def read_files(self): """ read in the files to get appropriate information """ # --> read in model file if self.model_fn is not None: if os.path.isfile(self.model_fn) == True: md_model = Model() md_model.read_model_file(self.model_fn) self.res_model = md_model.res_model self.grid_east = md_model.grid_east / self.dscale self.grid_north = md_model.grid_north / self.dscale self.grid_z = md_model.grid_z / self.dscale self.nodes_east = md_model.nodes_east / self.dscale self.nodes_north = md_model.nodes_north / self.dscale self.nodes_z = md_model.nodes_z / self.dscale else: raise mtex.MTpyError_file_handling( '{0} does not exist, check path'.format(self.model_fn)) # --> read in data file to get station locations if self.data_fn is not None: if os.path.isfile(self.data_fn) == True: md_data = Data() md_data.read_data_file(self.data_fn) self.station_east = md_data.station_locations.rel_east / self.dscale self.station_north = md_data.station_locations.rel_north / self.dscale self.station_elev = md_data.station_locations.elev / self.dscale self.station_names = md_data.station_locations.station else: print 'Could not find data file {0}'.format(self.data_fn)
def test_read_gocad_sgrid_file(self): if not os.path.isdir(self._model_dir): self._model_dir = None output_fn = os.path.basename(self._model_fn) # read data file to get centre position dObj = Data() dObj.read_data_file(data_fn=self._data_fn) # create a model object using the data object and read in gocad sgrid file mObj = Model(data_obj=dObj, save_path=self._output_dir) mObj.read_gocad_sgrid_file(self._sgrid_fn) mObj.write_model_file() output_data_file = os.path.normpath( os.path.join(self._output_dir, output_fn)) self.assertTrue(os.path.isfile(output_data_file), "output data file not found") expected_data_file = os.path.normpath(self._model_fn_old_z_mesh) self.assertTrue( os.path.isfile(expected_data_file), "Ref output data file does not exist, nothing to compare with") is_identical, msg = diff_files(output_data_file, expected_data_file) print(msg) self.assertTrue( is_identical, "The output file is not the same with the baseline file.")
def _read_model_data(self): """ read in the files to get appropriate information """ # --> read in model file if self.model_fn is not None and os.path.isfile(self.model_fn): md_model = Model() md_model.read_model_file(self.model_fn) self.res_model = md_model.res_model self.grid_east = md_model.grid_east / self.dscale self.grid_north = md_model.grid_north / self.dscale self.grid_z = md_model.grid_z / self.dscale self.nodes_east = md_model.nodes_east / self.dscale self.nodes_north = md_model.nodes_north / self.dscale self.nodes_z = md_model.nodes_z / self.dscale else: raise Exception('Error with the Model file: %s. Please check.' % (self.model_fn)) # --> Optionally: read in data file to get station locations if self.data_fn is not None and os.path.isfile(self.data_fn): md_data = Data() md_data.read_data_file(self.data_fn) self.station_east = md_data.station_locations[ 'rel_east'] / self.dscale # convert meters self.station_north = md_data.station_locations[ 'rel_north'] / self.dscale self.station_names = md_data.station_locations['station'] else: print(('Problem with the optional Data file: %s. Please check.' % self.data_fn)) total_horizontal_slices = self.grid_z.shape[0] print(("Total Number of H-slices=", total_horizontal_slices)) return total_horizontal_slices
def main(data_file, model_file, output_file, source_proj=None): """ Generate an output netcdf file from data_file and model_file :param data_file: modem.dat :param model_file: modem.rho :param output_file: output.nc :param source_proj: None by defult. The UTM zone infered from the input non-uniform grid parameters :return: """ # Define Data and Model Paths data = Data() data.read_data_file(data_fn=data_file) # create a model object using the data object and read in model data model = Model(data_obj=data) model.read_model_file(model_fn=model_file) center = data.center_point if source_proj is None: zone_number, is_northern, utm_zone = gis_tools.get_utm_zone( center.lat.item(), center.lon.item()) #source_proj = Proj('+proj=utm +zone=%d +%s +datum=%s' % (zone_number, 'north' if is_northern else 'south', 'WGS84')) epsg_code = gis_tools.get_epsg(center.lat.item(), center.lon.item()) print("Input data epsg code is infered as ", epsg_code) else: epsg_code = source_proj # integer source_proj = Proj(init='epsg:' + str(epsg_code)) resistivity_data = { 'x': center.east.item() + (model.grid_east[1:] + model.grid_east[:-1]) / 2, 'y': center.north.item() + (model.grid_north[1:] + model.grid_north[:-1]) / 2, 'z': (model.grid_z[1:] + model.grid_z[:-1]) / 2, 'resistivity': np.transpose(model.res_model, axes=(2, 0, 1)) } grid_proj = Proj( init='epsg:4326') # output grid Coordinate systems: 4326, 4283, 3112 grid_proj = Proj( init='epsg:4283') # output grid Coordinate system 4326, 4283, 3112 grid_proj = Proj( init='epsg:3112') # output grid Coordinate system 4326, 4283, 3112 result = interpolate(resistivity_data, source_proj, grid_proj, center, median_spacing(model.grid_east), median_spacing(model.grid_north)) nc.write_resistivity_grid(output_file, grid_proj, result['latitude'], result['longitude'], result['depth'], result['resistivity'], z_label='depth')
def test_write_gocad_sgrid_file(self): if not os.path.exists(self._sgrid_fn): self._sgrid_fn = None output_fn = os.path.basename(self._sgrid_fn) # read data file to get centre position dObj = Data() dObj.read_data_file(data_fn=self._data_fn) # get centre coordinates centre = np.array([0., 0., 0.]) centre[0] = dObj.center_point['east'] centre[1] = dObj.center_point['north'] # create a model object using the data object and read in gocad sgrid file mObj = Model(data_obj=dObj) mObj.read_model_file(model_fn=self._model_fn) mObj.save_path = self._output_dir mObj.write_gocad_sgrid_file(origin=centre, fn=os.path.join(self._output_dir, output_fn[:-3])) output_data_file = os.path.normpath( os.path.join(self._output_dir, output_fn)) self.assertTrue(os.path.isfile(output_data_file), "output data file not found") expected_data_file = os.path.normpath(self._sgrid_fn) self.assertTrue( os.path.isfile(expected_data_file), "Ref output data file does not exist, nothing to compare with") is_identical, msg = diff_files(output_data_file, expected_data_file) print(msg) self.assertTrue( is_identical, "The output file is not the same with the baseline file.")
class PlotPTMaps(MTEllipse): """ Plot phase tensor maps including residual pt if response file is input. :Plot only data for one period: :: >>> import mtpy.modeling.ws3dinv as ws >>> dfn = r"/home/MT/ws3dinv/Inv1/WSDataFile.dat" >>> ptm = ws.PlotPTMaps(data_fn=dfn, plot_period_list=[0]) :Plot data and model response: :: >>> import mtpy.modeling.ws3dinv as ws >>> dfn = r"/home/MT/ws3dinv/Inv1/WSDataFile.dat" >>> rfn = r"/home/MT/ws3dinv/Inv1/Test_resp.00" >>> mfn = r"/home/MT/ws3dinv/Inv1/Test_model.00" >>> ptm = ws.PlotPTMaps(data_fn=dfn, resp_fn=rfn, model_fn=mfn, >>> ... plot_period_list=[0]) >>> # adjust colorbar >>> ptm.cb_res_pad = 1.25 >>> ptm.redraw_plot() ========================== ================================================ Attributes Description ========================== ================================================ cb_pt_pad percentage from top of axes to place pt color bar. *default* is .90 cb_res_pad percentage from bottom of axes to place resistivity color bar. *default* is 1.2 cb_residual_tick_step tick step for residual pt. *default* is 3 cb_tick_step tick step for phase tensor color bar, *default* is 45 data np.ndarray(n_station, n_periods, 2, 2) impedance tensors for station data data_fn full path to data fle dscale scaling parameter depending on map_scale ellipse_cmap color map for pt ellipses. *default* is mt_bl2gr2rd ellipse_colorby [ 'skew' | 'skew_seg' | 'phimin' | 'phimax'| 'phidet' | 'ellipticity' ] parameter to color ellipses by. *default* is 'phimin' ellipse_range (min, max, step) min and max of colormap, need to input step if plotting skew_seg ellipse_size relative size of ellipses in map_scale ew_limits limits of plot in e-w direction in map_scale units. *default* is None, scales to station area fig_aspect aspect of figure. *default* is 1 fig_dpi resolution in dots-per-inch. *default* is 300 fig_list list of matplotlib.figure instances for each figure plotted. fig_size [width, height] in inches of figure window *default* is [6, 6] font_size font size of ticklabels, axes labels are font_size+2. *default* is 7 grid_east relative location of grid nodes in e-w direction in map_scale units grid_north relative location of grid nodes in n-s direction in map_scale units grid_z relative location of grid nodes in z direction in map_scale units model_fn full path to initial