def getDailyMaxMinMeanStats(sensorId, lat, lon, alt, tstart, ndays, sys2detect, fmin, fmax, subBandMinFreq, subBandMaxFreq): locationMessage = DbCollections.getLocationMessages().find_one({ SENSOR_ID: sensorId, LAT: lat, LON: lon, ALT: alt }) if locationMessage is None: return {STATUS: NOK, ERROR_MESSAGE: "Location Information Not Found"} locationMessageId = str(locationMessage["_id"]) tZId = locationMessage[TIME_ZONE_KEY] tmin = timezone.getDayBoundaryTimeStampFromUtcTimeStamp(tstart, tZId) startMessage = DbCollections.getDataMessages(sensorId).find_one() result = {} result[STATUS] = OK values = {} for day in range(0, ndays): tstart = timezone.getDayBoundaryTimeStampFromUtcTimeStamp( tmin + day * SECONDS_PER_DAY, tZId) tend = tstart + SECONDS_PER_DAY queryString = { LOCATION_MESSAGE_ID: locationMessageId, TIME: { '$gte': tstart, '$lte': tend }, FREQ_RANGE: msgutils.freqRange(sys2detect, fmin, fmax) } cur = DbCollections.getDataMessages(sensorId).find(queryString) # cur.batch_size(20) if startMessage['mType'] == FFT_POWER: stats = compute_daily_max_min_mean_stats_for_fft_power(cur) else: stats = compute_daily_max_min_mean_median_stats_for_swept_freq( cur, subBandMinFreq, subBandMaxFreq) # gap in readings. continue. if stats is None: continue (cutoff, dailyStat) = stats values[day * 24] = dailyStat # Now compute the next interval after the last one (if one exists) tend = tmin + SECONDS_PER_DAY * ndays queryString = { LOCATION_MESSAGE_ID: locationMessageId, TIME: { '$gte': tend }, FREQ_RANGE: msgutils.freqRange(sys2detect, fmin, fmax) } msg = DbCollections.getDataMessages(sensorId).find_one(queryString) if msg is None: result["nextTmin"] = tmin else: nextTmin = timezone.getDayBoundaryTimeStampFromUtcTimeStamp( msg[TIME], tZId) result["nextTmin"] = nextTmin # Now compute the previous interval before this one. prevMessage = msgutils.getPrevAcquisition(startMessage) if prevMessage is not None: newTmin = timezone.getDayBoundaryTimeStampFromUtcTimeStamp( prevMessage[TIME] - SECONDS_PER_DAY * ndays, tZId) queryString = { LOCATION_MESSAGE_ID: locationMessageId, TIME: { '$gte': newTmin }, FREQ_RANGE: msgutils.freqRange(sys2detect, fmin, fmax) } msg = DbCollections.getDataMessages(sensorId).find_one(queryString) else: msg = startMessage sensor = SensorDb.getSensorObj(sensorId) channelCount = sensor.getChannelCount(sys2detect, fmin, fmax) result[STATUS] = OK result["prevTmin"] = timezone.getDayBoundaryTimeStampFromUtcTimeStamp( msg[TIME], tZId) result["tmin"] = tmin result["maxFreq"] = fmin result["minFreq"] = fmax result["cutoff"] = cutoff result[CHANNEL_COUNT] = channelCount result["startDate"] = timezone.formatTimeStampLong(tmin, tZId) result["values"] = values util.debugPrint(result) return result
def generateSingleDaySpectrogramAndOccupancyForSweptFrequency( sensorId, lat, lon, alt, sessionId, startTime, sys2detect, fstart, fstop, subBandMinFreq, subBandMaxFreq, cutoff): """ Generate single day spectrogram and occupancy for SweptFrequency Parameters: - msg: the data message - sessionId: login session id. - startTime: absolute start time. - sys2detect: the system to detect. - fstart: start frequency. - fstop: stop frequency - subBandMinFreq: min freq of subband. - subBandMaxFreq: max freq of subband. - cutoff: occupancy threshold. """ try: chWidth = Config.getScreenConfig()[CHART_WIDTH] chHeight = Config.getScreenConfig()[CHART_HEIGHT] locationMessage = DbCollections.getLocationMessages().find_one({ SENSOR_ID: sensorId, LAT: lat, LON: lon, ALT: alt }) if locationMessage is None: return {STATUS: NOK, ERROR_MESSAGE: "Location message not found"} tz = locationMessage[TIME_ZONE_KEY] startTimeUtc = timezone.getDayBoundaryTimeStampFromUtcTimeStamp( startTime, tz) startMsg = DbCollections.