def test_FeatureSelector_describe_features(): rnd_traj = np.random.randint(len(trajectories)) f_ca = ContactFeaturizer(scheme='CA', ignore_nonprotein=True) f1 = f_ca.transform([trajectories[rnd_traj]]) df1 = pd.DataFrame(f_ca.describe_features(trajectories[rnd_traj])) f_dih = DihedralFeaturizer() f2 = f_dih.transform([trajectories[rnd_traj]]) df2 = pd.DataFrame(f_dih.describe_features(trajectories[rnd_traj])) df_dict = {} df_dict["ca"] = df1 df_dict["dih"] = df2 f_comb = FeatureSelector([('ca', f_ca), ('dih', f_dih)]) f3 = f_comb.transform([trajectories[rnd_traj]]) df3 = pd.DataFrame(f_comb.describe_features(trajectories[rnd_traj])) assert len(df3) == len(df1) + len(df2) df4 = pd.concat([df_dict[i] for i in f_comb.feat_list]) # lets randomly compare 40 features for i in np.random.choice(range(len(df3)), 40): for j in df3.columns: assert eq(df3.iloc[i][j], df4.iloc[i][j])
def test_featureselector_transform(): trajectories = AlanineDipeptide().get_cached().trajectories fs = FeatureSelector(FEATS, which_feat='psi') y1 = fs.transform(trajectories) assert len(y1) == len(trajectories)
def test_featureselector_transform(): trajectories = AlanineDipeptide().get_cached().trajectories fs = FeatureSelector(FEATS, which_feat="psi") y1 = fs.transform(trajectories) assert len(y1) == len(trajectories)