file map_scale [ 'km' | 'm' ] distance units of map. *default* is km mesh_east np.meshgrid(grid_east, grid_north, indexing='ij') mesh_north np.meshgrid(grid_east, grid_north, indexing='ij') model_fn full path to model file nodes_east relative distance betwen nodes in e-w direction in map_scale units nodes_north relative distance betwen nodes in n-s direction in map_scale units nodes_z relative distance betwen nodes in z direction in map_scale units ns_limits (min, max) limits of plot in n-s direction *default* is None, viewing area is station area pad_east padding from extreme stations in east direction pad_north padding from extreme stations in north direction period_list list of periods from data plot_grid [ 'y' | 'n' ] 'y' to plot grid lines *default* is 'n' plot_period_list list of period index values to plot *default* is None plot_yn ['y' | 'n' ] 'y' to plot on instantiation *default* is 'y' res_cmap colormap for resisitivity values. *default* is 'jet_r' res_limits (min, max) resistivity limits in log scale *default* is (0, 4) res_model np.ndarray(n_north, n_east, n_vertical) of model resistivity values in linear scale residual_cmap color map for pt residuals. *default* is 'mt_wh2or' resp np.ndarray(n_stations, n_periods, 2, 2) impedance tensors for model response resp_fn full path to response file save_path directory to save figures to save_plots [ 'y' | 'n' ] 'y' to save plots to save_path station_east location of stations in east direction in map_scale units station_fn full path to station locations file station_names station names station_north location of station in north direction in map_scale units subplot_bottom distance between axes and bottom of figure window subplot_left distance between axes and left of figure window subplot_right distance between axes and right of figure window subplot_top distance between axes and top of figure window title titiel of plot *default* is depth of slice xminorticks location of xminorticks yminorticks location of yminorticks ========================== ================================================ """ def __init__(self, data_fn=None, resp_fn=None, model_fn=None, **kwargs): # MTEllipse.__init__(self, **kwargs) super(PlotPTMaps, self).__init__(**kwargs) self.model_fn = model_fn self.data_fn = data_fn self.resp_fn = resp_fn self.save_path = kwargs.pop('save_path', None) if self.model_fn is not None and self.save_path is None: self.save_path = os.path.dirname(self.model_fn) elif self.model_fn is not None and self.save_path is None: self.save_path = os.path.dirname(self.model_fn) if self.save_path is not None: if not os.path.exists(self.save_path): os.mkdir(self.save_path) self.save_plots = kwargs.pop('save_plots', 'y') self.plot_period_list = kwargs.pop('plot_period_list', None) self.period_dict = None self.map_scale = kwargs.pop('map_scale', 'km') # make map scale if self.map_scale == 'km': self.dscale = 1000. elif self.map_scale == 'm': self.dscale = 1. self.ew_limits = kwargs.pop('ew_limits', None) self.ns_limits = kwargs.pop('ns_limits', None) self.pad_east = kwargs.pop('pad_east', 2000) self.pad_north = kwargs.pop('pad_north', 2000) self.plot_grid = kwargs.pop('plot_grid', 'n') self.fig_num = kwargs.pop('fig_num', 1) self.fig_size = kwargs.pop('fig_size', [6, 6]) self.fig_dpi = kwargs.pop('dpi', 300) self.fig_aspect = kwargs.pop('fig_aspect', 1) self.title = kwargs.pop('title', 'on') self.fig_list = [] self.xminorticks = kwargs.pop('xminorticks', 1000) self.yminorticks = kwargs.pop('yminorticks', 1000) self.residual_cmap = kwargs.pop('residual_cmap', 'mt_wh2or') self.font_size = kwargs.pop('font_size', 7) self.cb_tick_step = kwargs.pop('cb_tick_step', 45) self.cb_residual_tick_step = kwargs.pop('cb_residual_tick_step', 3) self.cb_pt_pad = kwargs.pop('cb_pt_pad', 1.2) self.cb_res_pad = kwargs.pop('cb_res_pad', .5) self.res_limits = kwargs.pop('res_limits', (0, 4)) self.res_cmap = kwargs.pop('res_cmap', 'jet_r') # --> set the ellipse properties ------------------- self._ellipse_dict = kwargs.pop('ellipse_dict', {'size': 2}) self._read_ellipse_dict(self._ellipse_dict) self.subplot_right = .99 self.subplot_left = .085 self.subplot_top = .92 self.subplot_bottom = .1 self.subplot_hspace = .2 self.subplot_wspace = .05 self.data_obj = None self.resp_obj = None self.model_obj = None self.period_list = None self.pt_data_arr = None self.pt_resp_arr = None self.pt_resid_arr = None self.plot_yn = kwargs.pop('plot_yn', 'y') if self.plot_yn == 'y': self.plot() def _read_files(self): """ get information from files """ # --> read in data file self.data_obj = Data() self.data_obj.read_data_file(self.data_fn) # --> read response file if self.resp_fn is not None: self.resp_obj = Data() self.resp_obj.read_data_file(self.resp_fn) # --> read mode file if self.model_fn is not None: self.model_obj = Model() self.model_obj.read_model_file(self.model_fn) self._get_plot_period_list() self._get_pt() def _get_plot_period_list(self): """ get periods to plot from input or data file """ # --> get period list to plot if self.plot_period_list is None: self.plot_period_list = self.data_obj.period_list else: if type(self.plot_period_list) is list: # check if entries are index values or actual periods if type(self.plot_period_list[0]) is int: self.plot_period_list = [self.data_obj.period_list[ii] for ii in self.plot_period_list] else: pass elif type(self.plot_period_list) is int: self.plot_period_list = self.data_obj.period_list[self.plot_period_list] elif type(self.plot_period_list) is float: self.plot_period_list = [self.plot_period_list] self.period_dict = dict([(key, value) for value, key in enumerate(self.data_obj.period_list)]) def _get_pt(self): """ put pt parameters into something useful for plotting """ ns = len(self.data_obj.mt_dict.keys()) nf = len(self.data_obj.period_list) data_pt_arr = np.zeros((nf, ns), dtype=[('phimin', np.float), ('phimax', np.float), ('skew', np.float), ('azimuth', np.float), ('east', np.float), ('north', np.float)]) if self.resp_fn is not None: model_pt_arr = np.zeros((nf, ns), dtype=[('phimin', np.float), ('phimax', np.float), ('skew', np.float), ('azimuth', np.float), ('east', np.float), ('north', np.float)]) res_pt_arr = np.zeros((nf, ns), dtype=[('phimin', np.float), ('phimax', np.float), ('skew', np.float), ('azimuth', np.float), ('east', np.float), ('north', np.float), ('geometric_mean', np.float)]) for ii, key in enumerate(self.data_obj.mt_dict.keys()): east = self.data_obj.mt_dict[key].grid_east / self.dscale north = self.data_obj.mt_dict[key].grid_north / self.dscale dpt = self.data_obj.mt_dict[key].pt data_pt_arr[:, ii]['east'] = east data_pt_arr[:, ii]['north'] = north data_pt_arr[:, ii]['phimin'] = dpt.phimin[0] data_pt_arr[:, ii]['phimax'] = dpt.phimax[0] data_pt_arr[:, ii]['azimuth'] = dpt.azimuth[0] data_pt_arr[:, ii]['skew'] = dpt.beta[0] if self.resp_fn is not None: mpt = self.resp_obj.mt_dict[key].pt try: rpt = mtpt.ResidualPhaseTensor(pt_object1=dpt, pt_object2=mpt) rpt = rpt.residual_pt res_pt_arr[:, ii]['east'] = east res_pt_arr[:, ii]['north'] = north res_pt_arr[:, ii]['phimin'] = rpt.phimin[0] res_pt_arr[:, ii]['phimax'] = rpt.phimax[0] res_pt_arr[:, ii]['azimuth'] = rpt.azimuth[0] res_pt_arr[:, ii]['skew'] = rpt.beta[0] res_pt_arr[:, ii]['geometric_mean'] = np.sqrt(abs(rpt.phimin[0] * \ rpt.phimax[0])) except mtex.MTpyError_PT: print key, dpt.pt.shape, mpt.pt.shape model_pt_arr[:, ii]['east'] = east model_pt_arr[:, ii]['north'] = north model_pt_arr[:, ii]['phimin'] = mpt.phimin[0] model_pt_arr[:, ii]['phimax'] = mpt.phimax[0] model_pt_arr[:, ii]['azimuth'] = mpt.azimuth[0] model_pt_arr[:, ii]['skew'] = mpt.beta[0] # make these attributes self.pt_data_arr = data_pt_arr if self.resp_fn is not None: self.pt_resp_arr = model_pt_arr self.pt_resid_arr = res_pt_arr def plot(self): """ plot phase tensor maps for data and or response, each figure is of a different period. If response is input a third column is added which is the residual phase tensor showing where the model is not fitting the data well. The data is plotted in km. """ # --> read in data first if self.data_obj is None: self._read_files() # set plot properties plt.rcParams['font.size'] = self.font_size plt.rcParams['figure.subplot.left'] = self.subplot_left plt.rcParams['figure.subplot.right'] = self.subplot_right plt.rcParams['figure.subplot.bottom'] = self.subplot_bottom plt.rcParams['figure.subplot.top'] = self.subplot_top font_dict = {'size': self.font_size + 2, 'weight': 'bold'} # make a grid of subplots gs = gridspec.GridSpec(1, 3, hspace=self.subplot_hspace, wspace=self.subplot_wspace) # set some parameters for the colorbar ckmin = float(self.ellipse_range[0]) ckmax = float(self.ellipse_range[1]) try: ckstep = float(self.ellipse_range[2]) except IndexError: if self.ellipse_cmap == 'mt_seg_bl2wh2rd': raise ValueError('Need to input range as (min, max, step)') else: ckstep = 3 bounds = np.arange(ckmin, ckmax + ckstep, ckstep) # set plot limits to be the station area if self.ew_limits == None: east_min = self.data_obj.data_array['rel_east'].min() - \ self.pad_east east_max = self.data_obj.data_array['rel_east'].max() + \ self.pad_east self.ew_limits = (east_min / self.dscale, east_max / self.dscale) if self.ns_limits == None: north_min = self.data_obj.data_array['rel_north'].min() - \ self.pad_north north_max = self.data_obj.data_array['rel_north'].max() + \ self.pad_north self.ns_limits = (north_min / self.dscale, north_max / self.dscale) # -------------plot phase tensors------------------------------------ for ff, per in enumerate(self.plot_period_list): data_ii = self.period_dict[per] print 'Plotting Period: {0:.5g}'.format(per) fig = plt.figure('{0:.5g}'.format(per), figsize=self.fig_size, dpi=self.fig_dpi) fig.clf() if self.resp_fn is not None: axd = fig.add_subplot(gs[0, 0], aspect='equal') axm = fig.add_subplot(gs[0, 1], aspect='equal') axr = fig.add_subplot(gs[0, 2], aspect='equal') ax_list = [axd, axm, axr] else: axd = fig.add_subplot(gs[0, :], aspect='equal') ax_list = [axd] # plot model below the phase tensors if self.model_fn is not None: approx_depth, d_index = ws.estimate_skin_depth(self.model_obj.res_model.copy(), self.model_obj.grid_z.copy() / self.dscale, per, dscale=self.dscale) # need to add an extra row and column to east and north to make sure # all is plotted see pcolor for details. plot_east = np.append(self.model_obj.grid_east, self.model_obj.grid_east[-1] * 1.25) / \ self.dscale plot_north = np.append(self.model_obj.grid_north, self.model_obj.grid_north[-1] * 1.25) / \ self.dscale # make a mesh grid for plotting # the 'ij' makes sure the resulting grid is in east, north self.mesh_east, self.mesh_north = np.meshgrid(plot_east, plot_north, indexing='ij') for ax in ax_list: plot_res = np.log10(self.model_obj.res_model[:, :, d_index].T) ax.pcolormesh(self.mesh_east, self.mesh_north, plot_res, cmap=self.res_cmap, vmin=self.res_limits[0], vmax=self.res_limits[1]) # --> plot data phase tensors for pt in self.pt_data_arr[data_ii]: eheight = pt['phimin'] / \ self.pt_data_arr[data_ii]['phimax'].max() * \ self.ellipse_size ewidth = pt['phimax'] / \ self.pt_data_arr[data_ii]['phimax'].max() * \ self.ellipse_size ellipse = Ellipse((pt['east'], pt['north']), width=ewidth, height=eheight, angle=90 - pt['azimuth']) # get ellipse color if self.ellipse_cmap.find('seg') > 0: ellipse.set_facecolor(mtcl.get_plot_color(pt[self.ellipse_colorby], self.ellipse_colorby, self.ellipse_cmap, ckmin, ckmax, bounds=bounds)) else: ellipse.set_facecolor(mtcl.get_plot_color(pt[self.ellipse_colorby], self.ellipse_colorby, self.ellipse_cmap, ckmin, ckmax)) axd.add_artist(ellipse) # -----------plot response phase tensors--------------- if self.resp_fn is not None: rcmin = np.floor(self.pt_resid_arr['geometric_mean'].min()) rcmax = np.floor(self.pt_resid_arr['geometric_mean'].max()) for mpt, rpt in zip(self.pt_resp_arr[data_ii], self.pt_resid_arr[data_ii]): eheight = mpt['phimin'] / \ self.pt_resp_arr[data_ii]['phimax'].max() * \ self.ellipse_size ewidth = mpt['phimax'] / \ self.pt_resp_arr[data_ii]['phimax'].max() * \ self.ellipse_size ellipsem = Ellipse((mpt['east'], mpt['north']), width=ewidth, height=eheight, angle=90 - mpt['azimuth']) # get ellipse color if self.ellipse_cmap.find('seg') > 0: ellipsem.set_facecolor(mtcl.get_plot_color(mpt[self.ellipse_colorby], self.ellipse_colorby, self.ellipse_cmap, ckmin, ckmax, bounds=bounds)) else: ellipsem.set_facecolor(mtcl.get_plot_color(mpt[self.ellipse_colorby], self.ellipse_colorby, self.ellipse_cmap, ckmin, ckmax)) axm.add_artist(ellipsem) # -----------plot residual phase tensors--------------- eheight = rpt['phimin'] / \ self.pt_resid_arr[data_ii]['phimax'].max() * \ self.ellipse_size ewidth = rpt['phimax'] / \ self.pt_resid_arr[data_ii]['phimax'].max() * \ self.ellipse_size ellipser = Ellipse((rpt['east'], rpt['north']), width=ewidth, height=eheight, angle=rpt['azimuth']) # get ellipse color rpt_color = np.sqrt(abs(rpt['phimin'] * rpt['phimax'])) if self.ellipse_cmap.find('seg') > 0: ellipser.set_facecolor(mtcl.get_plot_color(rpt_color, 'geometric_mean', self.residual_cmap, ckmin, ckmax, bounds=bounds)) else: ellipser.set_facecolor(mtcl.get_plot_color(rpt_color, 'geometric_mean', self.residual_cmap, ckmin, ckmax)) axr.add_artist(ellipser) # --> set axes properties # data axd.set_xlim(self.ew_limits) axd.set_ylim(self.ns_limits) axd.set_xlabel('Easting ({0})'.format(self.map_scale), fontdict=font_dict) axd.set_ylabel('Northing ({0})'.format(self.map_scale), fontdict=font_dict) # make a colorbar for phase tensors # bb = axd.axes.get_position().bounds bb = axd.get_position().bounds y1 = .25 * (2 + (self.ns_limits[1] - self.ns_limits[0]) / (self.ew_limits[1] - self.ew_limits[0])) cb_location = (3.35 * bb[2] / 5 + bb[0], y1 * self.cb_pt_pad, .295 * bb[2], .02) cbaxd = fig.add_axes(cb_location) cbd = mcb.ColorbarBase(cbaxd, cmap=mtcl.cmapdict[self.ellipse_cmap], norm=Normalize(vmin=ckmin, vmax=ckmax), orientation='horizontal') cbd.ax.xaxis.set_label_position('top') cbd.ax.xaxis.set_label_coords(.5, 1.75) cbd.set_label(mtplottools.ckdict[self.ellipse_colorby]) cbd.set_ticks(np.arange(ckmin, ckmax + self.cb_tick_step, self.cb_tick_step)) axd.text(self.ew_limits[0] * .95, self.ns_limits[1] * .95, 'Data', horizontalalignment='left', verticalalignment='top', bbox={'facecolor': 'white'}, fontdict={'size': self.font_size + 1}) # Model and residual if self.resp_fn is not None: for aa, ax in enumerate([axm, axr]): ax.set_xlim(self.ew_limits) ax.set_ylim(self.ns_limits) ax.set_xlabel('Easting ({0})'.format(self.map_scale), fontdict=font_dict) plt.setp(ax.yaxis.get_ticklabels(), visible=False) # make a colorbar ontop of axis bb = ax.axes.get_position().bounds y1 = .25 * (2 + (self.ns_limits[1] - self.ns_limits[0]) / (self.ew_limits[1] - self.ew_limits[0])) cb_location = (3.35 * bb[2] / 5 + bb[0], y1 * self.cb_pt_pad, .295 * bb[2], .02) cbax = fig.add_axes(cb_location) if aa == 0: cb = mcb.ColorbarBase(cbax, cmap=mtcl.cmapdict[self.ellipse_cmap], norm=Normalize(vmin=ckmin, vmax=ckmax), orientation='horizontal') cb.ax.xaxis.set_label_position('top') cb.ax.xaxis.set_label_coords(.5, 1.75) cb.set_label(mtplottools.ckdict[self.ellipse_colorby]) cb.set_ticks(np.arange(ckmin, ckmax + self.cb_tick_step, self.cb_tick_step)) ax.text(self.ew_limits[0] * .95, self.ns_limits[1] * .95, 'Model', horizontalalignment='left', verticalalignment='top', bbox={'facecolor': 'white'}, fontdict={'size': self.font_size + 1}) else: cb = mcb.ColorbarBase(cbax, cmap=mtcl.cmapdict[self.residual_cmap], norm=Normalize(vmin=rcmin, vmax=rcmax), orientation='horizontal') cb.ax.xaxis.set_label_position('top') cb.ax.xaxis.set_label_coords(.5, 1.75) cb.set_label(r"$\sqrt{\Phi_{min} \Phi_{max}}$") cb_ticks = [rcmin, (rcmax - rcmin) / 2, rcmax] cb.set_ticks(cb_ticks) ax.text(self.ew_limits[0] * .95, self.ns_limits[1] * .95, 'Residual', horizontalalignment='left', verticalalignment='top', bbox={'facecolor': 'white'}, fontdict={'size': self.font_size + 1}) if self.model_fn is not None: for ax in ax_list: ax.tick_params(direction='out') bb = ax.axes.get_position().bounds y1 = .25 * (2 - (self.ns_limits[1] - self.ns_limits[0]) / (self.ew_limits[1] - self.ew_limits[0])) cb_position = (3.0 * bb[2] / 5 + bb[0], y1 * self.cb_res_pad, .35 * bb[2], .02) cbax = fig.add_axes(cb_position) cb = mcb.ColorbarBase(cbax, cmap=self.res_cmap, norm=Normalize(vmin=self.res_limits[0], vmax=self.res_limits[1]), orientation='horizontal') cb.ax.xaxis.set_label_position('top') cb.ax.xaxis.set_label_coords(.5, 1.5) cb.set_label('Resistivity ($\Omega \cdot$m)') cb_ticks = np.arange(np.floor(self.res_limits[0]), np.ceil(self.res_limits[1] + 1), 1) cb.set_ticks(cb_ticks) cb.set_ticklabels([mtplottools.labeldict[ctk] for ctk in cb_ticks]) plt.show() self.fig_list.append(fig) def redraw_plot(self): """ redraw plot if parameters were changed use this function if you updated some attributes and want to re-plot. :Example: :: >>> # change the color and marker of the xy components >>> import mtpy.modeling.occam2d as occam2d >>> ocd = occam2d.Occam2DData(r"/home/occam2d/Data.dat") >>> p1 = ocd.plotAllResponses() >>> #change line width >>> p1.lw = 2 >>> p1.redraw_plot() """ for fig in self.fig_list: plt.close(fig) self.plot() def save_figure(self, save_path=None, fig_dpi=None, file_format='pdf', orientation='landscape', close_fig='y'): """ save_figure will save the figure to save_fn. Arguments: ----------- **save_fn** : string full path to save figure to, can be input as * directory path -> the directory path to save to in which the file will be saved as save_fn/station_name_PhaseTensor.file_format * full path -> file will be save to the given path. If you use this option then the format will be assumed to be provided by the path **file_format** : [ pdf | eps | jpg | png | svg ] file type of saved figure pdf,svg,eps... **orientation** : [ landscape | portrait ] orientation in which the file will be saved *default* is portrait **fig_dpi** : int The resolution in dots-per-inch the file will be saved. If None then the dpi will be that at which the figure was made. I don't think that it can be larger than dpi of the figure. **close_plot** : [ y | n ] * 'y' will close the plot after saving. * 'n' will leave plot open :Example: :: >>> # to save plot as jpg >>> import mtpy.modeling.occam2d as occam2d >>> dfn = r"/home/occam2d/Inv1/data.dat" >>> ocd = occam2d.Occam2DData(dfn) >>> ps1 = ocd.plotPseudoSection() >>> ps1.save_plot(r'/home/MT/figures', file_format='jpg') """ if fig_dpi is None: fig_dpi = self.fig_dpi if not os.path.isdir(save_path): try: os.mkdir(save_path) except: raise IOError('Need to input a correct directory path') for fig in self.fig_list: per = fig.canvas.get_window_title() save_fn = os.path.join(save_path, 'PT_DepthSlice_{0}s.