIfTI files in the 'dwi/' directory.
    dwi_image_list = glob.glob(
        os.path.join(bids_dir, label, 'dwi', label) + '*_dwi.nii*')
    dwi_index = 1
    for entry in dwi_image_list:
        # os.path.split() falls over with .nii.gz extensions; only removes the .gz
        prefix = entry.split(os.extsep)[0]
        if os.path.isfile(prefix + '.bval') and os.path.isfile(prefix +
                                                               '.bvec'):
            prefix = prefix + '.'
        else:
            prefix = os.path.join(bids_dir, 'dwi')
            if not (os.path.isfile(prefix + 'bval')
                    and os.path.isfile(prefix + 'bvec')):
                app.error(
                    'Unable to locate valid diffusion gradient table for image \''
                    + entry + '\'')
        grad_import_option = ' -fslgrad ' + prefix + 'bvec ' + prefix + 'bval'
        json_path = prefix + 'json'
        if os.path.isfile(json_path):
            json_import_option = ' -json_import ' + json_path
        else:
            json_import_option = ''
        run.command('mrconvert ' + entry + grad_import_option +
                    json_import_option + ' ' +
                    path.toTemp('dwi' + str(dwi_index) + '.mif', True))
        dwi_index += 1

    # Go hunting for reversed phase-encode data dedicated to field map estimation
    fmap_image_list = []
    fmap_dir = os.path.join(bids_dir, label, 'fmap')
    fmap_index = 1
    if os.path.isdir(fmap_dir):
        if app.args.preprocessed:
            app.error('fmap/ directory detected for subject \'' + label +
                      '\' despite use of ' + option_prefix +
                      'preprocessed option')
        fmap_image_list = glob.glob(
            os.path.join(fmap_dir, label) + '_dir-*_epi.nii*')
        for entry in fmap_image_list:
            prefix = entry.split(os.extsep)[0]
            json_path = prefix + '.json'
            with open(json_path, 'r') as f:
                json_elements = json.load(f)
            if 'IntendedFor' in json_elements and not any(
                    i.endswith(json_elements['IntendedFor'])
                    for i in dwi_image_list):
                app.console('Image \'' + entry +
                            '\' is not intended for use with DWIs; skipping')
                continue
            if os.path.isfile(json_path):
                json_import_option = ' -json_import ' + json_path
                # fmap files will not come with any gradient encoding in the JSON;
                #   therefore we need to add it manually ourselves so that mrcat / mrconvert can
                #   appropriately handle the table once these images are concatenated with the DWIs
                fmap_image_size = image.Header(entry).size()
                fmap_image_num_volumes = 1 if len(
                    fmap_image_size) == 3 else fmap_image_size[3]
                run.command('mrconvert ' + entry + json_import_option +
                            ' -set_property dw_scheme \"' +
                            '\\n'.join(['0,0,1,0'] * fmap_image_num_volumes) +
                            '\" ' +
                            path.toTemp('fmap' + str(fmap_index) +
                                        '.mif', True))
                fmap_index += 1
            else:
                app.warn('No corresponding .json file found for image \'' +
                         entry + '\'; skipping')

        fmap_image_list = [
            'fmap' + str(index) + '.mif' for index in range(1, fmap_index)
        ]
    # If there's no data in fmap/ directory, need to check to see if there's any phase-encoding
    #   contrast within the input DWI(s)
    elif len(dwi_image_list) < 2 and not app.args.preprocessed:
        app.error(
            'Inadequate data for pre-processing of subject \'' + label +
            '\': No phase-encoding contrast in input DWIs or fmap/ directory')

    dwi_image_list = [
        'dwi' + str(index) + '.mif' for index in range(1, dwi_index)
    ]

    # Import anatomical image
    run.command('mrconvert ' +
                os.path.join(bids_dir, label, 'anat', label + '_T1w.nii.gz') +
                ' ' + path.toTemp('T1.mif', True))

    cwd = os.getcwd()
    app.gotoTempDir()

    dwipreproc_se_epi = ''
    dwipreproc_se_epi_option = ''

    # For automated testing, down-sampled images are used. However, this invalidates the requirements of
    #   both MP-PCA denoising and Gibbs ringing removal. In addition, eddy can still take a long time
    #   despite the down-sampling. Therefore, provide images that have been pre-processed to the stage
    #   where it is still only DWI, JSON & bvecs/bvals that need to be provided.
    if app.args.preprocessed:

        if len(dwi_image_list) > 1:
            app.error(
                'If DWIs have been pre-processed, then only a single DWI file should need to be provided'
            )
        app.console(
            'Skipping MP-PCA denoising, ' +
            ('Gibbs ringing removal, ' if unring_cmd else '') +
            'distortion correction and bias field correction due to use of ' +
            option_prefix + 'preprocessed option')
        run.function(os.rename, dwi_image_list[0], 'dwi.mif')

    else:  # Do initial image pre-processing (denoising, Gibbs ringing removal if available, distortion correction & bias field correction) as normal

        # Concatenate any SE EPI images with the DWIs before denoising (& unringing), then
        #   separate them again after the fact
        dwidenoise_input = 'dwidenoise_input.mif'
        fmap_num_volumes = 0
        if fmap_image_list:
            run.command('mrcat ' + ' '.join(fmap_image_list) +
                        ' fmap_cat.mif -axis 3')
            for i in fmap_image_list:
                file.delTemporary(i)
            fmap_num_volumes = image.Header('fmap_cat.mif').size()[3]
            dwidenoise_input = 'all_cat.mif'
            run.command('mrcat fmap_cat.mif ' + ' '.join(dwi_image_list) +
                        ' ' + dwidenoise_input + ' -axis 3')
            file.delTemporary('fmap_cat.mif')
        else:
            # Even if no explicit fmap images, may still need to concatenate multiple DWI inputs
            if len(dwi_image_list) > 1:
                run.command('mrcat ' + ' '.join(dwi_image_list) + ' ' +
                            dwidenoise_input + ' -axis 3')
            else:
                run.function(shutil.move, dwi_image_list[0], dwidenoise_input)

        for i in dwi_image_list:
            file.delTemporary(i)