\ getDataMessages(sensorId).find_one( {TIME:{"$gte":startTimeUtc}, LOCATION_MESSAGE_ID:str(locationMessage["_id"]), FREQ_RANGE:msgutils.freqRange(sys2detect, fstart, fstop)}) if startMsg is None: util.debugPrint("Not found") return {STATUS: NOK, ERROR_MESSAGE: "Data Not Found"} if DataMessage.getTime(startMsg) - startTimeUtc > SECONDS_PER_DAY: util.debugPrint("Not found - outside day boundary: " + str(startMsg['t'] - startTimeUtc)) return { STATUS: NOK, ERROR_MESSAGE: "Not found - outside day boundary." } msg = startMsg sensorId = msg[SENSOR_ID] powerValues = msgutils.trimSpectrumToSubBand(msg, subBandMinFreq, subBandMaxFreq) vectorLength = len(powerValues) if cutoff is None: cutoff = DataMessage.getThreshold(msg) else: cutoff = int(cutoff) spectrogramFile = sessionId + "/" + sensorId + "." + str( startTimeUtc) + "." + str(cutoff) + "." + str( subBandMinFreq) + "." + str(subBandMaxFreq) spectrogramFilePath = util.getPath( STATIC_GENERATED_FILE_LOCATION) + spectrogramFile powerVal = np.array( [cutoff for i in range(0, MINUTES_PER_DAY * vectorLength)]) spectrogramData = powerVal.reshape(vectorLength, MINUTES_PER_DAY) # artificial power value when sensor is off. sensorOffPower = np.transpose( np.array([2000 for i in range(0, vectorLength)])) prevMessage = msgutils.getPrevAcquisition(msg) if prevMessage is None: util.debugPrint("prevMessage not found") prevMessage = msg prevAcquisition = sensorOffPower else: prevAcquisitionTime = timezone.getDayBoundaryTimeStampFromUtcTimeStamp( prevMessage['t'], tz) util.debugPrint("prevMessage[t] " + str(prevMessage['t']) + " msg[t] " + str(msg['t']) + " prevDayBoundary " + str(prevAcquisitionTime)) prevAcquisition = np.transpose( np.array( msgutils.trimSpectrumToSubBand(prevMessage, subBandMinFreq, subBandMaxFreq))) occupancy = [] timeArray = [] maxpower = -1000 minpower = 1000 # Note that we are starting with the first message. count = 1 while True: acquisition = msgutils.trimSpectrumToSubBand( msg, subBandMinFreq, subBandMaxFreq) occupancyCount = float( len(filter(lambda x: x >= cutoff, acquisition))) occupancyVal = occupancyCount / float(len(acquisition)) occupancy.append(occupancyVal) minpower = np.minimum(minpower, msgutils.getMinPower(msg)) maxpower = np.maximum(maxpower, msgutils.getMaxPower(msg)) if prevMessage['t1'] != msg['t1']: # GAP detected so fill it with sensorOff sindex = get_index(DataMessage.getTime(prevMessage), startTimeUtc) if get_index(DataMessage.getTime(prevMessage), startTimeUtc) < 0: sindex = 0 for i in range( sindex, get_index(DataMessage.getTime(msg), startTimeUtc)): spectrogramData[:, i] = sensorOffPower elif DataMessage.getTime(prevMessage) > startTimeUtc: # Prev message is the same tstart and prevMessage is in the range of interest. # Sensor was not turned off. # fill forward using the