def compute_csa(segmentation, algo_fitting='bspline', angle_correction=True, use_phys_coord=True, remove_temp_files=1, verbose=1): """ Compute CSA. Note: segmentation can be binary or weighted for partial volume effect. :param segmentation: input segmentation. Could be either an Image or a file name. :param algo_fitting: :param angle_correction: :param use_phys_coord: :return metrics: Dict of class process_seg.Metric() """ # create temporary folder path_tmp = sct.tmp_create() # open image and save in temp folder im_seg = msct_image.Image(segmentation).save(path_tmp, ) # change orientation to RPI im_seg.change_orientation('RPI') nx, ny, nz, nt, px, py, pz, pt = im_seg.dim fname_seg = os.path.join(path_tmp, 'segmentation_RPI.nii.gz') im_seg.save(fname_seg) # Extract min and max index in Z direction data_seg = im_seg.data X, Y, Z = (data_seg > 0).nonzero() min_z_index, max_z_index = min(Z), max(Z) # if angle correction is required, get segmentation centerline # Note: even if angle_correction=0, we should run the code below so that z_centerline_voxel is defined (later used # with option -vert). See #1791 # TODO: check if we need use_phys_coord case with recent changes in centerline if use_phys_coord: # fit centerline, smooth it and return the first derivative (in physical space) _, arr_ctl, arr_ctl_der = get_centerline(im_seg, algo_fitting=algo_fitting, verbose=verbose) x_centerline_fit, y_centerline_fit, z_centerline = arr_ctl x_centerline_deriv, y_centerline_deriv, z_centerline_deriv = arr_ctl_der centerline = Centerline(x_centerline_fit.tolist(), y_centerline_fit.tolist(), z_centerline.tolist(), x_centerline_deriv.tolist(), y_centerline_deriv.tolist(), z_centerline_deriv.tolist()) # average centerline coordinates over slices of the image x_centerline_fit_rescorr, y_centerline_fit_rescorr, z_centerline_rescorr, x_centerline_deriv_rescorr, \ y_centerline_deriv_rescorr, z_centerline_deriv_rescorr = centerline.average_coordinates_over_slices(im_seg) # compute Z axis of the image, in physical coordinate axis_X, axis_Y, axis_Z = im_seg.get_directions() else: # fit centerline, smooth it and return the first derivative (in voxel space but FITTED coordinates) _, arr_ctl, arr_ctl_der = get_centerline(im_seg, algo_fitting=algo_fitting, verbose=verbose) x_centerline_fit, y_centerline_fit, z_centerline = arr_ctl x_centerline_deriv, y_centerline_deriv, z_centerline_deriv = arr_ctl_der # # correct centerline fitted coordinates according to the data resolution # x_centerline_fit_rescorr, y_centerline_fit_rescorr, z_centerline_rescorr, \ # x_centerline_deriv_rescorr, y_centerline_deriv_rescorr, z_centerline_deriv_rescorr = \ # x_centerline_fit * px, y_centerline_fit * py, z_centerline * pz, \ # x_centerline_deriv * px, y_centerline_deriv * py, z_centerline_deriv * pz # # axis_Z = [0.0, 0.0, 1.0] # Compute CSA sct.printv('\nCompute CSA...', verbose) # Initialize 1d array with nan. Each element corresponds to a slice. csa = np.full_like(np.empty(nz), np.nan, dtype=np.double) angles = np.full_like(np.empty(nz), np.nan, dtype=np.double) for iz in range(min_z_index, max_z_index + 1): if angle_correction: # in the case of problematic segmentation (e.g., non continuous segmentation often at the extremities), # display a warning but do not crash try: # normalize the tangent vector to the centerline (i.e. its derivative) tangent_vect = normalize( np.array([ x_centerline_deriv[iz - min_z_index] * px, y_centerline_deriv[iz - min_z_index] * py, pz ])) except IndexError: sct.printv( 'WARNING: Your segmentation does not seem continuous, which could cause wrong estimations at the ' 'problematic slices. Please check it, especially at the extremities.', type='warning') # compute the angle between the normal vector of the plane and the vector z angle = np.arccos(np.vdot(tangent_vect, np.array([0, 0, 1]))) else: angle = 0.0 # compute the number of voxels, assuming the segmentation is coded for partial volume effect between 0 and 1. number_voxels = np.sum(data_seg[:, :, iz]) # compute CSA, by scaling with voxel size (in mm) and adjusting for oblique plane csa[iz] = number_voxels * px * py * np.cos(angle) angles[iz] = math.degrees(angle) # Remove temporary files if remove_temp_files: sct.printv('\nRemove temporary files...') sct.rmtree(path_tmp) # prepare output metrics = { 'csa': Metric(data=csa, label='CSA [mm^2]'), 'angle': Metric(data=angles, label='Angle between cord axis and z [deg]') } return metrics