        # Step 1: Denoise
        run.command('dwidenoise ' + dwidenoise_input + ' dwi_denoised.' +
                    ('nii' if unring_cmd else 'mif'))
        if unring_cmd:
            run.command('mrinfo ' + dwidenoise_input +
                        ' -json_keyval input.json')
        file.delTemporary(dwidenoise_input)

        # Step 2: Gibbs ringing removal (if available)
        if unring_cmd:
            run.command(unring_cmd + ' dwi_denoised.nii dwi_unring' +
                        fsl_suffix + ' -n 100')
            file.delTemporary('dwi_denoised.nii')
            unring_output_path = fsl.findImage('dwi_unring')
            run.command('mrconvert ' + unring_output_path +
                        ' dwi_unring.mif -json_import input.json')
            file.delTemporary(unring_output_path)
            file.delTemporary('input.json')

        # If fmap images and DWIs have been concatenated, now is the time to split them back apart
        dwipreproc_input = 'dwi_unring.mif' if unring_cmd else 'dwi_denoised.mif'

        if fmap_num_volumes:
            cat_input = 'dwi_unring.mif' if unring_cmd else 'dwi_denoised.mif'
            dwipreproc_se_epi = 'se_epi.mif'
            run.command('mrconvert ' + cat_input + ' ' + dwipreproc_se_epi +
                        ' -coord 3 0:' + str(fmap_num_volumes - 1))
            cat_num_volumes = image.Header(cat_input).size()[3]
            run.command('mrconvert ' + cat_input +
                        ' dwipreproc_in.mif -coord 3 ' +
                        str(fmap_num_volumes) + ':' + str(cat_num_volumes - 1))
            file.delTemporary(dwipreproc_input)
            dwipreproc_input = 'dwipreproc_in.mif'
            dwipreproc_se_epi_option = ' -se_epi ' + dwipreproc_se_epi

        # Step 3: Distortion correction
        run.command('dwipreproc ' + dwipreproc_input +
                    ' dwi_preprocessed.mif -rpe_header' +
                    dwipreproc_se_epi_option)
        file.delTemporary(dwipreproc_input)
        if dwipreproc_se_epi:
            file.delTemporary(dwipreproc_se_epi)

        # Step 4: Bias field correction
        if dwibiascorrect_algo:
            run.command('dwibiascorrect dwi_preprocessed.mif dwi.mif ' +
                        dwibiascorrect_algo)
            file.delTemporary('dwi_preprocessed.mif')
        else:
            run.function(shutil.move, 'dwi_preprocessed.mif', 'dwi.mif')

    # No longer branching based on whether or not -preprocessed was specified

    # Step 5: Generate a brain mask for DWI
    run.command('dwi2mask dwi.mif dwi_mask.mif')

    # Step 6: Perform brain extraction on the T1 image in its original space
    #         (this is necessary for histogram matching prior to registration)
    #         Use fsl_anat script
    run.command('mrconvert T1.mif T1.nii -stride -1,+2,+3')
    run.command(fslanat_cmd + ' -i T1.nii --noseg --nosubcortseg')
    run.command('mrconvert ' +
                fsl.findImage('T1.anat' + os.sep + 'T1_biascorr_brain_mask') +
                ' T1_mask.mif -datatype bit')
    run.command('mrconvert ' +
                fsl.findImage('T1.anat' + os.sep + 'T1_biascorr_brain') +
                ' T1_biascorr_brain.mif')
    file.delTemporary('T1.anat')

    # Step 7: Generate target images for T1->DWI registration
    run.command('dwiextract dwi.mif -bzero - | '
                'mrcalc - 0.0 -max - | '
                'mrmath - mean -axis 3 dwi_meanbzero.mif')
    run.command(
        'mrcalc 1 dwi_meanbzero.mif -div dwi_mask.mif -mult - | '
        'mrhistmatch - T1_biascorr_brain.mif dwi_pseudoT1.mif -mask_input dwi_mask.mif -mask_target T1_mask.mif'
    )
    run.command(
        'mrcalc 1 T1_biascorr_brain.mif -div T1_mask.mif -mult - | '
        'mrhistmatch - dwi_meanbzero.mif T1_pseudobzero.mif -mask_input T1_mask.mif -mask_target dwi_mask.mif'
    )

    # Step 8: Perform T1->DWI registration
    #         Note that two registrations are performed: Even though we have a symmetric registration,
    #         generation of the two histogram-matched images means that you will get slightly different
    #         answers depending on which synthesized image & original image you use.
    run.command(
        'mrregister T1_biascorr_brain.mif dwi_pseudoT1.mif -type rigid -mask1 T1_mask.mif -mask2 dwi_mask.mif -rigid rigid_T1_to_pseudoT1.txt'
    )
    file.delTemporary('T1_biascorr_brain.mif')
    run.command(
        'mrregister T1_pseudobzero.mif dwi_meanbzero.mif -type rigid -mask1 T1_mask.mif -mask2 dwi_mask.mif -rigid rigid_pseudobzero_to_bzero.txt'
    )
    file.delTemporary('dwi_meanbzero.mif')
    run.command(
        'transformcalc rigid_T1_to_pseudoT1.txt rigid_pseudobzero_to_bzero.txt average rigid_T1_to_dwi.txt'
    )
    file.delTemporary('rigid_T1_to_pseudoT1.txt')
    file.delTemporary('rigid_pseudobzero_to_bzero.txt')
    run.command(
        'mrtransform T1.mif T1_registered.mif -linear rigid_T1_to_dwi.txt')
    file.delTemporary('T1.mif')
    # Note: Since we're using a mask from fsl_anat (which crops the FoV), but using it as input to 5ttge fsl
    #   (which is receiving the raw T1), we need to resample in order to have the same dimensions between these two
    run.command(
        'mrtransform T1_mask.mif T1_mask_registered.mif -linear rigid_T1_to_dwi.txt -template T1_registered.mif -interp nearest'
    )
    file.delTemporary('T1_mask.mif')