{1}'.format( per, file_format)) fig.savefig(save_fn, dpi=fig_dpi, format=file_format, orientation=orientation, bbox_inches='tight') if close_fig == 'y': plt.close(fig) else: pass self.fig_fn = save_fn print ('Saved figure to: ' + self.fig_fn)
def modem2geotiff(data_file, model_file, output_file, source_proj=None): """ Generate an output geotiff file from a modems.dat file and related modems.rho model file :param data_file: modem.dat :param model_file: modem.rho :param output_file: output.tif :param source_proj: None by defult. The UTM zone infered from the input non-uniform grid parameters :return: """ # Define Data and Model Paths data = Data() data.read_data_file(data_fn=data_file) # create a model object using the data object and read in model data model = Model(data_obj=data) model.read_model_file(model_fn=model_file) center = data.center_point if source_proj is None: zone_number, is_northern, utm_zone = gis_tools.get_utm_zone( center.lat.item(), center.lon.item()) #source_proj = Proj('+proj=utm +zone=%d +%s +datum=%s' % (zone_number, 'north' if is_northern else 'south', 'WGS84')) epsg_code = gis_tools.get_epsg(center.lat.item(), center.lon.item()) print("Input data epsg code is infered as ", epsg_code) else: epsg_code = source_proj # integer source_proj = Proj(init='epsg:' + str(epsg_code)) resistivity_data = { 'x': center.east.item() + (model.grid_east[1:] + model.grid_east[:-1]) / 2, 'y': center.north.item() + (model.grid_north[1:] + model.grid_north[:-1]) / 2, 'z': (model.grid_z[1:] + model.grid_z[:-1]) / 2, 'resistivity': np.transpose(model.res_model, axes=(2, 0, 1)) } grid_proj = Proj( init='epsg:4326') # output grid Coordinate systems: 4326, 4283, 3112 # grid_proj = Proj(init='epsg:4283') # output grid Coordinate system 4326, 4283, 3112 # grid_proj = Proj(init='epsg:3112') # output grid Coordinate system 4326, 4283, 3112 result = modem2nc.interpolate(resistivity_data, source_proj, grid_proj, center, modem2nc.median_spacing(model.grid_east), modem2nc.median_spacing(model.grid_north)) # nc.write_resistivity_grid(output_file, grid_proj, # result['latitude'], result['longitude'], result['depth'], # result['resistivity'], z_label='depth') print("result['latitude'] ==", result['latitude']) print("result['longitude'] ==", result['longitude']) print("result['depth'] ==", result['depth']) origin = (result['latitude'][0], result['longitude'][0]) pixel_width = result['longitude'][1] - result['longitude'][0] pixel_height = result['latitude'][1] - result['latitude'][0] # write the depth_index depth_index = 1 resis_data = result['resistivity'][depth_index, :, :] resis_data2 = resis_data[:: -1] # flipped upside down to get geotiff mapped correctly. array2geotiff_writer(output_file, origin, pixel_width, pixel_height, resis_data2) return output_file
class PlotPTMaps(mtplottools.MTEllipse): """ Plot phase tensor maps including residual pt if response file is input. :Plot only data for one period: :: >>> import mtpy.modeling.ws3dinv as ws >>> dfn = r"/home/MT/ws3dinv/Inv1/WSDataFile.dat" >>> ptm = ws.PlotPTMaps(data_fn=dfn, plot_period_list=[0]) :Plot data and model response: :: >>> import mtpy.modeling.ws3dinv as ws >>> dfn = r"/home/MT/ws3dinv/Inv1/WSDataFile.dat" >>> rfn = r"/home/MT/ws3dinv/Inv1/Test_resp.00" >>> mfn = r"/home/MT/ws3dinv/Inv1/Test_model.00" >>> ptm = ws.PlotPTMaps(data_fn=dfn, resp_fn=rfn, model_fn=mfn, >>> ... plot_period_list=[0]) >>> # adjust colorbar >>> ptm.cb_res_pad = 1.25 >>> ptm.redraw_plot() ========================== ================================================ Attributes Description ========================== ================================================ cb_pt_pad percentage from top of axes to place pt color bar. *default* is .90 cb_res_pad percentage from bottom of axes to place resistivity color bar. *default* is 1.2 cb_residual_tick_step tick step for residual pt. *default* is 3 cb_tick_step tick step for phase tensor color bar, *default* is 45 data np.ndarray(n_station, n_periods, 2, 2) impedance tensors for station data data_fn full path to data fle dscale scaling parameter depending on map_scale ellipse_cmap color map for pt ellipses. *default* is mt_bl2gr2rd ellipse_colorby [ 'skew' | 'skew_seg' | 'phimin' | 'phimax'| 'phidet' | 'ellipticity' ] parameter to color ellipses by. *default* is 'phimin' ellipse_range (min, max, step) min and max of colormap, need to input step if plotting skew_seg ellipse_size relative size of ellipses in map_scale ew_limits limits of plot in e-w direction in map_scale units. *default* is None, scales to station area fig_aspect aspect of figure. *default* is 1 fig_dpi resolution in dots-per-inch. *default* is 300 fig_list list of matplotlib.figure instances for each figure plotted. fig_size [width, height] in inches of figure window *default* is [6, 6] font_size font size of ticklabels, axes labels are font_size+2. *default* is 7 grid_east relative location of grid nodes in e-w direction in map_scale units grid_north relative location of grid nodes in n-s direction in map_scale units grid_z relative location of grid nodes in z direction in map_scale units model_fn full path to initial file map_scale [ 'km' | 'm' ] distance units of map. *default* is km mesh_east np.meshgrid(grid_east, grid_north, indexing='ij') mesh_north np.meshgrid(grid_east, grid_north, indexing='ij') model_fn full path to model file nodes_east relative distance betwen nodes in e-w direction in map_scale units nodes_north relative distance betwen nodes in n-s direction in map_scale units nodes_z relative distance betwen nodes in z direction in map_scale units ns_limits (min, max) limits of plot in n-s direction *default* is None, viewing area is station area pad_east padding from extreme stations in east direction pad_north padding from extreme stations in north direction period_list list of periods from data plot_grid [ 'y' | 'n' ] 'y' to plot grid lines *default* is 'n' plot_period_list list of period index values to plot *default* is None plot_yn ['y' | 'n' ] 'y' to plot on instantiation *default* is 'y' res_cmap colormap for resisitivity values. *default* is 'jet_r' res_limits (min, max) resistivity limits in log scale *default* is (0, 4) res_model np.ndarray(n_north, n_east, n_vertical) of model resistivity values in linear scale residual_cmap color map for pt residuals. *default* is 'mt_wh2or' resp np.ndarray(n_stations, n_periods, 2, 2) impedance tensors for model response resp_fn full path to response file save_path directory to save figures to save_plots [ 'y' | 'n' ] 'y' to save plots to save_path station_east location of stations in east direction in map_scale units station_fn full path to station locations file station_names station names station_north location of station in north direction in map_scale units subplot_bottom distance between axes and bottom of figure window subplot_left distance between axes and left of figure window subplot_right distance between axes and right of figure window subplot_top distance between axes and top of figure window title titiel of plot *default* is depth of slice xminorticks location of xminorticks yminorticks location of yminorticks ========================== ================================================ """ def __init__(self, data_fn=None, resp_fn=None, model_fn=None, **kwargs): # MTEllipse.__init__(self, **kwargs) super(PlotPTMaps, self).