def compute_properties_along_centerline(fname_seg_image, property_list, fname_disks_image=None, smooth_factor=5.0, interpolation_mode=0, remove_temp_files=1, verbose=1): # Check list of properties # If diameters is in the list, compute major and minor axis length and check orientation compute_diameters = False property_list_local = list(property_list) if 'diameters' in property_list_local: compute_diameters = True property_list_local.remove('diameters') property_list_local.append('major_axis_length') property_list_local.append('minor_axis_length') property_list_local.append('orientation') # TODO: make sure fname_segmentation and fname_disks are in the same space path_tmp = sct.tmp_create(basename="compute_properties_along_centerline", verbose=verbose) image = msct_image.Image(fname_seg_image) \ .change_orientation("RPI", generate_path=True) \ .save(path_tmp, mutable=True) fname_segmentation_orient = image.absolutepath if fname_disks_image is not None: image_disks = msct_image.Image(fname_disks_image) \ .change_orientation("RPI", generate_path=True) \ .save(path_tmp, mutable=True) fname_disks_orient = image_disks.absolutepath # go to tmp folder curdir = os.getcwd() os.chdir(path_tmp) # Initiating some variables nx, ny, nz, nt, px, py, pz, pt = image.dim resolution = 0.5 properties = {key: [] for key in property_list_local} properties['incremental_length'] = [] properties['distance_from_C1'] = [] properties['vertebral_level'] = [] properties['z_slice'] = [] # compute the spinal cord centerline based on the spinal cord segmentation number_of_points = 5 * nz x_centerline_fit, y_centerline_fit, z_centerline, x_centerline_deriv, y_centerline_deriv, z_centerline_deriv = smooth_centerline( fname_segmentation_orient, algo_fitting='nurbs', verbose=verbose, nurbs_pts_number=number_of_points, all_slices=False, phys_coordinates=True, remove_outliers=True) centerline = Centerline(x_centerline_fit, y_centerline_fit, z_centerline, x_centerline_deriv, y_centerline_deriv, z_centerline_deriv) # Compute vertebral distribution along centerline based on position of intervertebral disks if fname_disks_image is not None: coord = image_disks.getNonZeroCoordinates(sorting='z', reverse_coord=True) coord_physical = [] for c in coord: c_p = image_disks.transfo_pix2phys([[c.x, c.y, c.z]])[0] c_p.append(c.value) coord_physical.append(c_p) centerline.compute_vertebral_distribution(coord_physical) sct.printv('Computing spinal cord shape along the spinal cord...') with tqdm.tqdm(total=centerline.number_of_points) as pbar: # Extracting patches perpendicular to the spinal cord and computing spinal cord shape for index in range(centerline.number_of_points): # value_out = -5.0 value_out = 0.0 current_patch = centerline.extract_perpendicular_square( image, index, resolution=resolution, interpolation_mode=interpolation_mode, border='constant', cval=value_out) # check for pixels close to the spinal cord segmentation that are out of the image from skimage.morphology import dilation patch_zero = np.copy(current_patch) patch_zero[patch_zero == value_out] = 0.0 patch_borders = dilation(patch_zero) - patch_zero """ if np.count_nonzero(patch_borders + current_patch == value_out + 1.0) != 0: c = image.transfo_phys2pix([centerline.points[index]])[0] print('WARNING: no patch for slice', c[2]) continue """ sc_properties = properties2d(patch_zero, [resolution, resolution]) if sc_properties is not None: properties['incremental_length'].append( centerline.incremental_length[index]) if fname_disks_image is not None: properties['distance_from_C1'].append( centerline.dist_points[index]) properties['vertebral_level'].append( centerline.l_points[index]) properties['z_slice'].append( image.transfo_phys2pix([centerline.points[index]])[0][2]) for property_name in property_list_local: properties[property_name].append( sc_properties[property_name]) else: c = image.transfo_phys2pix([centerline.points[index]])[0] print('WARNING: no properties for slice', c[2]) pbar.update(1) # Adding centerline to the properties for later use properties['centerline'] = centerline # We assume that the major axis is in the right-left direction # this script checks the orientation of the spinal cord and invert axis if necessary to make sure the major axis is right-left if compute_diameters: diameter_major = properties['major_axis_length'] diameter_minor = properties['minor_axis_length'] orientation = properties['orientation'] for i, orientation_item in enumerate(orientation): if -45.0 < orientation_item < 45.0: continue else: temp = diameter_minor[i] properties['minor_axis_length'][i] = diameter_major[i] properties['major_axis_length'][i] = temp properties['RL_diameter'] = properties['major_axis_length'] properties['AP_diameter'] = properties['minor_axis_length'] del properties['major_axis_length'] del properties['minor_axis_length'] # smooth the spinal cord shape with a gaussian kernel if required # TODO: not all properties can be smoothed if smooth_factor != 0.0: # smooth_factor is in mm import scipy window = scipy.signal.hann(smooth_factor / np.mean(centerline.progressive_length)) for property_name in property_list_local: properties[property_name] = scipy.signal.convolve( properties[property_name], window, mode='same') / np.sum(window) if compute_diameters: property_list_local.remove('major_axis_length') property_list_local.remove('minor_axis_length') property_list_local.append('RL_diameter') property_list_local.append('AP_diameter') property_list = property_list_local # Display properties on the referential space. Requires intervertebral disks if verbose == 2: x_increment = 