    # Step 9: Generate 5TT image for ACT
    run.command(
        '5ttgen fsl T1_registered.mif 5TT.mif -mask T1_mask_registered.mif')
    file.delTemporary('T1_mask_registered.mif')

    # Step 10: Estimate response functions for spherical deconvolution
    run.command(
        'dwi2response dhollander dwi.mif response_wm.txt response_gm.txt response_csf.txt -mask dwi_mask.mif'
    )

    # Step 11: Determine whether we are working with single-shell or multi-shell data
    shells = [
        int(round(float(value)))
        for value in image.mrinfo('dwi.mif', 'shellvalues').strip().split()
    ]
    multishell = (len(shells) > 2)

    # Step 12: Perform spherical deconvolution
    #          Use a dilated mask for spherical deconvolution as a 'safety margin' -
    #          ACT should be responsible for stopping streamlines before they reach the edge of the DWI mask
    run.command('maskfilter dwi_mask.mif dilate dwi_mask_dilated.mif -npass 3')
    if multishell:
        run.command(
            'dwi2fod msmt_csd dwi.mif response_wm.txt FOD_WM.mif response_gm.txt FOD_GM.mif response_csf.txt FOD_CSF.mif '
            '-mask dwi_mask_dilated.mif -lmax 10,0,0')
        file.delTemporary('FOD_GM.mif')
        file.delTemporary('FOD_CSF.mif')
    else:
        # Still use the msmt_csd algorithm with single-shell data: Use hard non-negativity constraint
        # Also incorporate the CSF response to provide some fluid attenuation
        run.command(
            'dwi2fod msmt_csd dwi.mif response_wm.txt FOD_WM.mif response_csf.txt FOD_CSF.mif '
            '-mask dwi_mask_dilated.mif -lmax 10,0')
        file.delTemporary('FOD_CSF.mif')

    # Step 13: Generate the grey matter parcellation
    #          The necessary steps here will vary significantly depending on the parcellation scheme selected
    run.command(
        'mrconvert T1_registered.mif T1_registered.nii -stride +1,+2,+3')
    if app.args.parcellation == 'fs_2005' or app.args.parcellation == 'fs_2009':

        # Run FreeSurfer pipeline on this subject's T1 image
        run.command('recon-all -sd ' + app.tempDir +
                    ' -subjid freesurfer -i T1_registered.nii')
        run.command('recon-all -sd ' + app.tempDir +
                    ' -subjid freesurfer -all')

        # Grab the relevant parcellation image and target lookup table for conversion
        parc_image_path = os.path.join('freesurfer', 'mri')
        if app.args.parcellation == 'fs_2005':
            parc_image_path = os.path.join(parc_image_path, 'aparc+aseg.mgz')
        else:
            parc_image_path = os.path.join(parc_image_path,
                                           'aparc.a2009s+aseg.mgz')

        # Perform the index conversion
        run.command('labelconvert ' + parc_image_path + ' ' + parc_lut_file +
                    ' ' + mrtrix_lut_file + ' parc_init.mif')
        if app.cleanup:
            run.function(shutil.rmtree, 'freesurfer')

        # Fix the sub-cortical grey matter parcellations using FSL FIRST
        run.command('labelsgmfix parc_init.mif T1_registered.mif ' +
                    mrtrix_lut_file + ' parc.mif')
        file.delTemporary('parc_init.mif')

    elif app.args.parcellation == 'aal' or app.args.parcellation == 'aal2':

        # Can use MNI152 image provided with FSL for registration
        run.command(flirt_cmd + ' -ref ' + mni152_path +
                    ' -in T1_registered.nii -omat T1_to_MNI_FLIRT.mat -dof 12')
        run.command('transformconvert T1_to_MNI_FLIRT.mat T1_registered.nii ' +
                    mni152_path + ' flirt_import T1_to_MNI_MRtrix.mat')
        file.delTemporary('T1_to_MNI_FLIRT.mat')
        run.command(
            'transformcalc T1_to_MNI_MRtrix.mat invert MNI_to_T1_MRtrix.mat')
        file.delTemporary('T1_to_MNI_MRtrix.mat')
        run.command('mrtransform ' + parc_image_path +
                    ' AAL.mif -linear MNI_to_T1_MRtrix.mat '
                    '-template T1_registered.mif -interp nearest')
        file.delTemporary('MNI_to_T1_MRtrix.mat')
        run.command('labelconvert AAL.mif ' + parc_lut_file + ' ' +
                    mrtrix_lut_file + ' parc.mif')
        file.delTemporary('AAL.mif')

    else:
        app.error('Unknown parcellation scheme requested: ' +
                  app.args.parcellation)
    file.delTemporary('T1_registered.nii')

    # Step 14: Generate the tractogram
    # If not manually specified, determine the appropriate number of streamlines based on the number of nodes in the parcellation:
    #   mean edge weight of 1,000 streamlines
    # A smaller FOD amplitude threshold of 0.06 (default 0.1) is used for tracking due to the use of the msmt_csd
    #   algorithm, which imposes a hard rather than soft non-negativity constraint
    num_nodes = int(image.statistic('parc.mif', 'max'))
    num_streamlines = 1000 * num_nodes * num_nodes
    if app.args.streamlines:
        num_streamlines = app.args.streamlines
    run.command(
        'tckgen FOD_WM.mif tractogram.tck -act 5TT.mif -backtrack -crop_at_gmwmi -cutoff 0.06 -maxlength 250 -power 0.33 '
        '-select ' + str(num_streamlines) + ' -seed_dynamic FOD_WM.mif')

    # Step 15: Use SIFT2 to determine streamline weights
    fd_scale_gm_option = ''
    if not multishell:
        fd_scale_gm_option = ' -fd_scale_gm'
    run.command(
        'tcksift2 tractogram.tck FOD_WM.mif weights.csv -act 5TT.mif -out_mu mu.txt'
        + fd_scale_gm_option)