__init__(**kwargs) self.model_fn = model_fn self.data_fn = data_fn self.resp_fn = resp_fn self.save_path = kwargs.pop('save_path', None) if self.model_fn is not None and self.save_path is None: self.save_path = os.path.dirname(self.model_fn) elif self.model_fn is not None and self.save_path is None: self.save_path = os.path.dirname(self.model_fn) if self.save_path is not None: if not os.path.exists(self.save_path): os.mkdir(self.save_path) self.save_plots = kwargs.pop('save_plots', 'y') self.plot_period_list = kwargs.pop('plot_period_list', None) self.period_dict = None self.d_index = kwargs.pop('d_index', None) self.map_scale = kwargs.pop('map_scale', 'km') # make map scale if self.map_scale == 'km': self.dscale = 1000. elif self.map_scale == 'm': self.dscale = 1. self.ew_limits = kwargs.pop('ew_limits', None) self.ns_limits = kwargs.pop('ns_limits', None) self.pad_east = kwargs.pop('pad_east', 2000) self.pad_north = kwargs.pop('pad_north', 2000) self.plot_grid = kwargs.pop('plot_grid', 'n') self.fig_num = kwargs.pop('fig_num', 1) self.fig_size = kwargs.pop('fig_size', [6, 6]) self.fig_dpi = kwargs.pop('dpi', 300) self.fig_aspect = kwargs.pop('fig_aspect', 1) self.title = kwargs.pop('title', 'on') self.fig_list = [] self.xminorticks = kwargs.pop('xminorticks', 1000) self.yminorticks = kwargs.pop('yminorticks', 1000) self.residual_cmap = kwargs.pop('residual_cmap', 'mt_wh2or') self.font_size = kwargs.pop('font_size', 7) self.cb_tick_step = kwargs.pop('cb_tick_step', 45) self.cb_residual_tick_step = kwargs.pop('cb_residual_tick_step', 3) self.cb_pt_pad = kwargs.pop('cb_pt_pad', 1.2) self.cb_res_pad = kwargs.pop('cb_res_pad', .5) self.res_limits = kwargs.pop('res_limits', (0, 4)) self.res_cmap = kwargs.pop('res_cmap', 'jet_r') # --> set the ellipse properties ------------------- self._ellipse_dict = kwargs.pop( 'ellipse_dict', { 'size': 2, 'ellipse_range': [0, 0], 'ellipse_colorby': 'skew', 'ellipse_cmap': 'mt_bl2gr2rd' }) self._read_ellipse_dict(self._ellipse_dict) self.ellipse_size = kwargs.pop('ellipse_size', self._ellipse_dict['size']) self.subplot_right = .99 self.subplot_left = .085 self.subplot_top = .92 self.subplot_bottom = .1 self.subplot_hspace = .2 self.subplot_wspace = .05 self.data_obj = None self.resp_obj = None self.model_obj = None self.period_list = None self.pt_data_arr = None self.pt_resp_arr = None self.pt_resid_arr = None # FZ: do not call plot in the constructor! it's not pythonic self.plot_yn = kwargs.pop('plot_yn', 'n') if self.plot_yn == 'y': self.plot() def _read_files(self): """ get information from files """ # --> read in data file self.data_obj = Data() self.data_obj.read_data_file(self.data_fn) # --> read response file if self.resp_fn is not None: self.resp_obj = Data() self.resp_obj.read_data_file(self.resp_fn) # --> read mode file if self.model_fn is not None: self.model_obj = Model() self.model_obj.read_model_file(self.model_fn) self._get_plot_period_list() self._get_pt() def _get_plot_period_list(self): """ get periods to plot from input or data file """ # --> get period list to plot if self.plot_period_list is None: self.plot_period_list = self.data_obj.period_list else: if isinstance(self.plot_period_list, list): # check if entries are index values or actual periods if isinstance(self.plot_period_list[0], int): self.plot_period_list = [ self.period_list[ii] for ii in self.plot_period_list ] else: pass elif isinstance(self.plot_period_list, int): self.plot_period_list = self.period_list[self.plot_period_list] elif isinstance(self.plot_period_list, float): self.plot_period_list = [self.plot_period_list] self.period_dict = dict([ (key, value) for value, key in enumerate(self.data_obj.period_list) ]) def _get_pt(self): """ put pt parameters into something useful for plotting """ ns = len(self.data_obj.mt_dict.keys()) nf = len(self.data_obj.period_list) data_pt_arr = np.zeros( (nf, ns), dtype=[('phimin', np.float), ('phimax', np.float), ('skew', np.float), ('azimuth', np.float), ('east', np.float), ('north', np.float), ('lon', np.float), ('lat', np.float), ('station', 'S10')]) if self.resp_fn is not None: model_pt_arr = np.zeros( (nf, ns), dtype=[('phimin', np.float), ('phimax', np.float), ('skew', np.float), ('azimuth', np.float), ('east', np.float), ('north', np.float), ('lon', np.float), ('lat', np.float), ('station', 'S10')]) res_pt_arr = np.zeros( (nf, ns), dtype=[('phimin', np.float), ('phimax', np.float), ('skew', np.float), ('azimuth', np.float), ('east', np.float), ('north', np.float), ('lon', np.float), ('lat', np.float), ('geometric_mean', np.float), ('station', 'S10')]) for ii, key in enumerate(self.data_obj.mt_dict.keys()): east = self.data_obj.mt_dict[key].grid_east / self.dscale north = self.data_obj.mt_dict[key].grid_north / self.dscale lon = self.data_obj.mt_dict[key].lon lat = self.data_obj.mt_dict[key].lat dpt = self.data_obj.mt_dict[key].pt data_pt_arr[:, ii]['east'] = east data_pt_arr[:, ii]['north'] = north data_pt_arr[:, ii]['lon'] = lon data_pt_arr[:, ii]['lat'] = lat data_pt_arr[:, ii]['phimin'] = dpt.phimin data_pt_arr[:, ii]['phimax'] = dpt.phimax data_pt_arr[:, ii]['azimuth'] = dpt.azimuth data_pt_arr[:, ii]['skew'] = dpt.beta data_pt_arr[:, ii]['station'] = self.data_obj.mt_dict[key].station if self.resp_fn is not None: mpt = self.resp_obj.mt_dict[key].pt try: rpt = mtpt.ResidualPhaseTensor(pt_object1=dpt, pt_object2=mpt) rpt = rpt.residual_pt res_pt_arr[:, ii]['east'] = east res_pt_arr[:, ii]['north'] = north res_pt_arr[:, ii]['lon'] = lon res_pt_arr[:, ii]['lat'] = lat res_pt_arr[:, ii]['phimin'] = rpt.phimin res_pt_arr[:, ii]['phimax'] = rpt.phimax res_pt_arr[:, ii]['azimuth'] = rpt.azimuth res_pt_arr[:, ii]['skew'] = rpt.beta res_pt_arr[:, ii]['station'] = self.data_obj.mt_dict[ key].station res_pt_arr[:, ii]['geometric_mean'] = np.sqrt( abs(rpt.phimin[0] * rpt.phimax[0])) except mtex.MTpyError_PT: print key, dpt.pt.shape, mpt.pt.shape model_pt_arr[:, ii]['east'] = east model_pt_arr[:, ii]['north'] = north model_pt_arr[:, ii]['lon'] = lon model_pt_arr[:, ii]['lat'] = lat model_pt_arr[:, ii]['phimin'] = mpt.phimin model_pt_arr[:, ii]['phimax'] = mpt.phimax model_pt_arr[:, ii]['azimuth'] = mpt.azimuth model_pt_arr[:, ii]['skew'] = mpt.beta model_pt_arr[:, ii]['station'] = self.data_obj.mt_dict[ key].station # make these attributes self.pt_data_arr = data_pt_arr if self.resp_fn is not None: self.pt_resp_arr = model_pt_arr self.pt_resid_arr = res_pt_arr def plot_on_axes(self, ax, m, periodIdx, ptarray='data', ellipse_size_factor=10000, cvals=None, map_scale='m', centre_shift=[0, 0], **kwargs): ''' Plots phase tensors for a given period index. :param ax: plot axis :param m: basemap instance :param periodIdx: period index :param ptarray: name of data-array to access for retrieving attributes; can be either 'data', 'resp' or 'resid' :param ellipse_size_factor: factor to control ellipse size :param cvals: list of colour values for colouring each ellipse; must be of the same length as the number of tuples for each period :param map_scale: map length scale :param kwargs: list of relevant matplotlib arguments (e.g. zorder, alpha, etc.) ''' assert (periodIdx >= 0 and periodIdx < len(self.plot_period_list)), \ 'Error: Index for plot-period out of bounds.' k = periodIdx pt_array = getattr(self, 'pt_' + ptarray + '_arr') for i in range(len(pt_array[k])): lon = pt_array[k]['lon'][i] lat = pt_array[k]['lat'][i] phimax = pt_array[k]['phimax'][i] / pt_array[k]['phimax'].max() phimin = pt_array[k]['phimin'][i] / pt_array[k]['phimax'].max() az = pt_array[k]['azimuth'][i] if ptarray == 'resid': phimin = np.abs(phimin) nskew = pt_array[k]['skew'][i] # print az if (phimax > 0 and phimin > 0): c = None if (cvals is not None): c = cvals[i] if (c is not None): kwargs['facecolor'] = c if m is None: x = pt_array[k]['east'][i] y = pt_array[k]['north'][i] if map_scale == 'km': x /= 1e3 y /= 1e3 else: x, y = m(lon, lat) e = Ellipse([x, y], phimax * ellipse_size_factor, phimin * ellipse_size_factor, az, **kwargs) ax.add_artist(e) # end if # end for # end func def plot(self, period=0, save2file=None, **kwargs): """ Plot phase tensor maps for data and or response, each figure is of a different period. If response is input a third column is added which is the residual phase tensor showing where the model is not fitting the data well. The data is plotted in km. Args: period: the period index to plot, default=0 Returns: """ print("The input parameter period is", period) # --> read in data first if self.data_obj is None: self._read_files() # set plot properties plt.rcParams['font.size'] = self.font_size plt.rcParams['figure.subplot.left'] = self.subplot_left plt.rcParams['figure.subplot.right'] = self.subplot_right plt.rcParams['figure.subplot.bottom'] = self.subplot_bottom plt.rcParams['figure.subplot.top'] = self.subplot_top font_dict = {'size': self.font_size + 2, 'weight': 'bold'} # make a grid