def main(args): # p_model_path = '/data/guoch_workspace/mtcnn-pytorch-master/model_store/pnet_epoch.pt' # r_model_path = '/data/guoch_workspace/mtcnn-pytorch-master/model_store/rnet_epoch.pt' # o_model_path = '/data/guoch_workspace/mtcnn-pytorch-master/model_store/onet_epoch.pt' # print("the version of torch is {}".format(torch.__version__)) dummy_input = getInput(args.img_size) #获得网络的输入 # 加载模型 model = PNet() #model = RNet() #model = ONet() model.load_state_dict(torch.load(args.model_path)) #model_dict = model.state_dict() #model_dict = pnet.load_state_dict(torch.load(p_model_path)) # if args.model_path: # if os.path.isfile(args.model_path): # print(("=> start loading checkpoint '{}'".format(args.model_path))) # # state_dict = torch.load(args.model_path) # # print("the best acc is {} in epoch:{}".format( # # state_dict['epoch_acc'], state_dict['epoch'])) # # params = state_dict["model_state_dict"] # # # params={k:v for k,v in state_dict.items() if k in model_dict.keys()} # # # model_dict.update(params) # # # model.load_state_dict(model_dict) # model.load_state_dict(args.model_path) # print("load cls model successfully") # else: # print(("=> no checkpoint found at '{}'".format(args.model_path))) # return model.to('cpu') model.eval() pre = model(dummy_input) print("the pre:{}".format(pre)) #保存onnx模型 torch2onnx(args, model, dummy_input)
def create_mtcnn_net(p_model_path=None, r_model_path=None, o_model_path=None, use_cuda=True): pnet, rnet, onet = None, None, None if p_model_path is not None: pnet = PNet(use_cuda=use_cuda) if (use_cuda): print('p_model_path:{0}'.format(p_model_path)) pnet.load_state_dict(torch.load(p_model_path)) pnet.cuda() else: # forcing all GPU tensors to be in CPU while loading pnet.load_state_dict( torch.load(p_model_path, map_location=lambda storage, loc: storage)) pnet.eval() if r_model_path is not None: rnet = RNet(use_cuda=use_cuda) if (use_cuda): print('r_model_path:{0}'.format(r_model_path)) rnet.load_state_dict(torch.load(r_model_path)) rnet.cuda() else: rnet.load_state_dict( torch.load(r_model_path, map_location=lambda storage, loc: storage)) rnet.eval() if o_model_path is not None: onet = ONet(use_cuda=use_cuda) if (use_cuda): print('o_model_path:{0}'.format(o_model_path)) onet.load_state_dict(torch.load(o_model_path)) onet.cuda() else: onet.load_state_dict( torch.load(o_model_path, map_location=lambda storage, loc: storage)) onet.eval() return pnet, rnet, onet
def create_mtcnn_net(self): ''' Create the mtcnn model ''' pnet, rnet, onet = None, None, None if len(self.args.pnet_file) > 0: pnet = PNet(use_cuda=self.args.use_cuda) if self.args.use_cuda: pnet.load_state_dict(torch.load(self.args.pnet_file)) pnet = torch.nn.DataParallel( pnet, device_ids=self.args.gpu_ids).cuda() else: pnet.load_state_dict(torch.load(self.args.pnet_file,\ map_location=lambda storage, loc: storage)) pnet.eval() if len(self.args.rnet_file) > 0: rnet = RNet(use_cuda=self.args.use_cuda) if self.args.use_cuda: rnet.load_state_dict(torch.load(self.args.rnet_file)) rnet = torch.nn.DataParallel( rnet, device_ids=self.args.gpu_ids).cuda() else: rnet.load_state_dict(torch.load(self.args.rnet_file,\ map_location=lambda storage, loc: storage)) rnet.eval() if len(self.args.onet_file) > 0: onet = ONet(use_cuda=self.args.use_cuda) if self.args.use_cuda: onet.load_state_dict(torch.load(self.args.onet_file)) onet = torch.nn.DataParallel( onet, device_ids=self.args.gpu_ids).cuda() else: onet.load_state_dict(torch.load(self.args.onet_file, \ map_location=lambda storage, loc: storage)) onet.eval() self.pnet_detector = pnet self.rnet_detector = rnet self.onet_detector = onet