    # Step 16: Generate a TDI (to verify that SIFT2 has worked correctly)
    with open('mu.txt', 'r') as f:
        mu = float(f.read())
    run.command(
        'tckmap tractogram.tck -tck_weights_in weights.csv -template FOD_WM.mif -precise - | '
        'mrcalc - ' + str(mu) + ' -mult tdi.mif')

    # Step 17: Generate the connectome
    #          Only provide the standard density-weighted connectome for now
    run.command(
        'tck2connectome tractogram.tck parc.mif connectome.csv -tck_weights_in weights.csv'
    )
    file.delTemporary('weights.csv')

    # Move necessary files to output directory
    run.function(
        shutil.copy, 'connectome.csv',
        os.path.join(output_dir, 'connectome', label + '_connectome.csv'))
    run.command('mrconvert dwi.mif ' +
                os.path.join(output_dir, 'dwi', label + '_dwi.nii.gz') +
                ' -export_grad_fsl ' +
                os.path.join(output_dir, 'dwi', label + '_dwi.bvec') + ' ' +
                os.path.join(output_dir, 'dwi', label + '_dwi.bval') +
                ' -json_export ' +
                os.path.join(output_dir, 'dwi', label + '_dwi.json'))
    run.command('mrconvert tdi.mif ' +
                os.path.join(output_dir, 'dwi', label + '_tdi.nii.gz'))
    run.function(shutil.copy, 'mu.txt',
                 os.path.join(output_dir, 'connectome', label + '_mu.txt'))
    run.function(shutil.copy, 'response_wm.txt',
                 os.path.join(output_dir, 'dwi', label + '_response.txt'))

    # Manually wipe and zero the temp directory (since we might be processing more than one subject)
    os.chdir(cwd)
    if app.cleanup:
        app.console('Deleting temporary directory ' + app.tempDir)
        # Can't use run.function() here; it'll try to write to the log file that resides in the temp directory just deleted
        shutil.rmtree(app.tempDir)
    else:
        app.console('Contents of temporary directory kept, location: ' +
                    app.tempDir)
    app.tempDir = ''
예제 #39
0
def execute():  #pylint: disable=unused-variable
    import math, os, shutil
    from mrtrix3 import app, image, matrix, MRtrixError, path, run

    lmax_option = ''
    if app.ARGS.lmax:
        lmax_option = ' -lmax ' + app.ARGS.lmax

    convergence_change = 0.01 * app.ARGS.convergence

    progress = app.ProgressBar('Optimising')

    iteration = 0
    while iteration < app.ARGS.max_iters:
        prefix = 'iter' + str(iteration) + '_'

        # How to initialise response function?
        # old dwi2response command used mean & standard deviation of DWI data; however
        #   this may force the output FODs to lmax=2 at the first iteration
        # Chantal used a tensor with low FA, but it'd be preferable to get the scaling right
        # Other option is to do as before, but get the ratio between l=0 and l=2, and
        #   generate l=4,6,... using that amplitude ratio
        if iteration == 0:
            rf_in_path = 'init_RF.txt'
            mask_in_path = 'mask.mif'

            # Grab the mean and standard deviation across all volumes in a single mrstats call
            # Also scale them to reflect the fact that we're moving to the SH basis
            mean = image.statistic('dwi.mif', 'mean',
                                   '-mask mask.mif -allvolumes') * math.sqrt(
                                       4.0 * math.pi)
            std = image.statistic('dwi.mif', 'std',
                                  '-mask mask.mif -allvolumes') * math.sqrt(
                                      4.0 * math.pi)

            # Now produce the initial response function
            # Let's only do it to lmax 4
            init_rf = [
                str(mean),
                str(-0.5 * std),
                str(0.25 * std * std / mean)
            ]
            with open('init_RF.txt', 'w') as init_rf_file:
                init_rf_file.write(' '.join(init_rf))
        else:
            rf_in_path = 'iter' + str(iteration - 1) + '_RF.txt'
            mask_in_path = 'iter' + str(iteration - 1) + '_SF.mif'

        # Run CSD
        run.command('dwi2fod csd dwi.mif ' + rf_in_path + ' ' + prefix +
                    'FOD.mif -mask ' + mask_in_path)
        # Get amplitudes of two largest peaks, and directions of largest
        run.command('fod2fixel ' + prefix + 'FOD.mif ' + prefix +
                    'fixel -peak peaks.mif -mask ' + mask_in_path +
                    ' -fmls_no_thresholds')
        app.cleanup(prefix + 'FOD.mif')
        run.command('fixel2voxel ' + prefix + 'fixel/peaks.mif split_data ' +
                    prefix + 'amps.mif')
        run.command('mrconvert ' + prefix + 'amps.mif ' + prefix +
                    'first_peaks.mif -coord 3 0 -axes 0,1,2')
        run.command('mrconvert ' + prefix + 'amps.mif ' + prefix +
                    'second_peaks.mif -coord 3 1 -axes 0,1,2')
        app.cleanup(prefix + 'amps.mif')
        run.command('fixel2voxel ' + prefix +
                    'fixel/directions.mif split_dir ' + prefix +
                    'all_dirs.mif')
        app.cleanup(prefix + 'fixel')
        run.command('mrconvert ' + prefix + 'all_dirs.mif ' + prefix +
                    'first_dir.mif -coord 3 0:2')
        app.cleanup(prefix + 'all_dirs.mif')
        # Revise single-fibre voxel selection based on ratio of tallest to second-tallest peak
        run.command('mrcalc ' + prefix + 'second_peaks.mif ' + prefix +
                    'first_peaks.mif -div ' + prefix + 'peak_ratio.mif')
        app.cleanup(prefix + 'first_peaks.mif')
        app.cleanup(prefix + 'second_peaks.mif')
        run.command('mrcalc ' + prefix + 'peak_ratio.mif ' +
                    str(app.ARGS.peak_ratio) + ' -lt ' + mask_in_path +
                    ' -mult ' + prefix + 'SF.mif -datatype bit')
        app.cleanup(prefix + 'peak_ratio.mif')
        # Make sure image isn't empty
        sf_voxel_count = image.statistic(prefix + 'SF.mif', 'count',
                                         '-mask ' + prefix + 'SF.mif')
        if not sf_voxel_count:
            raise MRtrixError(
                'Aborting: All voxels have been excluded from single-fibre selection'
            )
        # Generate a new response function
        run.command('amp2response dwi.mif ' + prefix + 'SF.mif ' + prefix +
                    'first_dir.mif ' + prefix + 'RF.txt' + lmax_option)
        app.cleanup(prefix + 'first_dir.mif')