of subplots gs = gridspec.GridSpec(1, 3, hspace=self.subplot_hspace, wspace=self.subplot_wspace) # set some parameters for the colorbar ckmin = float(self.ellipse_range[0]) ckmax = float(self.ellipse_range[1]) try: ckstep = float(self.ellipse_range[2]) except IndexError: if self.ellipse_cmap == 'mt_seg_bl2wh2rd': raise ValueError('Need to input range as (min, max, step)') else: ckstep = 3 bounds = np.arange(ckmin, ckmax + ckstep, ckstep) # set plot limits to be the station area if self.ew_limits is None: east_min = self.data_obj.data_array['rel_east'].min() - \ self.pad_east east_max = self.data_obj.data_array['rel_east'].max() + \ self.pad_east self.ew_limits = (east_min / self.dscale, east_max / self.dscale) if self.ns_limits is None: north_min = self.data_obj.data_array['rel_north'].min() - \ self.pad_north north_max = self.data_obj.data_array['rel_north'].max() + \ self.pad_north self.ns_limits = (north_min / self.dscale, north_max / self.dscale) # -------------plot phase tensors------------------------------------ if period > len(self.plot_period_list) - 1: print("Error: the period exceeds the max value:", len(self.plot_period_list) - 1) # FZ: changed below to plot a given period index # for ff, per in enumerate(self.plot_period_list): for ff, per in enumerate(self.plot_period_list[period:period + 1]): # FZ print(ff, per) print(self.plot_period_list) data_ii = self.period_dict[per] print 'Plotting Period: {0:.5g}'.format(per) fig = plt.figure('{0:.5g}'.format(per), figsize=self.fig_size, dpi=self.fig_dpi) fig.clf() if self.resp_fn is not None: axd = fig.add_subplot(gs[0, 0], aspect='equal') axm = fig.add_subplot(gs[0, 1], aspect='equal') axr = fig.add_subplot(gs[0, 2], aspect='equal') ax_list = [axd, axm, axr] else: axd = fig.add_subplot(gs[0, :], aspect='equal') ax_list = [axd] # plot model below the phase tensors if self.model_fn is not None: gridzcentre = np.mean( [self.model_obj.grid_z[1:], self.model_obj.grid_z[:-1]], axis=0) if self.d_index is not None: approx_depth, d_index = ws.estimate_skin_depth( self.model_obj.res_model.copy(), gridzcentre / self.dscale, per, dscale=self.dscale) else: d_index = self.d_index approx_depth = self.model_obj.grid_z[d_index] # need to add an extra row and column to east and north to make sure # all is plotted see pcolor for details. plot_east = np.append(self.model_obj.grid_east, self.model_obj.grid_east[-1] * 1.25) / \ self.dscale plot_north = np.append(self.model_obj.grid_north, self.model_obj.grid_north[-1] * 1.25) / \ self.dscale # make a mesh grid for plotting # the 'ij' makes sure the resulting grid is in east, north try: self.mesh_east, self.mesh_north = np.meshgrid( plot_east, plot_north, indexing='ij') except TypeError: self.mesh_east, self.mesh_north = [ arr.T for arr in np.meshgrid(plot_east, plot_north) ] for ax in ax_list: plot_res = np.log10(self.model_obj.res_model[:, :, d_index].T) ax.pcolormesh(self.mesh_east, self.mesh_north, plot_res, cmap=self.res_cmap, vmin=self.res_limits[0], vmax=self.res_limits[1]) # --> plot data phase tensors for pt in self.pt_data_arr[data_ii]: eheight = pt['phimin'] / \ self.pt_data_arr[data_ii]['phimax'].max() * \ self.ellipse_size ewidth = pt['phimax'] / \ self.pt_data_arr[data_ii]['phimax'].max() * \ self.ellipse_size ellipse = Ellipse((pt['east'], pt['north']), width=ewidth, height=eheight, angle=90 - pt['azimuth'], **kwargs) # get ellipse color if self.ellipse_cmap.find('seg') > 0: ellipse.set_facecolor( mtcl.get_plot_color(pt[self.ellipse_colorby], self.ellipse_colorby, self.ellipse_cmap, ckmin, ckmax, bounds=bounds)) else: ellipse.set_facecolor( mtcl.get_plot_color(pt[self.ellipse_colorby], self.ellipse_colorby, self.ellipse_cmap, ckmin, ckmax)) axd.add_artist(ellipse) # -----------plot response phase tensors--------------- if self.resp_fn is not None: rcmin = np.floor(self.pt_resid_arr['geometric_mean'].min()) rcmax = np.floor(self.pt_resid_arr['geometric_mean'].max()) for mpt, rpt in zip(self.pt_resp_arr[data_ii], self.pt_resid_arr[data_ii]): eheight = mpt['phimin'] / \ self.pt_resp_arr[data_ii]['phimax'].max() * \ self.ellipse_size ewidth = mpt['phimax'] / \ self.pt_resp_arr[data_ii]['phimax'].max() * \ self.ellipse_size ellipsem = Ellipse((mpt['east'], mpt['north']), width=ewidth, height=eheight, angle=90 - mpt['azimuth'], **kwargs) # get ellipse color if self.ellipse_cmap.find('seg') > 0: ellipsem.set_facecolor( mtcl.get_plot_color(mpt[self.ellipse_colorby], self.ellipse_colorby, self.ellipse_cmap, ckmin, ckmax, bounds=bounds)) else: ellipsem.set_facecolor( mtcl.get_plot_color(mpt[self.ellipse_colorby], self.ellipse_colorby, self.ellipse_cmap, ckmin, ckmax)) axm.add_artist(ellipsem) # -----------plot residual phase tensors--------------- eheight = rpt['phimin'] / \ self.pt_resid_arr[data_ii]['phimax'].max() * \ self.ellipse_size ewidth = rpt['phimax'] / \ self.pt_resid_arr[data_ii]['phimax'].max() * \ self.ellipse_size ellipser = Ellipse((rpt['east'], rpt['north']), width=ewidth, height=eheight, angle=rpt['azimuth'], **kwargs) # get ellipse color rpt_color = np.sqrt(abs(rpt['phimin'] * rpt['phimax'])) if self.ellipse_cmap.find('seg') > 0: ellipser.set_facecolor( mtcl.get_plot_color(rpt_color, 'geometric_mean', self.residual_cmap, ckmin, ckmax, bounds=bounds)) else: ellipser.set_facecolor( mtcl.get_plot_color(rpt_color, 'geometric_mean', self.residual_cmap, ckmin, ckmax)) axr.add_artist(ellipser) # --> set axes properties # data axd.set_xlim(self.ew_limits) axd.set_ylim(self.ns_limits) axd.set_xlabel('Easting ({0})'.format(self.map_scale), fontdict=font_dict) axd.set_ylabel('Northing ({0})'.format(self.map_scale), fontdict=font_dict) # make a colorbar for phase tensors # bb = axd.axes.get_position().bounds bb = axd.get_position().bounds y1 = .25 * (2 + (self.ns_limits[1] - self.ns_limits[0]) / (self.ew_limits[1] - self.ew_limits[0])) cb_location = (3.35 * bb[2] / 5 + bb[0], y1 * self.cb_pt_pad, .295 * bb[2], .02) cbaxd = fig.add_axes(cb_location) cbd = mcb.ColorbarBase(cbaxd, cmap=mtcl.cmapdict[self.ellipse_cmap], norm=Normalize(vmin=ckmin, vmax=ckmax), orientation='horizontal') cbd.ax.xaxis.set_label_position('top') cbd.ax.xaxis.set_label_coords(.5, 1.75) cbd.set_label(mtplottools.ckdict[self.ellipse_colorby]) cbd.set_ticks( np.arange(ckmin, ckmax + self.cb_tick_step, self.cb_tick_step)) axd.text(self.ew_limits[0] * .95, self.ns_limits[1] * .95, 'Data', horizontalalignment='left', verticalalignment='top', bbox={'facecolor': 'white'}, fontdict={'size': self.font_size + 1}) # Model and residual if self.resp_fn is not None: for aa, ax in enumerate([axm, axr]): ax.set_xlim(self.ew_limits) ax.set_ylim(self.ns_limits) ax.set_xlabel('Easting ({0})'.format(self.map_scale), fontdict=font_dict) plt.setp(ax.yaxis.get_ticklabels(), visible=False) # make a colorbar ontop of axis bb = ax.axes.get_position().bounds y1 = .25 * (2 + (self.ns_limits[1] - self.ns_limits[0]) / (self.ew_limits[1] - self.ew_limits[0])) cb_location = (3.35 * bb[2] / 5 + bb[0], y1 * self.cb_pt_pad, .295 * bb[2], .02) cbax = fig.add_axes(cb_location) if aa == 0: cb = mcb.ColorbarBase( cbax, cmap=mtcl.cmapdict[self.ellipse_cmap], norm=Normalize(vmin=ckmin, vmax=ckmax), orientation='horizontal') cb.ax.xaxis.set_label_position('top') cb.ax.xaxis.set_label_coords(.5, 1.75) cb.set_label(mtplottools.ckdict[self.ellipse_colorby]) cb.set_ticks( np.arange(ckmin, ckmax + self.cb_tick_step, self.cb_tick_step)) ax.text(self.ew_limits[0] * .95, self.ns_limits[1] * .95, 'Model', horizontalalignment='left', verticalalignment='top', bbox={'facecolor': 'white'}, fontdict={'size': self.font_size + 1}) else: cb = mcb.ColorbarBase( cbax, cmap=mtcl.cmapdict[self.residual_cmap], norm=Normalize(vmin=rcmin, vmax=rcmax), orientation='horizontal') cb.ax.xaxis.set_label_position('top') cb.ax.xaxis.set_label_coords(.5, 1.75) cb.set_label(r"$\sqrt{\Phi_{min} \Phi_{max}}$") cb_ticks = [rcmin, (rcmax - rcmin) / 2, rcmax] cb.set_ticks(cb_ticks) ax.text(self.ew_limits[0] * .95, self.ns_limits[1] * .95, 'Residual', horizontalalignment='left', verticalalignment='top', bbox={'facecolor': 'white'}, fontdict={'size': self.font_size + 1}) if self.model_fn is not None: for ax in ax_list: ax.tick_params(direction='out') bb = ax.axes.get_position().bounds y1 = .25 * (2 - (self.ns_limits[1] - self.ns_limits[0]) / (self.ew_limits[1] - self.ew_limits[0])) cb_position = (3.0 * bb[2] / 5 + bb[0], y1 * self.cb_res_pad, .35 * bb[2], .02) cbax = fig.add_axes(cb_position) cb = mcb.ColorbarBase(cbax, cmap=self.res_cmap, norm=Normalize( vmin=self.res_limits[0], vmax=self.res_limits[1]), orientation='horizontal') cb.ax.xaxis.set_label_position('top') cb.ax.xaxis.set_label_coords(.5, 1.5) cb.set_label('Resistivity ($\Omega \cdot$m)') cb_ticks = np.arange(np.floor(self.res_limits[0]), np.ceil(self.res_limits[1] + 