'distance_from_C1' if fname_disks_image is None: x_increment = 'incremental_length' # Display the image and plot all contours found fig, axes = plt.subplots(len(property_list_local), sharex=True, sharey=False) for k, property_name in enumerate(property_list_local): axes[k].plot(properties[x_increment], properties[property_name]) axes[k].set_ylabel(property_name) if fname_disks_image is not None: properties[ 'distance_disk_from_C1'] = centerline.distance_from_C1label # distance between each disk and C1 (or first disk) xlabel_disks = [ centerline.convert_vertlabel2disklabel[label] for label in properties['distance_disk_from_C1'] ] xtick_disks = [ properties['distance_disk_from_C1'][label] for label in properties['distance_disk_from_C1'] ] plt.xticks(xtick_disks, xlabel_disks, rotation=30) else: axes[-1].set_xlabel('Position along the spinal cord (in mm)') plt.show() # Removing temporary folder os.chdir(curdir) if remove_temp_files: sct.rmtree(path_tmp) return property_list, properties
def extract_centerline(segmentation, verbose=0, algo_fitting='hanning', type_window='hanning', window_length=5, use_phys_coord=True, file_out='centerline'): """ Extract centerline from a binary or weighted segmentation by computing the center of mass slicewise. :param segmentation: input segmentation. Could be either an Image or a file name. :param verbose: :param algo_fitting: :param type_window: :param window_length: :param use_phys_coord: TODO: Explain the pros/cons of use_phys_coord. :param file_out: :return: None """ # TODO: output continuous centerline (and add in unit test) # TODO: centerline coordinate should have the same orientation as the input image # TODO: no need for unecessary i/o. Everything could be done in RAM # Create temp folder path_tmp = sct.tmp_create() # Open segmentation volume im_seg = msct_image.Image(segmentation) # im_seg.change_orientation('RPI', generate_path=True) native_orientation = im_seg.orientation im_seg.change_orientation("RPI", generate_path=True).save(path_tmp, mutable=True) fname_tmp_seg = im_seg.absolutepath # extract centerline and smooth it if use_phys_coord: # fit centerline, smooth it and return the first derivative (in physical space) x_centerline_fit, y_centerline_fit, z_centerline, \ x_centerline_deriv, y_centerline_deriv, z_centerline_deriv = smooth_centerline( fname_tmp_seg, algo_fitting=algo_fitting, type_window=type_window, window_length=window_length, nurbs_pts_number=3000, phys_coordinates=True, verbose=verbose, all_slices=False) centerline = Centerline(x_centerline_fit, y_centerline_fit, z_centerline, x_centerline_deriv, y_centerline_deriv, z_centerline_deriv) # average centerline coordinates over slices of the image (floating point) x_centerline_fit_rescorr, y_centerline_fit_rescorr, z_centerline_rescorr, \ x_centerline_deriv_rescorr, y_centerline_deriv_rescorr, z_centerline_deriv_rescorr = \ centerline.average_coordinates_over_slices(im_seg) # compute z_centerline in image coordinates (discrete) voxel_coordinates = im_seg.transfo_phys2pix( [[x_centerline_fit_rescorr[i], y_centerline_fit_rescorr[i], z_centerline_rescorr[i]] for i in range(len(z_centerline_rescorr))]) x_centerline_voxel = [coord[0] for coord in voxel_coordinates] y_centerline_voxel = [coord[1] for coord in voxel_coordinates] z_centerline_voxel = [coord[2] for coord in voxel_coordinates] else: # fit centerline, smooth it and return the first derivative (in voxel space but FITTED coordinates) x_centerline_voxel, y_centerline_voxel, z_centerline_voxel, \ x_centerline_deriv, y_centerline_deriv, z_centerline_deriv = smooth_centerline( 'segmentation_RPI.nii.gz', algo_fitting=algo_fitting, type_window=type_window, window_length=window_length, nurbs_pts_number=3000, phys_coordinates=False, verbose=verbose, all_slices=True) if verbose == 2: # TODO: code below does not work import matplotlib.pyplot as plt # Creation of a vector x that takes into account the distance between the labels nz_nonz = len(z_centerline_voxel) x_display = [0 for i in range(x_centerline_voxel.shape[0])] y_display = [0 for i in range(y_centerline_voxel.shape[0])] for i in range(0, nz_nonz, 1): x_display[int(z_centerline_voxel[i] - z_centerline_voxel[0])] = x_centerline[i] y_display[int(z_centerline_voxel[i] - z_centerline_voxel[0])] = y_centerline[i] plt.figure(1) plt.subplot(2, 1, 1) plt.plot(z_centerline_voxel, x_display, 'ro') plt.plot(z_centerline_voxel, x_centerline_voxel) plt.xlabel("Z") plt.ylabel("X") plt.title("x and x_fit coordinates") plt.subplot(2, 1, 2) plt.plot(z_centerline_voxel, y_display, 'ro') plt.plot(z_centerline_voxel, y_centerline_voxel) plt.xlabel("Z") plt.ylabel("Y") plt.title("y and y_fit coordinates") plt.show() # Create an image with the centerline # TODO: write the center of mass, not the discrete image coordinate (issue #1938) im_centerline = im_seg.copy() data_centerline = im_centerline.data * 0 # Find z-boundaries above which and below which there is no non-null slices min_z_index, max_z_index = int(round(min(z_centerline_voxel))), int(round(max(z_centerline_voxel))) # loop