        new_rf = matrix.load_vector(prefix + 'RF.txt')
        progress.increment('Optimising (' + str(iteration + 1) +
                           ' iterations, ' + str(sf_voxel_count) +
                           ' voxels, RF: [ ' + ', '.join('{:.3f}'.format(n)
                                                         for n in new_rf) +
                           '] )')

        # Detect convergence
        # Look for a change > some percentage - don't bother looking at the masks
        if iteration > 0:
            old_rf = matrix.load_vector(rf_in_path)
            reiterate = False
            for old_value, new_value in zip(old_rf, new_rf):
                mean = 0.5 * (old_value + new_value)
                diff = math.fabs(0.5 * (old_value - new_value))
                ratio = diff / mean
                if ratio > convergence_change:
                    reiterate = True
            if not reiterate:
                run.function(shutil.copyfile, prefix + 'RF.txt',
                             'response.txt')
                run.function(shutil.copyfile, prefix + 'SF.mif', 'voxels.mif')
                break

        app.cleanup(rf_in_path)
        app.cleanup(mask_in_path)

        iteration += 1

    progress.done()

    # If we've terminated due to hitting the iteration limiter, we still need to copy the output file(s) to the correct location
    if os.path.exists('response.txt'):
        app.console('Exited at iteration ' + str(iteration + 1) + ' with ' +
                    str(sf_voxel_count) +
                    ' SF voxels due to unchanged RF coefficients')
    else:
        app.console('Exited after maximum ' + str(app.ARGS.max_iters) +
                    ' iterations with ' + str(sf_voxel_count) + ' SF voxels')
        run.function(shutil.copyfile,
                     'iter' + str(app.ARGS.max_iters - 1) + '_RF.txt',
                     'response.txt')
        run.function(shutil.copyfile,
                     'iter' + str(app.ARGS.max_iters - 1) + '_SF.mif',
                     'voxels.mif')

    run.function(shutil.copyfile, 'response.txt',
                 path.from_user(app.ARGS.output, False))
    if app.ARGS.voxels:
        run.command('mrconvert voxels.mif ' + path.from_user(app.ARGS.voxels),
                    mrconvert_keyval=path.from_user(app.ARGS.input),
                    force=app.FORCE_OVERWRITE)
예제 #40
0
def runGroup(output_dir):

    # Check presence of all required input files before proceeding
    # Pre-calculate paths of all files since many will be used in more than one location
    class subjectPaths(object):
        def __init__(self, label):
            self.in_dwi = os.path.join(output_dir, label, 'dwi',
                                       label + '_dwi.nii.gz')
            self.in_bvec = os.path.join(output_dir, label, 'dwi',
                                        label + '_dwi.bvec')
            self.in_bval = os.path.join(output_dir, label, 'dwi',
                                        label + '_dwi.bval')
            self.in_json = os.path.join(output_dir, label, 'dwi',
                                        label + '_dwi.json')
            self.in_rf = os.path.join(output_dir, label, 'dwi',
                                      label + '_response.txt')
            self.in_connectome = os.path.join(output_dir, label, 'connectome',
                                              label + '_connectome.csv')
            self.in_mu = os.path.join(output_dir, label, 'connectome',
                                      label + '_mu.txt')

            for entry in vars(self).values():
                if not os.path.exists(entry):
                    app.error(
                        'Unable to find critical subject data (expected location: '
                        + entry + ')')

            with open(self.in_mu, 'r') as f:
                self.mu = float(f.read())

            self.RF = []
            with open(self.in_rf, 'r') as f:
                for line in f:
                    self.RF.append([float(v) for v in line.split()])

            self.temp_mask = os.path.join('masks', label + '.mif')
            self.temp_fa = os.path.join('images', label + '.mif')
            self.temp_bzero = os.path.join('bzeros', label + '.mif')
            self.temp_warp = os.path.join('warps', label + '.mif')
            self.temp_voxels = os.path.join('voxels', label + '.mif')
            self.median_bzero = 0.0
            self.dwiintensitynorm_factor = 1.0
            self.RF_multiplier = 1.0
            self.global_multiplier = 1.0
            self.temp_connectome = os.path.join('connectomes', label + '.csv')
            self.out_scale_bzero = os.path.join(
                output_dir, label, 'connectome',
                label + '_scalefactor_bzero.csv')
            self.out_scale_RF = os.path.join(
                output_dir, label, 'connectome',
                label + '_scalefactor_response.csv')
            self.out_connectome = os.path.join(
                output_dir, label, 'connectome',
                label + '_connectome_scaled.csv')

            self.label = label

    subject_list = [
        'sub-' + sub_dir.split("-")[-1]
        for sub_dir in glob.glob(os.path.join(output_dir, 'sub-*'))
    ]
    if not subject_list:
        app.error(
            'No processed subject data found in output directory for group analysis'
        )
    subjects = []
    for label in subject_list:
        subjects.append(subjectPaths(label))

    app.makeTempDir()
    app.gotoTempDir()