1), 1) cb.set_ticks(cb_ticks) cb.set_ticklabels( [mtplottools.labeldict[ctk] for ctk in cb_ticks]) if save2file is not None: fig.savefig(save2file, dpi=self.fig_dpi, bbox_inches='tight') plt.show() self.fig_list.append(fig) return fig def redraw_plot(self): """ redraw plot if parameters were changed use this function if you updated some attributes and want to re-plot. :Example: :: >>> # change the color and marker of the xy components >>> import mtpy.modeling.occam2d as occam2d >>> ocd = occam2d.Occam2DData(r"/home/occam2d/Data.dat") >>> p1 = ocd.plotAllResponses() >>> #change line width >>> p1.lw = 2 >>> p1.redraw_plot() """ for fig in self.fig_list: plt.close(fig) self.plot() def _get_pt_data_list(self, attribute, xykeys=['east', 'north']): headerlist = ['period', 'station'] + xykeys + \ ['azimuth', 'phimin', 'phimax', 'skew'] data = getattr(self, attribute).T.copy() indices = np.argsort(data['station'][:, 0]) data = data[indices].T dtype = [] for val in headerlist: if val == 'station': dtype.append((val, 'S10')) else: dtype.append((val, np.float)) data_to_write = np.zeros(np.product(data.shape), dtype=dtype) data_to_write['period'] = np.vstack([self.plot_period_list] * data.shape[1]).T.flatten() for val in headerlist[1:]: if val in ['east', 'north']: data[val] *= self.dscale data_to_write[val] = data[val].flatten() return data_to_write, headerlist def get_period_attributes(self, periodIdx, key, ptarray='data'): ''' Returns, for a given period, a list of attribute values for key (e.g. skew, phimax, etc.). :param periodIdx: index of period; print out _plot_period for periods available :param key: attribute key :param ptarray: name of data-array to access for retrieving attributes; can be either 'data', 'resp' or 'resid' :return: numpy array of attribute values ''' # load data if necessary if self.data_obj is None: self._read_files() assert (periodIdx >= 0 and periodIdx < len(self.plot_period_list)), \ 'Error: Index for plot-period out of bounds.' pk = periodIdx try: vals = getattr(self, 'pt_' + ptarray + '_arr')[pk][key] return vals except: print 'Attribute %s not found' % ('pt_' + ptarray + '_arr') logging.error(traceback.format_exc()) exit(-1) return None # end func def write_pt_data_to_text(self, savepath='.'): if self.pt_data_arr is None: self._read_files() for att in ['pt_data_arr', 'pt_resp_arr', 'pt_resid_arr']: if hasattr(self, att): data_to_write, headerlist = self._get_pt_data_list(att) header = ' '.join(headerlist) filename = op.join(savepath, att[:-4] + '.txt') if att == 'pt_resid_arr': data_to_write['azimuth'] = 90. - data_to_write['azimuth'] np.savetxt(filename, data_to_write, header=header, fmt=[ '%.4e', '%s', '%.2f', '%.2f', '%.2f', '%.2f', '%.2f', '%.3f' ]) def write_pt_data_to_gmt(self, period=None, epsg=None, savepath='.', center_utm=None, colorby='phimin', attribute='data', clim=None): """ write data to plot phase tensor ellipses in gmt. saves a gmt script and text file containing ellipse data provide: period to plot (seconds) epsg for the projection the model was projected to (google "epsg your_projection_name" and you will find it) centre_utm - utm coordinates for centre position of model, if not provided, script will try and extract it from data file colorby - what to colour the ellipses by, 'phimin', 'phimax', or 'skew' attribute - attribute to plot 'data', 'resp', or 'resid' for data, response or residuals """ att = 'pt_{}_arr'.format(attribute) # if centre utm not provided, get station locations from the data # object project = False xykeys = ['lon', 'lat'] if epsg is not None: if center_utm is not None: project = True else: if hasattr(self.data_obj, 'center_position'): if np.all(np.array(self.data_obj.center_position) > 0): project = True center_utm = self.data_obj.project_xy( self.data_obj.center_position[0], self.data_obj.center_position[1], epsg_from=4326, epsg_to=epsg) if project: xykeys = ['east', 'north'] # get text data list data, headerlist = self._get_pt_data_list(att, xykeys=xykeys) # extract relevant columns in correct order periodlist = data['period'] columns = xykeys + [colorby, 'azimuth', 'phimax', 'phimin'] gmtdata = np.vstack([data[i] for i in columns]).T # make a filename based on period if period >= 1.: suffix = '%1i' % round(period) else: nzeros = np.abs(np.int(np.floor(np.log10(period)))) fmt = '%0' + str(nzeros + 1) + 'i' suffix = fmt % (period * 10**nzeros) filename = 'ellipse_' + attribute + '.' + suffix if period is not None: # extract relevant period unique_periods = np.unique(periodlist) closest_period = unique_periods[ np.abs(unique_periods - period) == np.amin(np.abs(unique_periods - period))] # indices to select all occurrances of relevant period (to nearest # 10^-8 s) pind = np.where(np.abs(closest_period - periodlist) < 1e-8)[0] else: # take the first period pind = 0 # select relevant periods periodlist, gmtdata = periodlist[pind], gmtdata[pind] if project: gmtdata[:, 0] += center_utm[0] gmtdata[:, 1] += center_utm[1] # now that x y coordinates are in utm, project to lon/lat self.data_obj.epsg = epsg gmtdata[:, 0], gmtdata[:, 1] = self.data_obj.project_xy( gmtdata[:, 0], gmtdata[:, 1]) # normalise by maximum value of phimax norm = np.amax(gmtdata[:, 4]) gmtdata[:, 5] /= norm gmtdata[:, 4] /= norm if attribute != 'resid': gmtdata[:, 3] = 90. - gmtdata[:, 3] # write to text file in correct format fmt = ['%+11.6f', '%+10.6f'] + ['%+9.4f'] * 2 + ['%8.4f'] * 2 np.savetxt(op.join(savepath, filename), gmtdata, fmt) # write gmt script xmin, xmax = gmtdata[:, 0].min(), gmtdata[:, 0].max() ymin, ymax = gmtdata[:, 1].min(), gmtdata[:, 1].max() pad = min(ymax - ymin, xmax - xmin) / 10. tr = -int(np.log10(20. * (xmax - xmin))) tickspacing = int(np.round(20. * (xmax - xmin), tr)) scalebarlat = int(round(ymax + ymin) / 2.) if clim is None: cr = int(np.ceil(-np.log10(np.amax(gmtdata[:, 2])))) clim = np.round([gmtdata[:, 2].min(), gmtdata[:, 2].max()], cr).astype(int) gmtlines = [ line + '\n' for line in [ 'w={}'.format(xmin - pad), 'e={}'.format(xmax + pad), 's={}'.format(ymin - pad), 'n={}'.format(ymax + pad), r"wesn=$w/$s/$e/$n'r'", '', '# define output file and remove it if it exists', 'PS={}.ps'.format(filename.replace('.', '')), 'rm $PS', '', '# set gmt parameters', 'gmtset FORMAT_GEO_MAP ddd:mm:ss', 'gmtset FONT_ANNOT_PRIMARY 9p,Helvetica,black', 'gmtset MAP_FRAME_TYPE fancy', '', '# make colour palette', 'makecpt -Cpolar -T{}/{} -Z > {}.cpt'.format( clim[0], clim[1], colorby), '', '# draw coastline', 'pscoast -R$wesn -JM18c -W0.5p -Ba1f1/a1f1WSen -Gwhite -Slightgrey -Lfx14c/1c/{}/{}+u -Df -P -K >> $PS' .format(scalebarlat, tickspacing), '', '# draw ellipses', 'psxy {} -R -J -P -Se -C{}.cpt -W0.01p -O >> $PS'.format( filename, colorby), '', '# save to png', 'ps2raster -Tg -A -E400 $PS' ] ] with open(op.join(savepath, 'gmtscript_{}.gmt'.format(attribute)), 'wb') as scriptfile: scriptfile.writelines(gmtlines) def save_figure(self, save_path=None, fig_dpi=None, file_format='pdf', orientation='landscape', close_fig='y'): """ save_figure will save the figure to save_fn. Arguments: ----------- **save_fn** : string full path to save figure to, can be input as * directory path -> the directory path to save to in which the file will be saved as save_fn/station_name_PhaseTensor.file_format * full path -> file will be save to the given path. If you use this option then the format will be assumed to be provided by the path **file_format** : [ pdf | eps | jpg | png | svg ] file type of saved figure pdf,svg,eps... **orientation** : [ landscape | portrait ] orientation in which the file will be saved *default* is portrait **fig_dpi** : int The resolution in dots-per-inch the file will be saved. If None then the dpi will be that at which the figure was made. I don't think that it can be larger than dpi of the figure. **close_plot** : [ y | n ] * 'y' will close the plot after saving. * 'n' will leave plot open :Example: :: >>> # to save plot as jpg >>> import mtpy.modeling.occam2d as occam2d >>> dfn = r"/home/occam2d/Inv1/data.dat" >>> ocd = occam2d.Occam2DData(dfn) >>> ps1 = ocd.plotPseudoSection() >>> ps1.save_plot(r'/home/MT/figures', file_format='jpg') """ if fig_dpi is None: fig_dpi = self.fig_dpi if os.path.isdir(save_path) == False: try: os.mkdir(save_path) except: raise IOError('Need to input a correct directory path') for fig in self.fig_list: per = fig.canvas.get_window_title() save_fn = os.path.join( save_path, 'PT_DepthSlice_{0}s.{1}'.format(per, file_format)) fig.savefig(save_fn, dpi=fig_dpi, format=file_format, orientation=orientation, bbox_inches='tight') if close_fig == 'y': plt.close(fig) else: pass self.fig_fn = save_fn print 'Saved figure to: ' + self.fig_fn