prev acquisition. for i in range( get_index(DataMessage.getTime(prevMessage), startTimeUtc), get_index(msg["t"], startTimeUtc)): spectrogramData[:, i] = prevAcquisition else: # forward fill from prev acquisition to the start time # with the previous power value for i in range( 0, get_index(DataMessage.getTime(msg), startTimeUtc)): spectrogramData[:, i] = prevAcquisition colIndex = get_index(DataMessage.getTime(msg), startTimeUtc) spectrogramData[:, colIndex] = acquisition timeArray.append( float(DataMessage.getTime(msg) - startTimeUtc) / float(3600)) prevMessage = msg prevAcquisition = acquisition msg = msgutils.getNextAcquisition(msg) if msg is None: lastMessage = prevMessage for i in range( get_index(DataMessage.getTime(prevMessage), startTimeUtc), MINUTES_PER_DAY): spectrogramData[:, i] = sensorOffPower break elif DataMessage.getTime(msg) - startTimeUtc >= SECONDS_PER_DAY: if msg['t1'] == prevMessage['t1']: for i in range( get_index(DataMessage.getTime(prevMessage), startTimeUtc), MINUTES_PER_DAY): spectrogramData[:, i] = prevAcquisition else: for i in range( get_index(DataMessage.getTime(prevMessage), startTimeUtc), MINUTES_PER_DAY): spectrogramData[:, i] = sensorOffPower lastMessage = prevMessage break count = count + 1 # generate the spectrogram as an image. if not os.path.exists(spectrogramFilePath + ".png"): fig = plt.figure(figsize=(chWidth, chHeight)) frame1 = plt.gca() frame1.axes.get_xaxis().set_visible(False) frame1.axes.get_yaxis().set_visible(False) cmap = plt.cm.spectral cmap.set_under(UNDER_CUTOFF_COLOR) cmap.set_over(OVER_CUTOFF_COLOR) dirname = util.getPath(STATIC_GENERATED_FILE_LOCATION) + sessionId if maxpower < cutoff: maxpower = cutoff minpower = cutoff if not os.path.exists(dirname): os.makedirs(dirname) fig = plt.imshow(spectrogramData, interpolation='none', origin='lower', aspect='auto', vmin=cutoff, vmax=maxpower, cmap=cmap) util.debugPrint("Generated fig") plt.savefig(spectrogramFilePath + '.png', bbox_inches='tight', pad_inches=0, dpi=100) plt.clf() plt.close() else: util.debugPrint("File exists - not generating image") util.debugPrint("FileName: " + spectrogramFilePath + ".png") util.debugPrint("Reading " + spectrogramFilePath + ".png") # get the size of the generated png. reader = png.Reader(filename=spectrogramFilePath + ".png") (width, height, pixels, metadata) = reader.read() util.debugPrint("width = " + str(width) + " height = " + str(height)) # generate the colorbar as a separate image. if not os.path.exists(spectrogramFilePath + ".cbar.png"): norm = mpl.colors.Normalize(vmin=cutoff, vmax=maxpower) fig = plt.figure(figsize=(chWidth * 0.3, chHeight * 1.2)) ax1 = fig.add_axes([0.0, 0, 0.1, 1]) mpl.colorbar.ColorbarBase(ax1, cmap=cmap, norm=norm, orientation='vertical') plt.savefig(spectrogramFilePath + '.cbar.png', bbox_inches='tight', pad_inches=0, dpi=50) plt.clf() plt.close() else: util.debugPrint(spectrogramFilePath + ".cbar.png" + " exists -- not generating") localTime, tzName = timezone.getLocalTime(startTimeUtc, tz) # step back for 24 hours. prevAcquisitionTime = msgutils.getPrevDayBoundary(startMsg) nextAcquisitionTime = msgutils.getNextDayBoundary(lastMessage) meanOccupancy = np.mean(occupancy) maxOccupancy = np.max(occupancy) minOccupancy = np.min(occupancy) medianOccupancy = np.median(occupancy) result = { "spectrogram": Config.getGeneratedDataPath() + "/" + spectrogramFile + ".png", "cbar": Config.getGeneratedDataPath() + "/" + spectrogramFile + ".cbar.png", "maxPower": maxpower, "maxOccupancy": maxOccupancy, "minOccupancy": minOccupancy, "meanOccupancy": meanOccupancy, "medianOccupancy": medianOccupancy, "cutoff": cutoff, "aquisitionCount": count, "minPower": minpower, "tStartTimeUtc": startTimeUtc, "timeDelta": HOURS_PER_DAY, "prevAcquisition": prevAcquisitionTime, "nextAcquisition": nextAcquisitionTime, "formattedDate": timezone.formatTimeStampLong(startTimeUtc, tz), "image_width": float(width), "image_height": float(height) } result["timeArray"] = timeArray result["occupancyArray"] = occupancy if "ENBW" in lastMessage["mPar"]: enbw = lastMessage["mPar"]["ENBW"] result["ENBW"] = enbw if "RBW" in lastMessage["mPar"]: rbw = lastMessage["mPar"]["RBW"] result["RBW"] = rbw result[STATUS] = OK util.debugPrint(result) return result except: print "Unexpected error:", sys.exc_info()[0] print sys.exc_info() traceback.print_exc() util.logStackTrace(sys.exc_info()) raise
def getOneDayStats(sensorId, lat, lon, alt, startTime, sys2detect, minFreq, maxFreq): """ Generate and return a JSON structure with the one day statistics. startTime is the start time in UTC sys2detect is the system to detect. minFreq is the minimum frequency of the frequency band of interest. maxFreq is the maximum frequency of the frequency band of interest. """ locationMessage = DbCollections.getLocationMessages().find_one({ SENSOR_ID: sensorId, LAT: lat, LON: lon, ALT: alt }) if locationMessage is None: return {STATUS: NOK, ERROR_MESSAGE: "No location information"} freqRange = msgutils.freqRange(sys2detect, minFreq, maxFreq) mintime = int(startTime) maxtime = mintime + SECONDS_PER_DAY tzId = locationMessage[TIME_ZONE_KEY] mintime = timezone.getDayBoundaryTimeStampFromUtcTimeStamp(startTime, tzId) maxtime = mintime + SECONDS_PER_DAY query = { SENSOR_ID: sensorId, LOCATION_MESSAGE_ID: str(locationMessage["_id"]), "t": { "$lte": maxtime, "$gte": mintime }, FREQ_RANGE: freqRange } cur = DbCollections.getDataMessages(sensorId).find(query) if cur is None or cur.count() == 0: return {STATUS: NOK, ERROR_MESSAGE: "Data messages not found"} res = {} values = {} res["formattedDate"] = timezone.formatTimeStampLong( mintime, locationMessage[TIME_ZONE_KEY]) acquisitionCount = cur.count() prevMsg = None for msg in cur: if prevMsg is None: prevMsg = msgutils.getPrevAcquisition(msg) channelCount = msg["mPar"]["n"] measurementsPerAcquisition = msg["nM"] cutoff = msg["cutoff"] values[int(msg["t"] - mintime)] = { "t": msg["t"], "maxPower": msg["maxPower"], "minPower": msg["minPower"], "maxOccupancy": msg["maxOccupancy"], "minOccupancy": msg["minOccupancy"], "meanOccupancy": msg["meanOccupancy"], "medianOccupancy": msg["medianOccupancy"] } query = {SENSOR_ID: sensorId, "t": {"$gt": maxtime}, FREQ_RANGE: freqRange} msg = DbCollections.getDataMessages(sensorId).find_one(query) if msg is not None: nextDay = timezone.getDayBoundaryTimeStampFromUtcTimeStamp( msg["t"], tzId) else: nextDay = mintime if prevMsg is not None: prevDayBoundary = timezone.getDayBoundaryTimeStampFromUtcTimeStamp( prevMsg["t"], tzId) query = { SENSOR_ID: sensorId, "t": { "$gte": prevDayBoundary }, FREQ_RANGE: freqRange } msg = DbCollections.getDataMessages(sensorId).find_one(query) prevDay = timezone.getDayBoundaryTimeStampFromUtcTimeStamp( msg["t"], tzId) else: prevDay = mintime res["nextIntervalStart"] = nextDay res["prevIntervalStart"] = prevDay res["currentIntervalStart"] = mintime res[CHANNEL_COUNT] = channelCount res["measurementsPerAcquisition"] = measurementsPerAcquisition res[ACQUISITION_COUNT] = acquisitionCount res["cutoff"] = cutoff res["values"] = values res[STATUS] = OK return res
def generateSingleAcquisitionSpectrogramAndOccupancyForFFTPower( sensorId, sessionId, threshold, startTime, minFreq, maxFreq, leftBound, rightBound): util.debugPrint( "generateSingleAcquisitionSpectrogramAndOccupancyForFFTPower " + " sensorId = " + sensorId + " leftBound = " + str(leftBound) + " rightBound = " + str(rightBound)) dataMessages = DbCollections.getDataMessages(sensorId) chWidth = Config.getScreenConfig()[CHART_WIDTH] chHeight = Config.getScreenConfig()[CHART_HEIGHT] if dataMessages is None: return {STATUS: NOK, ERROR_MESSAGE: "Data message collection found "} msg = dataMessages.find_one({SENSOR_ID: sensorId, "t": startTime}) if msg is None: return { STATUS: NOK, ERROR_MESSAGE: "No data message found at " + str(int(startTime)) } if threshold is None: cutoff = DataMessage.getThreshold(msg) else: cutoff = int(threshold) startTime = DataMessage.getTime(msg) fs = gridfs.GridFS(DbCollections.getSpectrumDb(), msg[SENSOR_ID] + "_data") sensorId = msg[SENSOR_ID] messageBytes = fs.get(ObjectId(msg[DATA_KEY])).read() util.debugPrint("Read " + str(len(messageBytes))) spectrogramFile = sessionId + "/" + sensorId + "." + str( startTime) + "." + str(leftBound) + "." + str(rightBound) + "." + str( cutoff) spectrogramFilePath = util.getPath( STATIC_GENERATED_FILE_LOCATION) + spectrogramFile if leftBound < 0 or rightBound < 0: util.debugPrint("Bounds to exlude must be >= 0") return {STATUS: NOK, ERROR_MESSAGE: "Invalid bounds specified"} measurementDuration = DataMessage.getMeasurementDuration(msg) miliSecondsPerMeasurement = float(measurementDuration * 1000) / float( DataMessage.getNumberOfMeasurements(msg)) leftColumnsToExclude = int(leftBound / miliSecondsPerMeasurement) rightColumnsToExclude = int(rightBound / miliSecondsPerMeasurement) if leftColumnsToExclude + rightColumnsToExclude >= DataMessage.getNumberOfMeasurements( msg): util.debugPrint("leftColumnToExclude " + str(leftColumnsToExclude) + " rightColumnsToExclude " + str(rightColumnsToExclude)) return {STATUS: NOK, ERROR_MESSAGE: "Invalid bounds"} util.debugPrint("LeftColumns to exclude " + str(leftColumnsToExclude) + " right columns to exclude " + str(rightColumnsToExclude)) noiseFloor = DataMessage.getNoiseFloor(msg) nM = DataMessage.getNumberOfMeasurements( msg) - leftColumnsToExclude - rightColumnsToExclude n = DataMessage.getNumberOfFrequencyBins(msg) locationMessage = msgutils.getLocationMessage(msg) lengthToRead = n * DataMessage.getNumberOfMeasurements(msg) # Read the power values power = msgutils.getData(msg) powerVal = np.array(power[n * leftColumnsToExclude:lengthToRead - n * rightColumnsToExclude]) minTime = float( leftColumnsToExclude * miliSecondsPerMeasurement) / float(1000) spectrogramData = powerVal.reshape(nM, n) maxpower = msgutils.getMaxPower(msg) if maxpower < cutoff: maxpower = cutoff # generate the spectrogram as an image. if (not os.path.exists(spectrogramFilePath + ".png")) or\ DebugFlags.getDisableSessionIdCheckFlag(): dirname = util.getPath(STATIC_GENERATED_FILE_LOCATION) + sessionId if not os.path.exists(dirname): os.makedirs( util.getPath(STATIC_GENERATED_FILE_LOCATION) + sessionId) fig = plt.figure(figsize=(chWidth, chHeight)) # aspect ratio frame1 = plt.gca() frame1.axes.get_xaxis().set_visible(False) frame1.axes.get_yaxis().set_visible(False) cmap = plt.cm.spectral cmap.set_under(UNDER_CUTOFF_COLOR) fig = plt.imshow(np.transpose(spectrogramData), interpolation='none', origin='lower', aspect="auto", vmin=cutoff, vmax=maxpower, cmap=cmap) util.debugPrint("Generated fig " + spectrogramFilePath + ".png") plt.savefig(spectrogramFilePath + '.png', bbox_inches='tight', pad_inches=0, dpi=100) plt.clf() plt.close() else: util.debugPrint("File exists -- not regenerating") # generate the occupancy data for the measurement. occupancyCount = [0 for i in range(0, nM)] for i in range(0, nM): occupancyCount[i] = float( len(filter(lambda x: x >= cutoff, spectrogramData[i, :]))) / float(n) timeArray = [ int((i + leftColumnsToExclude) * miliSecondsPerMeasurement) for i in range(0, nM) ] # get the size of the generated png. reader = png.Reader(filename=spectrogramFilePath + ".png") (width, height, pixels, metadata) = reader.read() if (not os.path.exists(spectrogramFilePath + ".cbar.png")) or \ DebugFlags.getDisableSessionIdCheckFlag(): # generate the colorbar as a separate image. norm = mpl.colors.Normalize(vmin=cutoff, vmax=maxpower) fig = plt.figure(figsize=(chWidth * 0.2, chHeight * 1.22)) # aspect ratio ax1 = fig.add_axes([0.0, 0, 0.1, 1]) mpl.colorbar.ColorbarBase(ax1, cmap=cmap, norm=norm, orientation='vertical') plt.savefig(spectrogramFilePath + '.cbar.png', bbox_inches='tight', pad_inches=0, dpi=50) plt.clf() plt.close() nextAcquisition = msgutils.getNextAcquisition(msg) prevAcquisition = msgutils.getPrevAcquisition(msg) if nextAcquisition is not None: nextAcquisitionTime = DataMessage.getTime(nextAcquisition) else: nextAcquisitionTime = DataMessage.getTime(msg) if prevAcquisition is not None: prevAcquisitionTime = DataMessage.getTime(prevAcquisition) else: prevAcquisitionTime = DataMessage.getTime(msg) tz = locationMessage[TIME_ZONE_KEY] timeDelta = DataMessage.getMeasurementDuration( msg) - float(leftBound) / float(1000) - float(rightBound) / float(1000) meanOccupancy = np.mean(occupancyCount) maxOccupancy = np.max(occupancyCount) minOccupancy = np.min(occupancyCount) medianOccupancy = np.median(occupancyCount) result = { "spectrogram": Config.getGeneratedDataPath() + "/" + spectrogramFile + ".png", "cbar": Config.getGeneratedDataPath() + "/" + spectrogramFile + ".cbar.png", "maxPower": maxpower, "cutoff": cutoff, "noiseFloor": noiseFloor, "minPower": msgutils.getMinPower(msg), "maxFreq": DataMessage.getFmax(msg), "minFreq": DataMessage.getFmin(msg), "minTime": minTime, "timeDelta": timeDelta, "measurementsPerAcquisition": DataMessage.getNumberOfMeasurements(msg), "binsPerMeasurement": DataMessage.getNumberOfFrequencyBins(msg), "measurementCount": nM, "maxOccupancy": maxOccupancy, "minOccupancy": minOccupancy, "meanOccupancy": meanOccupancy, "medianOccupancy": medianOccupancy, "currentAcquisition": DataMessage.getTime(msg), "prevAcquisition": prevAcquisitionTime, "nextAcquisition": nextAcquisitionTime, "formattedDate": timezone.formatTimeStampLong(DataMessage.getTime(msg), tz), "image_width": float(width), "image_height": float(height) } # Now