    # First pass through subject data in group analysis:
    #   - Grab DWI data (written back from single-subject analysis back into BIDS format)
    #   - Generate mask and FA images to be used in populate template generation
    #   - Generate mean b=0 image for each subject for later use
    progress = app.progressBar('Importing and preparing subject data',
                               len(subjects))
    run.function(os.makedirs, 'bzeros')
    run.function(os.makedirs, 'images')
    run.function(os.makedirs, 'masks')
    for s in subjects:
        grad_import_option = ' -fslgrad ' + s.in_bvec + ' ' + s.in_bval
        run.command('dwi2mask ' + s.in_dwi + ' ' + s.temp_mask +
                    grad_import_option)
        run.command('dwi2tensor ' + s.in_dwi + ' - -mask ' + s.temp_mask +
                    grad_import_option + ' | tensor2metric - -fa ' + s.temp_fa)
        run.command('dwiextract ' + s.in_dwi + grad_import_option +
                    ' - -bzero | mrmath - mean ' + s.temp_bzero + ' -axis 3')
        progress.increment()
    progress.done()

    # First group-level calculation: Generate the population FA template
    app.console(
        'Generating population template for inter-subject intensity normalisation WM mask derivation'
    )
    run.command(
        'population_template images -mask_dir masks -warp_dir warps template.mif '
        '-type rigid_affine_nonlinear -rigid_scale 0.25,0.5,0.8,1.0 -affine_scale 0.7,0.8,1.0,1.0 '
        '-nl_scale 0.5,0.75,1.0,1.0,1.0 -nl_niter 5,5,5,5,5 -linear_no_pause')
    file.delTemporary('images')
    file.delTemporary('masks')

    # Second pass through subject data in group analysis:
    #   - Warp template FA image back to subject space & threshold to define a WM mask in subject space
    #   - Calculate the median subject b=0 value within this mask
    #   - Store this in a file, and contribute to calculation of the mean of these values across subjects
    #   - Contribute to the group average response function
    progress = app.progressBar(
        'Generating group-average response function and intensity normalisation factors',
        len(subjects) + 1)
    run.function(os.makedirs, 'voxels')
    sum_median_bzero = 0.0
    sum_RF = []
    for s in subjects:
        run.command('mrtransform template.mif -warp_full ' + s.temp_warp +
                    ' - -from 2 -template ' + s.temp_bzero + ' | '
                    'mrthreshold - ' + s.temp_voxels + ' -abs 0.4')
        s.median_bzero = float(
            image.statistic(s.temp_bzero, 'median', '-mask ' + s.temp_voxels))
        file.delTemporary(s.temp_bzero)
        file.delTemporary(s.temp_voxels)
        file.delTemporary(s.temp_warp)
        sum_median_bzero += s.median_bzero
        if sum_RF:
            sum_RF = [[a + b for a, b in zip(one, two)]
                      for one, two in zip(sum_RF, s.RF)]
        else:
            sum_RF = s.RF
        progress.increment()
    file.delTemporary('bzeros')
    file.delTemporary('voxels')
    file.delTemporary('warps')
    progress.done()

    # Second group-level calculation:
    #   - Calculate the mean of median b=0 values
    #   - Calculate the mean response function, and extract the l=0 values from it
    mean_median_bzero = sum_median_bzero / len(subjects)
    mean_RF = [[v / len(subjects) for v in line] for line in sum_RF]
    mean_RF_lzero = [line[0] for line in mean_RF]

    # Third pass through subject data in group analysis:
    #   - Scale the connectome strengths:
    #     - Multiply by SIFT proportionality coefficient mu
    #     - Multiply by (mean median b=0) / (subject median b=0)
    #     - Multiply by (subject RF size) / (mean RF size)
    #         (needs to account for multi-shell data)
    #   - Write the result to file
    progress = app.progressBar(
        'Applying normalisation scaling to subject connectomes', len(subjects))
    run.function(os.makedirs, 'connectomes')
    for s in subjects:
        RF_lzero = [line[0] for line in s.RF]
        s.RF_multiplier = 1.0
        for (mean, subj) in zip(mean_RF_lzero, RF_lzero):
            s.RF_multiplier = s.RF_multiplier * subj / mean
        # Don't want to be scaling connectome independently for differences in RF l=0 terms across all shells;
        #   use the geometric mean of the per-shell scale factors
        s.RF_multiplier = math.pow(s.RF_multiplier, 1.0 / len(mean_RF_lzero))

        s.bzero_multiplier = mean_median_bzero / s.median_bzero

        s.global_multiplier = s.mu * s.bzero_multiplier * s.RF_multiplier

        connectome = []
        with open(s.in_connectome, 'r') as f:
            for line in f:
                connectome.append([float(v) for v in line.split()])
        with open(s.temp_connectome, 'w') as f:
            for line in connectome:
                f.write(' '.join([str(v * s.global_multiplier)
                                  for v in line]) + '\n')
        progress.increment()
    progress.done()

    # Third group-level calculation: Generate the group mean connectome
    # For any higher-level analysis (e.g. NBSE, computing connectome global measures, etc.),
    #   trying to incorporate such analysis into this particular pipeline script is likely to
    #   overly complicate the interface, and not actually provide much in terms of
    #   convenience / reproducibility guarantees. The primary functionality of this group-level
    #   analysis is therefore to achieve inter-subject connection density normalisation; users
    #   then have the flexibility to subsequently analyse the data however they choose (ideally
    #   based on subject classification data provided with the BIDS-compliant dataset).
    progress = app.progressBar('Calculating group mean connectome',
                               len(subjects) + 1)
    mean_connectome = []
    for s in subjects:
        connectome = []
        with open(s.temp_connectome, 'r') as f:
            for line in f:
                connectome.append([float(v) for v in line.split()])
        if mean_connectome:
            mean_connectome = [[c1 + c2 for c1, c2 in zip(r1, r2)]
                               for r1, r2 in zip(mean_connectome, connectome)]
        else:
            mean_connectome = connectome
        progress.increment()

    mean_connectome = [[v / len(subjects) for v in row]
                       for row in mean_connectome]
    progress.done()