across slices and set centerline pixel to value=1 for iz in range(min_z_index, max_z_index + 1): data_centerline[int(round(x_centerline_voxel[iz - min_z_index])), int(round(y_centerline_voxel[iz - min_z_index])), int(iz)] = 1 # assign data to centerline image im_centerline.data = data_centerline # reorient centerline to native orientation im_centerline.change_orientation(native_orientation) # save nifti volume fname_centerline = file_out + '.nii.gz' im_centerline.save(fname_centerline, dtype='uint8') # display stuff # sct.display_viewer_syntax([fname_segmentation, fname_centerline], colormaps=['gray', 'green']) # output csv with centerline coordinates fname_centerline_csv = file_out + '.csv' f_csv = open(fname_centerline_csv, 'w') f_csv.write('x,y,z\n') # csv header for i in range(min_z_index, max_z_index + 1): f_csv.write("%d,%d,%d\n" % (int(i), x_centerline_voxel[i - min_z_index], y_centerline_voxel[i - min_z_index])) f_csv.close() # TODO: display open syntax for csv # create a .roi file fname_roi_centerline = optic.centerline2roi(fname_image=fname_centerline, folder_output='./', verbose=verbose)
def straighten(self): """ Straighten spinal cord. Steps: (everything is done in physical space) 1. open input image and centreline image 2. extract bspline fitting of the centreline, and its derivatives 3. compute length of centerline 4. compute and generate straight space 5. compute transformations for each voxel of one space: (done using matrices --> improves speed by a factor x300) a. determine which plane of spinal cord centreline it is included b. compute the position of the voxel in the plane (X and Y distance from centreline, along the plane) c. find the correspondant centreline point in the other space d. find the correspondance of the voxel in the corresponding plane 6. generate warping fields for each transformations 7. write warping fields and apply them step 5.b: how to find the corresponding plane? The centerline plane corresponding to a voxel correspond to the nearest point of the centerline. However, we need to compute the distance between the voxel position and the plane to be sure it is part of the plane and not too distant. If it is more far than a threshold, warping value should be 0. step 5.d: how to make the correspondance between centerline point in both images? Both centerline have the same lenght. Therefore, we can map centerline point via their position along the curve. If we use the same number of points uniformely along the spinal cord (1000 for example), the correspondance is straight-forward. :return: """ # Initialization fname_anat = self.input_filename fname_centerline = self.centerline_filename fname_output = self.output_filename remove_temp_files = self.remove_temp_files verbose = self.verbose interpolation_warp = self.interpolation_warp algo_fitting = self.algo_fitting # start timer start_time = time.time() # Extract path/file/extension path_anat, file_anat, ext_anat = sct.extract_fname(fname_anat) path_tmp = sct.tmp_create(basename="straighten_spinalcord", verbose=verbose) # Copying input data to tmp folder sct.printv('\nCopy files to tmp folder...', verbose) Image(fname_anat).save(os.path.join(path_tmp, "data.nii")) Image(fname_centerline).save( os.path.join(path_tmp, "centerline.nii.gz")) if self.use_straight_reference: Image(self.centerline_reference_filename).save( os.path.join(path_tmp, "centerline_ref.nii.gz")) if self.discs_input_filename != '': Image(self.discs_input_filename).save( os.path.join(path_tmp, "labels_input.nii.gz")) if self.discs_ref_filename != '': Image(self.discs_ref_filename).save( os.path.join(path_tmp, "labels_ref.nii.gz")) # go to tmp folder curdir = os.getcwd() os.chdir(path_tmp) # Change orientation of the input centerline into RPI image_centerline = Image("centerline.nii.gz").change_orientation( "RPI").save("centerline_rpi.nii.gz", mutable=True) # Get dimension nx, ny, nz, nt, px, py, pz, pt = image_centerline.dim if self.speed_factor != 1.0: intermediate_resampling = True px_r, py_r, pz_r = px * self.speed_factor, py * self.speed_factor, pz * self.speed_factor else: intermediate_resampling = False if intermediate_resampling: sct.mv('centerline_rpi.nii.gz', 'centerline_rpi_native.nii.gz') pz_native = pz # TODO: remove system call sct.run([ 'sct_resample', '-i', 'centerline_rpi_native.nii.gz', '-mm', str(px_r) + 'x' + str(py_r) + 'x' + str(pz_r), '-o', 'centerline_rpi.nii.gz' ]) image_centerline = Image('centerline_rpi.nii.gz') nx, ny, nz, nt, px, py, pz, pt = image_centerline.dim if np.min(image_centerline.data) < 0 or np.max( image_centerline.data) > 1: image_centerline.data[image_centerline.data < 0] = 0 image_centerline.data[image_centerline.data > 1] = 1 image_centerline.save() # 2. extract bspline fitting of the centerline, and its derivatives img_ctl = Image('centerline_rpi.nii.gz') centerline = _get_centerline(img_ctl, algo_fitting, self.degree, verbose) number_of_points = centerline.number_of_points # ========================================================================================== logger.info('Create the straight space and the safe zone') # 3. compute length of centerline # compute the length of the spinal cord based on fitted centerline and size of centerline in z direction # Computation of the safe zone. # The safe zone is defined as the length of the spinal cord for which an axial segmentation will be complete # The safe length (to remove) is computed using the safe radius (given as parameter) and the angle of the # last centerline point with the inferior-superior direction. Formula: Ls = Rs * sin(angle) # Calculate Ls for both edges and remove appropriate number of centerline points radius_safe = 0.0 # mm # inferior edge u = centerline.derivatives[0] v = np.array([0, 0, -1]) angle_inferior = np.arctan2(np.linalg.norm(np.cross(u, v)), np.dot(u, v)) length_safe_inferior = radius_safe * np.sin(angle_inferior) # superior edge u = centerline.derivatives[-1] v = np.array([0, 0, 1]) angle_superior = np.arctan2(np.linalg.norm(np.cross(u, v)), np.dot(u, v)) length_safe_superior = radius_safe * np.sin(angle_superior) # remove points inferior_bound = bisect.bisect(centerline.progressive_length, length_safe_inferior) - 1 superior_bound = centerline.number_of_points - bisect.bisect( centerline.progressive_length_inverse, length_safe_superior) z_centerline = centerline.points[:, 2] length_centerline = centerline.length size_z_centerline = z_centerline[-1] - z_centerline[0] # compute the size factor between initial centerline and straight bended centerline factor_curved_straight = length_centerline / size_z_centerline middle_slice = (z_centerline[0] + z_centerline[-1]) / 2.0 bound_curved = [ z_centerline[inferior_bound], z_centerline[superior_bound] ] bound_straight = [(z_centerline[inferior_bound] - middle_slice) * factor_curved_straight + middle_slice, (z_centerline[superior_bound] - middle_slice) * factor_curved_straight + middle_slice] logger.info('Length of spinal cord: {}'.format(length_centerline)) logger.info( 'Size of spinal cord in z direction: {}'.format(size_z_centerline)) logger.info('Ratio length/size: {}'.format(factor_curved_straight)) logger.info( 'Safe zone boundaries (curved space): {}'.format(bound_curved)) logger.info( 'Safe zone boundaries (straight space): {}'.format(bound_straight)) # 4. compute and generate straight space # points along curved centerline are already regularly spaced. # calculate position of points along straight centerline # Create straight NIFTI volumes. # ========================================================================================== # TODO: maybe this if case is not needed? if self.use_straight_reference: image_centerline_pad = Image('centerline_rpi.nii.gz') nx, ny, nz, nt, px, py, pz, pt = image_centerline_pad.dim fname_ref = 'centerline_ref_rpi.nii.gz' image_centerline_straight = Image('centerline_ref.nii.gz') \ .change_orientation("RPI") \ .save(fname_ref, mutable=True) centerline_straight = _get_centerline(image_centerline_straight, algo_fitting, self.degree, verbose) nx_s, ny_s, nz_s, nt_s, px_s, py_s, pz_s, pt_s = image_centerline_straight.dim # Prepare warping fields headers hdr_warp = image_centerline_pad.hdr.copy() hdr_warp.set_data_dtype('float32') hdr_warp_s = image_centerline_straight.hdr.copy() hdr_warp_s.set_data_dtype('float32') if self.discs_input_filename != "" and self.discs_ref_filename != "": discs_input_image = Image('labels_input.nii.gz') coord = discs_input_image.getNonZeroCoordinates( sorting='z', reverse_coord=True) coord_physical = [] for c in coord: c_p = discs_input_image.transfo_pix2phys([[c.x, c.y, c.z] ]).tolist()[0] c_p.append(c.value) coord_physical.append(c_p) centerline.compute_vertebral_distribution(coord_physical) centerline.save_centerline( image=discs_input_image, fname_output='discs_input_image.nii.gz') discs_ref_image = Image('labels_ref.nii.gz') coord = discs_ref_image.getNonZeroCoordinates( sorting='z', reverse_coord=True) coord_physical = [] for c in coord: c_p = discs_ref_image.transfo_pix2phys([[c.x, c.y, c.z]]).tolist()[0] c_p.append(c.value) coord_physical.append(c_p) centerline_straight.compute_vertebral_distribution( coord_physical) centerline_straight.save_centerline( image=discs_ref_image, fname_output='discs_ref_image.nii.gz') else: logger.info( 'Pad input volume to account for spinal cord length...') start_point, end_point = bound_straight[0], bound_straight[1] offset_z = 0 # if the destination image is resampled, we still create the straight reference space with the native # resolution. # TODO: Maybe this if case is not needed? if intermediate_resampling: padding_z = int( np.ceil(1.5 * ((length_centerline - size_z_centerline) / 2.0) / pz_native)) sct.run([ 'sct_image', '-i', 'centerline_rpi_native.nii.gz', '-o', 'tmp.centerline_pad_native.nii.gz', '-pad', '0,0,' + str(padding_z) ]) image_centerline_pad = Image('centerline_rpi_native.nii.gz') nx, ny, nz, nt, px, py, pz, pt = image_centerline_pad.dim start_point_coord_native = image_centerline_pad.transfo_phys2pix( [[0, 