put in the occupancy data result[STATUS] = OK util.debugPrint( "generateSingleAcquisitionSpectrogramAndOccupancyForFFTPower:returning (abbreviated): " + str(result)) result["timeArray"] = timeArray result["occupancyArray"] = occupancyCount return result
def getHourlyMaxMinMeanStats(sensorId, startTime, sys2detect, fmin, fmax, subBandMinFreq, subBandMaxFreq, sessionId): sensor = SensorDb.getSensor(sensorId) if sensor is None: return {STATUS: NOK, ERROR_MESSAGE: "Sensor Not Found"} tstart = int(startTime) fmin = int(subBandMinFreq) fmax = int(subBandMaxFreq) freqRange = msgutils.freqRange(sys2detect, fmin, fmax) queryString = { SENSOR_ID: sensorId, TIME: { '$gte': tstart }, FREQ_RANGE: freqRange } util.debugPrint(queryString) startMessage = DbCollections.getDataMessages(sensorId).find_one( queryString) if startMessage is None: errorStr = "Start Message Not Found" util.debugPrint(errorStr) response = {STATUS: NOK, ERROR_MESSAGE: "No data found"} return response locationMessageId = DataMessage.getLocationMessageId(startMessage) retval = {STATUS: OK} values = {} locationMessage = DbCollections.getLocationMessages().find_one( {"_id": locationMessageId}) tZId = LocationMessage.getTimeZone(locationMessage) tmin = timezone.getDayBoundaryTimeStampFromUtcTimeStamp( tstart, LocationMessage.getTimeZone(locationMessage)) for hour in range(0, 23): dataMessages = DbCollections.getDataMessages(sensorId).find({ "t": { "$gte": tmin + hour * SECONDS_PER_HOUR }, "t": { "$lte": (hour + 1) * SECONDS_PER_HOUR }, FREQ_RANGE: freqRange }) if dataMessages is not None: stats = compute_stats_for_fft_power(dataMessages) (nChannels, maxFreq, minFreq, cutoff, result) = stats values[hour] = result retval["values"] = values # Now compute the next interval after the last one (if one exists) tend = tmin + SECONDS_PER_DAY queryString = { SENSOR_ID: sensorId, TIME: { '$gte': tend }, FREQ_RANGE: freqRange } msg = DbCollections.getDataMessages(sensorId).find_one(queryString) if msg is None: result["nextTmin"] = tmin else: nextTmin = timezone.getDayBoundaryTimeStampFromUtcTimeStamp( msg[TIME], tZId) result["nextTmin"] = nextTmin # Now compute the previous interval before this one. prevMessage = msgutils.getPrevAcquisition(startMessage) if prevMessage is not None: newTmin = timezone.getDayBoundaryTimeStampFromUtcTimeStamp( prevMessage[TIME] - SECONDS_PER_DAY, tZId) queryString = { SENSOR_ID: sensorId, TIME: { '$gte': newTmin }, FREQ_RANGE: msgutils.freqRange(sys2detect, fmin, fmax) } msg = DbCollections.getDataMessages(sensorId).find_one(queryString) else: msg = startMessage result[STATUS] = OK result["prevTmin"] = timezone.getDayBoundaryTimeStampFromUtcTimeStamp( msg[TIME], tZId) result["tmin"] = tmin result["maxFreq"] = maxFreq result["minFreq"] = minFreq result["cutoff"] = cutoff result[CHANNEL_COUNT] = nChannels result["startDate"] = timezone.formatTimeStampLong(tmin, tZId) result["values"] = values return result