    # Write results of interest back to the output directory;
    #   both per-subject and group information
    progress = app.progressBar('Writing results to output directory',
                               len(subjects) + 2)
    for s in subjects:
        run.function(shutil.copyfile, s.temp_connectome, s.out_connectome)
        with open(s.out_scale_bzero, 'w') as f:
            f.write(str(s.bzero_multiplier))
        with open(s.out_scale_RF, 'w') as f:
            f.write(str(s.RF_multiplier))
        progress.increment()

    with open(os.path.join(output_dir, 'mean_response.txt'), 'w') as f:
        for row in mean_RF:
            f.write(' '.join([str(v) for v in row]) + '\n')
    progress.increment()
    with open(os.path.join(output_dir, 'mean_connectome.csv'), 'w') as f:
        for row in mean_connectome:
            f.write(' '.join([str(v) for v in row]) + '\n')
    progress.done()
예제 #41
0
def execute():
  import math, os, shutil
  from mrtrix3 import app, image, path, run

  # Ideally want to use the oversampling-based regridding of the 5TT image from the SIFT model, not mrtransform
  # May need to commit 5ttregrid...

  # Verify input 5tt image
  run.command('5ttcheck 5tt.mif', False)

  # Get shell information
  shells = [ int(round(float(x))) for x in image.headerField('dwi.mif', 'shells').split() ]
  if len(shells) < 3:
    app.warn('Less than three b-value shells; response functions will not be applicable in resolving three tissues using MSMT-CSD algorithm')

  # Get lmax information (if provided)
  wm_lmax = [ ]
  if app.args.lmax:
    wm_lmax = [ int(x.strip()) for x in app.args.lmax.split(',') ]
    if not len(wm_lmax) == len(shells):
      app.error('Number of manually-defined lmax\'s (' + str(len(wm_lmax)) + ') does not match number of b-value shells (' + str(len(shells)) + ')')
    for l in wm_lmax:
      if l%2:
        app.error('Values for lmax must be even')
      if l<0:
        app.error('Values for lmax must be non-negative')

  run.command('dwi2tensor dwi.mif - -mask mask.mif | tensor2metric - -fa fa.mif -vector vector.mif')
  if not os.path.exists('dirs.mif'):
    run.function(shutil.copy, 'vector.mif', 'dirs.mif')
  run.command('mrtransform 5tt.mif 5tt_regrid.mif -template fa.mif -interp linear')

  # Basic tissue masks
  run.command('mrconvert 5tt_regrid.mif - -coord 3 2 -axes 0,1,2 | mrcalc - ' + str(app.args.pvf) + ' -gt mask.mif -mult wm_mask.mif')
  run.command('mrconvert 5tt_regrid.mif - -coord 3 0 -axes 0,1,2 | mrcalc - ' + str(app.args.pvf) + ' -gt fa.mif ' + str(app.args.fa) + ' -lt -mult mask.mif -mult gm_mask.mif')
  run.command('mrconvert 5tt_regrid.mif - -coord 3 3 -axes 0,1,2 | mrcalc - ' + str(app.args.pvf) + ' -gt fa.mif ' + str(app.args.fa) + ' -lt -mult mask.mif -mult csf_mask.mif')

  # Revise WM mask to only include single-fibre voxels
  app.console('Calling dwi2response recursively to select WM single-fibre voxels using \'' + app.args.wm_algo + '\' algorithm')
  recursive_cleanup_option=''
  if not app._cleanup:
    recursive_cleanup_option = ' -nocleanup'
  run.command('dwi2response ' + app.args.wm_algo + ' dwi.mif wm_ss_response.txt -mask wm_mask.mif -voxels wm_sf_mask.mif -tempdir ' + app._tempDir + recursive_cleanup_option)

  # Check for empty masks
  wm_voxels  = int(image.statistic('wm_sf_mask.mif', 'count', 'wm_sf_mask.mif'))
  gm_voxels  = int(image.statistic('gm_mask.mif',    'count', 'gm_mask.mif'))
  csf_voxels = int(image.statistic('csf_mask.mif',   'count', 'csf_mask.mif'))
  empty_masks = [ ]
  if not wm_voxels:
    empty_masks.append('WM')
  if not gm_voxels:
    empty_masks.append('GM')
  if not csf_voxels:
    empty_masks.append('CSF')
  if empty_masks:
    message = ','.join(empty_masks)
    message += ' tissue mask'
    if len(empty_masks) > 1:
      message += 's'
    message += ' empty; cannot estimate response function'
    if len(empty_masks) > 1:
      message += 's'
    app.error(message)

  # For each of the three tissues, generate a multi-shell response
  bvalues_option = ' -shell ' + ','.join(map(str,shells))
  sfwm_lmax_option = ''
  if wm_lmax:
    sfwm_lmax_option = ' -lmax ' + ','.join(map(str,wm_lmax))
  run.command('amp2response dwi.mif wm_sf_mask.mif dirs.mif wm.txt' + bvalues_option + sfwm_lmax_option)
  run.command('amp2response dwi.mif gm_mask.mif dirs.mif gm.txt' + bvalues_option + ' -isotropic')
  run.command('amp2response dwi.mif csf_mask.mif dirs.mif csf.txt' + bvalues_option + ' -isotropic')
  run.function(shutil.copyfile, 'wm.txt',  path.fromUser(app.args.out_wm,  False))
  run.function(shutil.copyfile, 'gm.txt',  path.fromUser(app.args.out_gm,  False))
  run.function(shutil.copyfile, 'csf.txt', path.fromUser(app.args.out_csf, False))

  # Generate output 4D binary image with voxel selections; RGB as in MSMT-CSD paper
  run.command('mrcat csf_mask.mif gm_mask.mif wm_sf_mask.mif voxels.mif -axis 3')
예제 #42
0
def execute(): #pylint: disable=unused-variable
  # Ideally want to use the oversampling-based regridding of the 5TT image from the SIFT model, not mrtransform
  # May need to commit 5ttregrid...