0, start_point]])[0] end_point_coord_native = image_centerline_pad.transfo_phys2pix( [[0, 0, end_point]])[0] straight_size_x = int(0.5 * self.xy_size / px) straight_size_y = int(0.5 * self.xy_size / py) warp_space_x = [ int(np.round(nx / 2)) - straight_size_x, int(np.round(nx / 2)) + straight_size_x ] warp_space_y = [ int(np.round(ny / 2)) - straight_size_y, int(np.round(ny / 2)) + straight_size_y ] if warp_space_x[0] < 0: warp_space_x[1] += warp_space_x[0] - 2 warp_space_x[0] = 0 if warp_space_y[0] < 0: warp_space_y[1] += warp_space_y[0] - 2 warp_space_y[0] = 0 spec = dict(( (0, warp_space_x), (1, warp_space_y), (2, (0, end_point_coord_native[2] - start_point_coord_native[2])), )) msct_image.spatial_crop( Image("tmp.centerline_pad_native.nii.gz"), spec).save("tmp.centerline_pad_crop_native.nii.gz") fname_ref = 'tmp.centerline_pad_crop_native.nii.gz' offset_z = 4 else: fname_ref = 'tmp.centerline_pad_crop.nii.gz' nx, ny, nz, nt, px, py, pz, pt = image_centerline.dim padding_z = int( np.ceil(1.5 * ((length_centerline - size_z_centerline) / 2.0) / pz)) + offset_z image_centerline_pad = pad_image(image_centerline, pad_z_i=padding_z, pad_z_f=padding_z) nx, ny, nz = image_centerline_pad.data.shape hdr_warp = image_centerline_pad.hdr.copy() hdr_warp.set_data_dtype('float32') start_point_coord = image_centerline_pad.transfo_phys2pix( [[0, 0, start_point]])[0] end_point_coord = image_centerline_pad.transfo_phys2pix( [[0, 0, end_point]])[0] straight_size_x = int(0.5 * self.xy_size / px) straight_size_y = int(0.5 * self.xy_size / py) warp_space_x = [ int(np.round(nx / 2)) - straight_size_x, int(np.round(nx / 2)) + straight_size_x ] warp_space_y = [ int(np.round(ny / 2)) - straight_size_y, int(np.round(ny / 2)) + straight_size_y ] if warp_space_x[0] < 0: warp_space_x[1] += warp_space_x[0] - 2 warp_space_x[0] = 0 if warp_space_x[1] >= nx: warp_space_x[1] = nx - 1 if warp_space_y[0] < 0: warp_space_y[1] += warp_space_y[0] - 2 warp_space_y[0] = 0 if warp_space_y[1] >= ny: warp_space_y[1] = ny - 1 spec = dict(( (0, warp_space_x), (1, warp_space_y), (2, (0, end_point_coord[2] - start_point_coord[2] + offset_z)), )) image_centerline_straight = msct_image.spatial_crop( image_centerline_pad, spec) nx_s, ny_s, nz_s, nt_s, px_s, py_s, pz_s, pt_s = image_centerline_straight.dim hdr_warp_s = image_centerline_straight.hdr.copy() hdr_warp_s.set_data_dtype('float32') if self.template_orientation == 1: raise NotImplementedError() start_point_coord = image_centerline_pad.transfo_phys2pix( [[0, 0, start_point]])[0] end_point_coord = image_centerline_pad.transfo_phys2pix( [[0, 0, end_point]])[0] number_of_voxel = nx * ny * nz logger.debug('Number of voxels: {}'.format(number_of_voxel)) time_centerlines = time.time() coord_straight = np.empty((number_of_points, 3)) coord_straight[..., 0] = int(np.round(nx_s / 2)) coord_straight[..., 1] = int(np.round(ny_s / 2)) coord_straight[..., 2] = np.linspace( 0, end_point_coord[2] - start_point_coord[2], number_of_points) coord_phys_straight = image_centerline_straight.transfo_pix2phys( coord_straight) derivs_straight = np.empty((number_of_points, 3)) derivs_straight[..., 0] = derivs_straight[..., 1] = 0 derivs_straight[..., 2] = 1 dx_straight, dy_straight, dz_straight = derivs_straight.T centerline_straight = Centerline(coord_phys_straight[:, 0], coord_phys_straight[:, 1], coord_phys_straight[:, 2], dx_straight, dy_straight, dz_straight) time_centerlines = time.time() - time_centerlines logger.info('Time to generate centerline: {} ms'.format( np.round(time_centerlines * 1000.0))) if verbose == 2: # TODO: use OO import matplotlib.pyplot as plt from datetime import datetime curved_points = centerline.progressive_length straight_points = centerline_straight.progressive_length range_points = np.linspace(0, 1, number_of_points) dist_curved = np.zeros(number_of_points) dist_straight = np.zeros(number_of_points) for i in range(1, number_of_points): dist_curved[i] = dist_curved[ i - 1] + curved_points[i - 1] / centerline.length dist_straight[i] = dist_straight[i - 1] + straight_points[ i - 1] / centerline_straight.length plt.plot(range_points, dist_curved) plt.plot(range_points, dist_straight) plt.grid(True) plt.savefig('fig_straighten_' + datetime.now().strftime("%y%m%d%H%M%S%f") + '.png') plt.close() # alignment_mode = 'length' alignment_mode = 'levels' lookup_curved2straight = list(range(centerline.number_of_points)) if self.discs_input_filename != "": # create look-up table curved to straight for index in range(centerline.number_of_points): disc_label = centerline.l_points[index] if alignment_mode == 'length': relative_position = centerline.dist_points[index] else: relative_position = centerline.dist_points_rel[index] idx_closest = centerline_straight.get_closest_to_absolute_position( disc_label, relative_position, backup_index=index, backup_centerline=centerline_straight, mode=alignment_mode) if idx_closest is not None: lookup_curved2straight[index] = idx_closest else: lookup_curved2straight[index] = 0 for p in range(0, len(lookup_curved2straight) // 