def create_mtcnn_net(p_model_path=None, r_model_path=None, o_model_path=None, use_cuda=True): pnet, rnet, onet = None, None, None if p_model_path is not None: pnet = PNet(use_cuda=use_cuda) if (use_cuda): print('p_model_path:{0}'.format(p_model_path)) pnet.load_state_dict(torch.load(p_model_path)) pnet.cuda() else: # forcing all GPU tensors to be in CPU while loading pnet.load_state_dict( torch.load(p_model_path, map_location=lambda storage, loc: storage)) pnet.eval() if r_model_path is not None: rnet = RNet(use_cuda=use_cuda) if (use_cuda): print('r_model_path:{0}'.format(r_model_path)) rnet.load_state_dict(torch.load(r_model_path)) rnet.cuda() else: rnet.load_state_dict( torch.load(r_model_path, map_location=lambda storage, loc: storage)) rnet.eval() if o_model_path is not None: onet = ONet(use_cuda=use_cuda) if (use_cuda): print('o_model_path:{0}'.format(o_model_path)) onet.load_state_dict(torch.load(o_model_path)) onet.cuda() else: onet.load_state_dict( torch.load(o_model_path, map_location=lambda storage, loc: storage)) onet.eval() return pnet, rnet, onet
def train_rnet(model_store_path, end_epoch,imdb, batch_size,frequent=50,base_lr=0.01,use_cuda=True): if not os.path.exists(model_store_path): os.makedirs(model_store_path) lossfn = LossFn() net = RNet(is_train=True, use_cuda=use_cuda) net.train() if use_cuda: net.cuda() optimizer = torch.optim.Adam(net.parameters(), lr=base_lr) train_data=TrainImageReader(imdb,24,batch_size,shuffle=True) for cur_epoch in range(1,end_epoch+1): train_data.reset() for batch_idx,(image,(gt_label,gt_bbox,gt_landmark))in enumerate(train_data): im_tensor = [ image_tools.convert_image_to_tensor(image[i,:,:,:]) for i in range(image.shape[0]) ] im_tensor = torch.stack(im_tensor) im_tensor = Variable(im_tensor) gt_label = Variable(torch.from_numpy(gt_label).float()) gt_bbox = Variable(torch.from_numpy(gt_bbox).float()) gt_landmark = Variable(torch.from_numpy(gt_landmark).float()) if use_cuda: im_tensor = im_tensor.cuda() gt_label = gt_label.cuda() gt_bbox = gt_bbox.cuda() gt_landmark = gt_landmark.cuda() cls_pred, box_offset_pred = net(im_tensor) # all_loss, cls_loss, offset_loss = lossfn.loss(gt_label=label_y,gt_offset=bbox_y, pred_label=cls_pred, pred_offset=box_offset_pred) cls_loss = lossfn.cls_loss(gt_label,cls_pred) box_offset_loss = lossfn.box_loss(gt_label,gt_bbox,box_offset_pred) # landmark_loss = lossfn.landmark_loss(gt_label,gt_landmark,landmark_offset_pred) all_loss = cls_loss*1.0+box_offset_loss*0.5 if batch_idx%frequent==0: accuracy=compute_accuracy(cls_pred,gt_label) show1 = accuracy.data.cpu().numpy() show2 = cls_loss.data.cpu().numpy() show3 = box_offset_loss.data.cpu().numpy() # show4 = landmark_loss.data.cpu().numpy() show5 = all_loss.data.cpu().numpy() print("%s : Epoch: %d, Step: %d, accuracy: %s, det loss: %s, bbox loss: %s, all_loss: %s, lr:%s "%(datetime.datetime.now(), cur_epoch, batch_idx, show1, show2, show3, show5, base_lr)) optimizer.zero_grad() all_loss.backward() optimizer.step() torch.save(net.state_dict(), os.path.join(model_store_path,"rnet_epoch_%d.pt" % cur_epoch)) torch.save(net, os.path.join(model_store_path,"rnet_epoch_model_%d.pkl" % cur_epoch))