  # Verify input 5tt image
  verification_text = ''
  try:
    verification_text = run.command('5ttcheck 5tt.mif').stderr
  except run.MRtrixCmdError as except_5ttcheck:
    verification_text = except_5ttcheck.stderr
  if 'WARNING' in verification_text or 'ERROR' in verification_text:
    app.warn('Command 5ttcheck indicates problems with provided input 5TT image \'' + app.ARGS.in_5tt + '\':')
    for line in verification_text.splitlines():
      app.warn(line)
    app.warn('These may or may not interfere with the dwi2response msmt_5tt script')

  # Get shell information
  shells = [ int(round(float(x))) for x in image.mrinfo('dwi.mif', 'shell_bvalues').split() ]
  if len(shells) < 3:
    app.warn('Less than three b-values; response functions will not be applicable in resolving three tissues using MSMT-CSD algorithm')

  # Get lmax information (if provided)
  wm_lmax = [ ]
  if app.ARGS.lmax:
    wm_lmax = [ int(x.strip()) for x in app.ARGS.lmax.split(',') ]
    if not len(wm_lmax) == len(shells):
      raise MRtrixError('Number of manually-defined lmax\'s (' + str(len(wm_lmax)) + ') does not match number of b-values (' + str(len(shells)) + ')')
    for shell_l in wm_lmax:
      if shell_l % 2:
        raise MRtrixError('Values for lmax must be even')
      if shell_l < 0:
        raise MRtrixError('Values for lmax must be non-negative')

  run.command('dwi2tensor dwi.mif - -mask mask.mif | tensor2metric - -fa fa.mif -vector vector.mif')
  if not os.path.exists('dirs.mif'):
    run.function(shutil.copy, 'vector.mif', 'dirs.mif')
  run.command('mrtransform 5tt.mif 5tt_regrid.mif -template fa.mif -interp linear')

  # Basic tissue masks
  run.command('mrconvert 5tt_regrid.mif - -coord 3 2 -axes 0,1,2 | mrcalc - ' + str(app.ARGS.pvf) + ' -gt mask.mif -mult wm_mask.mif')
  run.command('mrconvert 5tt_regrid.mif - -coord 3 0 -axes 0,1,2 | mrcalc - ' + str(app.ARGS.pvf) + ' -gt fa.mif ' + str(app.ARGS.fa) + ' -lt -mult mask.mif -mult gm_mask.mif')
  run.command('mrconvert 5tt_regrid.mif - -coord 3 3 -axes 0,1,2 | mrcalc - ' + str(app.ARGS.pvf) + ' -gt fa.mif ' + str(app.ARGS.fa) + ' -lt -mult mask.mif -mult csf_mask.mif')

  # Revise WM mask to only include single-fibre voxels
  recursive_cleanup_option=''
  if not app.DO_CLEANUP:
    recursive_cleanup_option = ' -nocleanup'
  if not app.ARGS.sfwm_fa_threshold:
    app.console('Selecting WM single-fibre voxels using \'' + app.ARGS.wm_algo + '\' algorithm')
    run.command('dwi2response ' + app.ARGS.wm_algo + ' dwi.mif wm_ss_response.txt -mask wm_mask.mif -voxels wm_sf_mask.mif -scratch ' + path.quote(app.SCRATCH_DIR) + recursive_cleanup_option)
  else:
    app.console('Selecting WM single-fibre voxels using \'fa\' algorithm with a hard FA threshold of ' + str(app.ARGS.sfwm_fa_threshold))
    run.command('dwi2response fa dwi.mif wm_ss_response.txt -mask wm_mask.mif -threshold ' + str(app.ARGS.sfwm_fa_threshold) + ' -voxels wm_sf_mask.mif -scratch ' + path.quote(app.SCRATCH_DIR) + recursive_cleanup_option)

  # Check for empty masks
  wm_voxels  = image.statistics('wm_sf_mask.mif', mask='wm_sf_mask.mif').count
  gm_voxels  = image.statistics('gm_mask.mif',    mask='gm_mask.mif').count
  csf_voxels = image.statistics('csf_mask.mif',   mask='csf_mask.mif').count
  empty_masks = [ ]
  if not wm_voxels:
    empty_masks.append('WM')
  if not gm_voxels:
    empty_masks.append('GM')
  if not csf_voxels:
    empty_masks.append('CSF')
  if empty_masks:
    message = ','.join(empty_masks)
    message += ' tissue mask'
    if len(empty_masks) > 1:
      message += 's'
    message += ' empty; cannot estimate response function'
    if len(empty_masks) > 1:
      message += 's'
    raise MRtrixError(message)

  # For each of the three tissues, generate a multi-shell response
  bvalues_option = ' -shells ' + ','.join(map(str,shells))
  sfwm_lmax_option = ''
  if wm_lmax:
    sfwm_lmax_option = ' -lmax ' + ','.join(map(str,wm_lmax))
  run.command('amp2response dwi.mif wm_sf_mask.mif dirs.mif wm.txt' + bvalues_option + sfwm_lmax_option)
  run.command('amp2response dwi.mif gm_mask.mif dirs.mif gm.txt' + bvalues_option + ' -isotropic')
  run.command('amp2response dwi.mif csf_mask.mif dirs.mif csf.txt' + bvalues_option + ' -isotropic')
  run.function(shutil.copyfile, 'wm.txt',  path.from_user(app.ARGS.out_wm,  False))
  run.function(shutil.copyfile, 'gm.txt',  path.from_user(app.ARGS.out_gm,  False))
  run.function(shutil.copyfile, 'csf.txt', path.from_user(app.ARGS.out_csf, False))

  # Generate output 4D binary image with voxel selections; RGB as in MSMT-CSD paper
  run.command('mrcat csf_mask.mif gm_mask.mif wm_sf_mask.mif voxels.mif -axis 3')
  if app.ARGS.voxels:
    run.command('mrconvert voxels.mif ' + path.from_user(app.ARGS.voxels), mrconvert_keyval=path.from_user(app.ARGS.input, False), force=app.FORCE_OVERWRITE)