2): if lookup_curved2straight[p] == lookup_curved2straight[p + 1]: lookup_curved2straight[p] = 0 else: break for p in range( len(lookup_curved2straight) - 1, len(lookup_curved2straight) // 2, -1): if lookup_curved2straight[p] == lookup_curved2straight[p - 1]: lookup_curved2straight[p] = 0 else: break lookup_curved2straight = np.array(lookup_curved2straight) lookup_straight2curved = list( range(centerline_straight.number_of_points)) if self.discs_input_filename != "": for index in range(centerline_straight.number_of_points): disc_label = centerline_straight.l_points[index] if alignment_mode == 'length': relative_position = centerline_straight.dist_points[index] else: relative_position = centerline_straight.dist_points_rel[ index] idx_closest = centerline.get_closest_to_absolute_position( disc_label, relative_position, backup_index=index, backup_centerline=centerline_straight, mode=alignment_mode) if idx_closest is not None: lookup_straight2curved[index] = idx_closest for p in range(0, len(lookup_straight2curved) // 2): if lookup_straight2curved[p] == lookup_straight2curved[p + 1]: lookup_straight2curved[p] = 0 else: break for p in range( len(lookup_straight2curved) - 1, len(lookup_straight2curved) // 2, -1): if lookup_straight2curved[p] == lookup_straight2curved[p - 1]: lookup_straight2curved[p] = 0 else: break lookup_straight2curved = np.array(lookup_straight2curved) # Create volumes containing curved and straight warping fields data_warp_curved2straight = np.zeros((nx_s, ny_s, nz_s, 1, 3)) data_warp_straight2curved = np.zeros((nx, ny, nz, 1, 3)) # 5. compute transformations # Curved and straight images and the same dimensions, so we compute both warping fields at the same time. # b. determine which plane of spinal cord centreline it is included # sct.printv(nx * ny * nz, nx_s * ny_s * nz_s) if self.curved2straight: for u in tqdm(range(nz_s)): x_s, y_s, z_s = np.mgrid[0:nx_s, 0:ny_s, u:u + 1] indexes_straight = np.array( list(zip(x_s.ravel(), y_s.ravel(), z_s.ravel()))) physical_coordinates_straight = image_centerline_straight.transfo_pix2phys( indexes_straight) nearest_indexes_straight = centerline_straight.find_nearest_indexes( physical_coordinates_straight) distances_straight = centerline_straight.get_distances_from_planes( physical_coordinates_straight, nearest_indexes_straight) lookup = lookup_straight2curved[nearest_indexes_straight] indexes_out_distance_straight = np.logical_or( np.logical_or( distances_straight > self.threshold_distance, distances_straight < -self.threshold_distance), lookup == 0) projected_points_straight = centerline_straight.get_projected_coordinates_on_planes( physical_coordinates_straight, nearest_indexes_straight) coord_in_planes_straight = centerline_straight.get_in_plans_coordinates( projected_points_straight, nearest_indexes_straight) coord_straight2curved = centerline.get_inverse_plans_coordinates( coord_in_planes_straight, lookup) displacements_straight = coord_straight2curved - physical_coordinates_straight # Invert Z coordinate as ITK & ANTs physical coordinate system is LPS- (RAI+) # while ours is LPI- # Refs: https://sourceforge.net/p/advants/discussion/840261/thread/2a1e9307/#fb5a # https://www.slicer.org/wiki/Coordinate_systems displacements_straight[:, 2] = -displacements_straight[:, 2] displacements_straight[indexes_out_distance_straight] = [ 100000.0, 100000.0, 100000.0 ] data_warp_curved2straight[indexes_straight[:, 0], indexes_straight[:, 1], indexes_straight[:, 2], 0, :]\ = -displacements_straight if self.straight2curved: for u in tqdm(range(nz)): x, y, z = np.mgrid[0:nx, 0:ny, u:u + 1] indexes = np.array(list(zip(x.ravel(), y.ravel(), z.ravel()))) physical_coordinates = image_centerline_pad.transfo_pix2phys( indexes) nearest_indexes_curved = centerline.find_nearest_indexes( physical_coordinates) distances_curved = centerline.get_distances_from_planes( physical_coordinates, nearest_indexes_curved) lookup = lookup_curved2straight[nearest_indexes_curved] indexes_out_distance_curved = np.logical_or( np.logical_or(distances_curved > self.threshold_distance, distances_curved < -self.threshold_distance), lookup == 0) projected_points_curved = centerline.get_projected_coordinates_on_planes( physical_coordinates, nearest_indexes_curved) coord_in_planes_curved = centerline.get_in_plans_coordinates( projected_points_curved, nearest_indexes_curved) coord_curved2straight = centerline_straight.points[lookup] coord_curved2straight[:, 0:2] += coord_in_planes_curved[:, 0:2] coord_curved2straight[:, 2] += distances_curved displacements_curved = coord_curved2straight - physical_coordinates displacements_curved[:, 2] = -displacements_curved[:, 2] displacements_curved[indexes_out_distance_curved] = [ 100000.0, 100000.0, 100000.0 ] data_warp_straight2curved[indexes[:, 0], indexes[:, 1], indexes[:, 2], 0, :] = -displacements_curved # Creation of the safe zone based on pre-calculated safe boundaries coord_bound_curved_inf, coord_bound_curved_sup = image_centerline_pad.transfo_phys2pix( [[0, 0, bound_curved[0]]]), image_centerline_pad.transfo_phys2pix( [[0, 0, bound_curved[1]]]) coord_bound_straight_inf, coord_bound_straight_sup = image_centerline_straight.transfo_phys2pix( [[0, 0, bound_straight[0]]]), image_centerline_straight.transfo_phys2pix( [[0, 0, bound_straight[1]]]) if radius_safe > 0: data_warp_curved2straight[:, :, 0:coord_bound_straight_inf[0][2], 0, :] = 100000.0 data_warp_curved2straight[:, :, coord_bound_straight_sup[0][2]:, 0, :] = 100000.0 data_warp_straight2curved[:, :, 0:coord_bound_curved_inf[0][2], 0, :] = 100000.0 data_warp_straight2curved[:, :, coord_bound_curved_sup[0][2]:, 0, :] = 100000.0 # Generate warp files as a warping fields hdr_warp_s.set_intent('vector', (), '') hdr_warp_s.set_data_dtype('float32') hdr_warp.set_intent('vector', (), '') hdr_warp.set_data_dtype('float32') if self.curved2straight: img = Nifti1Image(data_warp_curved2straight, None, hdr_warp_s) save(img, 'tmp.curve2straight.nii.gz') logger.info('Warping field generated: tmp.curve2straight.nii.gz') if self.straight2curved: img = Nifti1Image(data_warp_straight2curved, None, hdr_warp) save(img, 'tmp.straight2curve.nii.gz') logger.info('Warping field generated: tmp.straight2curve.nii.gz') image_centerline_straight.save(fname_ref) if self.curved2straight: logger.info('Apply transformation to input image...') sct.run([ 'isct_antsApplyTransforms', '-d', '3', '-r', fname_ref, '-i', 'data.nii', '-o', 'tmp.anat_rigid_warp.nii.gz', '-t', 'tmp.curve2straight.nii.gz', '-n', 'BSpline[3]' ], is_sct_binary=True, verbose=verbose) if self.accuracy_results: time_accuracy_results = time.time() # compute the error between the straightened centerline/segmentation and the central vertical line. # Ideally, the error should be zero. # Apply deformation to input image logger.info('Apply transformation to centerline image...') sct.run([ 'isct_antsApplyTransforms', '-d', '3', '-r', fname_ref, '-i', 'centerline.nii.gz', '-o', 'tmp.centerline_straight.nii.gz', '-t', 'tmp.curve2straight.nii.gz', '-n', 'NearestNeighbor' ], is_sct_binary=True, verbose=verbose) file_centerline_straight = Image('tmp.centerline_straight.nii.gz', verbose=verbose) nx, ny, nz, nt, px, py, pz, pt = file_centerline_straight.dim coordinates_centerline = file_centerline_straight.getNonZeroCoordinates( sorting='z') mean_coord = [] for z in range(coordinates_centerline[0].z, coordinates_centerline[-1].z): temp_mean = [ coord.value for coord in coordinates_centerline if coord.z == z ] if temp_mean: mean_value = np.mean(temp_mean) mean_coord.append( np.mean([[ coord.x * coord.value / mean_value, coord.y * coord.value / mean_value ] for coord in coordinates_centerline if coord.z == z], axis=0)) # compute error between the straightened centerline and the straight line. x0 = file_centerline_straight.data.shape[0] / 2.0 y0 = file_centerline_straight.data.shape[1] / 2.0 count_mean = 0 if number_of_points >= 10: mean_c = mean_coord[ 2: -2] # we don't include the four extrema because there are usually messy. else: mean_c = mean_coord for coord_z in mean_c: if not np.isnan(np.sum(coord_z)): dist = ((x0 - coord_z[0]) * px)**2 + ( (y0 - coord_z[1]) * py)**2 self.mse_straightening += dist dist = np.sqrt(dist) if dist > self.max_distance_straightening: self.max_distance_straightening = dist count_mean += 1 self.mse_straightening = np.sqrt(self.mse_straightening / float(count_mean)) self.elapsed_time_accuracy = time.time() - time_accuracy_results os.chdir(curdir) # Generate output file (in current folder) # TODO: do not uncompress the warping field, it is too time consuming! logger.info('Generate output files...') if self.curved2straight: sct.generate_output_file( os.path.join(path_tmp, "tmp.curve2straight.nii.gz"), os.path.join(self.path_output, "warp_curve2straight.nii.gz"), verbose) if self.straight2curved: sct.generate_output_file( os.path.join(path_tmp, "tmp.straight2curve.nii.gz"), os.path.join(self.path_output, "warp_straight2curve.nii.gz"), verbose) # create ref_straight.nii.gz file that can be used by other SCT functions that need a straight reference space if self.curved2straight: sct.copy(os.path.join(path_tmp, "tmp.anat_rigid_warp.nii.gz"), os.path.join(self.path_output, "straight_ref.nii.gz")) # move straightened input file if fname_output == '': fname_straight = sct.generate_output_file( os.path.join(path_tmp, "tmp.anat_rigid_warp.nii.gz"), os.path.join(self.path_output, file_anat + "_straight" + ext_anat), verbose) else: fname_straight = sct.generate_output_file( os.path.join(path_tmp, "tmp.anat_rigid_warp.nii.gz"), os.path.join(self.path_output, fname_output), verbose) # straightened anatomic # Remove temporary files if remove_temp_files: logger.info('Remove temporary files...') sct.rmtree(path_tmp) if self.accuracy_results: logger.info('Maximum x-y error: {} mm'.format( self.max_distance_straightening)) logger.info('Accuracy of straightening (MSE): {} mm'.format( self.mse_straightening)) # display elapsed time self.elapsed_time = int(np.round(time.time() - start_time)) return fname_straight