def create_geogrid(data_file, model_file, out_dir, x_pad=None, y_pad=None, z_pad=None, x_res=None, y_res=None, center_lat=None, center_lon=None, epsg_code=None, depths=None, angle=None, rotate_origin=False, log_scale=False): """Generate an output geotiff file and ASCII grid file. Args: data_file (str): Path to the ModEM .dat file. Used to get the grid center point. model_file (str): Path to the ModEM .rho file. out_dir (str): Path to directory for storing output data. Will be created if it does not exist. x_pad (int, optional): Number of east-west padding cells. This number of cells will be cropped from the east and west sides of the grid. If None, pad_east attribute of model will be used. y_pad (int, optional): Number of north-south padding cells. This number of cells will be cropped from the north and south sides of the grid. If None, pad_north attribute of model will be used. z_pad (int, optional): Number of depth padding cells. This number of cells (i.e. slices) will be cropped from the bottom of the grid. If None, pad_z attribute of model will be used. x_res (int, optional): East-west cell size in meters. If None, cell_size_east attribute of model will be used. y_res (int, optional): North-south cell size in meters. If None, cell_size_north of model will be used. epsg_code (int, optional): EPSG code of the model CRS. If None, is inferred from the grid center point. depths (list of int, optional): A list of integers, eg, [0, 100, 500], of the depth in metres of the slice to retrieve. Will find the closes slice to each depth specified. If None, all slices are selected. center_lat (float, optional): Grid center latitude in degrees. If None, the model's center point will be used. center_lon (float, optional): Grid center longitude in degrees. If None, the model's center point will be used. angle (float, optional): Angle in degrees to rotate image by. If None, no rotation is performed. rotate_origin (bool, optional): If True, image will be rotated around the origin (upper left point). If False, the image will be rotated around the center point. log_scale (bool, optional): If True, the data will be scaled using log10. """ if not os.path.exists(out_dir): os.mkdir(out_dir) model = Model() model.read_model_file(model_fn=model_file) data = Data() data.read_data_file(data_fn=data_file) center = data.center_point center_lat = center.lat.item() if center_lat is None else center_lat center_lon = center.lon.item() if center_lon is None else center_lon if epsg_code is None: zone_number, is_northern, utm_zone = gis_tools.get_utm_zone( center_lat, center_lon) epsg_code = gis_tools.get_epsg(center_lat, center_lon) _logger.info( "Input data epsg code has been inferred as {}".format(epsg_code)) print("Loaded model") # Get the center point of the model grid cells to use as points # in a resistivity grid. ce = _get_centers(model.grid_east) cn = _get_centers(model.grid_north) cz = _get_centers(model.grid_z) print("Grid shape with padding: E = {}, N = {}, Z = {}".format( ce.shape, cn.shape, cz.shape)) # Get X, Y, Z paddings x_pad = model.pad_east if x_pad is None else x_pad y_pad = model.pad_north if y_pad is None else y_pad z_pad = model.pad_z if z_pad is None else z_pad print("Stripping padding...") # Remove padding cells from the grid ce = _strip_padding(ce, x_pad) cn = _strip_padding(cn, y_pad) cz = _strip_padding(cz, z_pad, keep_start=True) print("Grid shape without padding: E = {}, N = {}, Z = {}".format( ce.shape, cn.shape, cz.shape)) x_res = model.cell_size_east if x_res is None else x_res y_res = model.cell_size_north if y_res is None else y_res # BM: The cells have been defined by their center point for making # our grid and interpolating the resistivity model over it. For # display purposes, GDAL expects the origin to be the upper-left # corner of the image. So take the upper left-cell and shift it # half a cell west and north so we get the upper-left corner of # the grid as GDAL origin. origin = _get_gdal_origin(ce, x_res, center.east, cn, y_res, center.north) target_gridx, target_gridy = _build_target_grid(ce, x_res, cn, y_res) resgrid_nopad = _strip_resgrid(model.res_model, y_pad, x_pad, z_pad) indicies = _get_depth_indicies(cz, depths) for di in indicies: print("Writing out slice {:.0f}m...".format(cz[di])) data = _interpolate_slice(ce, cn, resgrid_nopad, di, target_gridx, target_gridy, log_scale) if log_scale: output_file = 'DepthSlice{:.0f}m_log10.tif'.format(cz[di]) else: output_file = 'DepthSlice{:.0f}m.tif'.format(cz[di]) output_file = os.path.join(out_dir, output_file) array2geotiff_writer(output_file, origin, x_res, -y_res, data[::-1], epsg_code=epsg_code, angle=angle, center=center, rotate_origin=rotate_origin) print("Complete!") print("Geotiffs are located in '{}'".format(os.path.dirname(output_file))) return output_file
# ============================================================================= inv_path = Path( r"c:\Users\jpeacock\OneDrive - DOI\Geothermal\GreatBasin\modem_inv\gb_01") basename = "gb_z03_t02_c02_046" metadata_path = inv_path.joinpath("netcdf_metadata.json") pad = 12 model_epsg = 32611 # ============================================================================= m = Model() m.read_model_file(inv_path.joinpath(f"{basename}.rho")) d = Data() d.read_data_file(inv_path.joinpath(f"{basename}.dat")) center = d.center_point with open(metadata_path, "r") as fid: metadata = json.load(fid) # need to project points onto a lat/lon grid model_crs = pyproj.CRS(f"epsg:{model_epsg}") x_crs = pyproj.CRS("epsg:4326") translator = pyproj.Transformer.from_crs(model_crs, x_crs) east, north = np.broadcast_arrays( m.grid_north[pad:-(pad + 1), None] + center.north, m.grid_east[None, pad:-(pad + 1)] + center.east, )
import os from scipy.interpolate import RegularGridInterpolator # wd = r'M:\AusLAMP\AusLAMP_NSW\Release\Model_release\MT075_DepthSlice_ArcGIS_ascii_grids' # wdmod = r'C:\Users\u64125\OneDrive - Geoscience Australia\AusLAMP_NSW\Modelling\ModEM\NSWinv141' wd = r'C:\Data\Alison_201910\MyOutput' wdmod = r'C:\Data\Alison_201910\Alison_ModEM_Grid\MT075_ModEM_files' filestem = 'Modular_MPI_NLCG_004' mObj = Model() mObj.read_model_file(os.path.join(wdmod,filestem+'.rho')) dObj = Data() dObj.read_data_file(os.path.join(wdmod,'ModEM_Data.dat')) gce,gcn,gcz = [np.mean([arr[:-1],arr[1:]],axis=0) for arr in [mObj.grid_east,mObj.grid_north,mObj.grid_z]] gce,gcn = gce[6:-6],gcn[6:-6] # padding big-sized edge cells # ge,gn = mObj.grid_east[6:-6],mObj.grid_north[6:-6] print(gce) print(gcn) print(gcz) print("Shapes E, N Z =", gce.shape, gcn.shape, gcz.shape) fileext = '.asc' ascfilelist = [ff for ff in os.listdir(wd) if ff.endswith(fileext)] resgrid_nopad = mObj.res_model[::-1][6:-6,6:-6]
class DataModelAnalysis(object): def __init__(self, filedat, filerho, plot_orient='ew', **kwargs): """Constructor :param filedat: path2file.dat :param filerho: path2file.rho :param plot_orient: plot orientation ['ew','ns', 'z'] """ self.datfile = filedat self.rhofile = filerho # plot orientation 'ns' (north-south),'ew' (east-west) or # 'z' (horizontal slice)) self.plot_orientation = plot_orient # slice location, in local grid coordinates (if it is a z slice, this # is slice depth) # self.slice_location = kwargs.pop('slice_location', 1000) # maximum distance in metres from vertical slice location and station self.station_dist = kwargs.pop('station_dist', 50000) # z limits (positive down so order is reversed) self.zlim = kwargs.pop('zlim', (200000, -2000)) # colour limits self.clim = kwargs.pop('clim', [0.3, 3.7]) self.fig_size = kwargs.pop('fig_size', [12, 10]) self.font_size = kwargs.pop('font_size', 16) self.border_linewidth = 2 self.map_scale = kwargs.pop('map_scale', 'm') # make map scale if self.map_scale == 'km': self.dscale = 1000. elif self.map_scale == 'm': self.dscale = 1. else: print("Unknown map scale:", self.map_scale) self.xminorticks = kwargs.pop('xminorticks', 10000) self.yminorticks = kwargs.pop('yminorticks', 10000) # read in the model data-file and rho-file self._read_model_data() return def _read_model_data(self): self.datObj = Data() self.datObj.read_data_file(data_fn=self.datfile) self.modObj = Model(model_fn=self.rhofile) self.modObj.read_model_file() self.ew_lim = (self.modObj.grid_east[self.modObj.pad_east], self.modObj.grid_east[-self.modObj.pad_east - 1]) self.ns_lim = (self.modObj.grid_north[self.modObj.pad_north], self.modObj.grid_north[-self.modObj.pad_north - 1]) # logger.debug("ns-limit %s", self.ns_lim) # logger.debug("ew-limit %s", self.ew_lim) # logger.info("station name list %s", self.datObj.station_locations['station']) # logger.info("station Lat list %s", self.datObj.station_locations['lat']) return def find_stations_in_meshgrid(self): """ find the (station_Name, sX,sY) its associated index (sI,sJ) in the regular mesh grid (X[i],Y[j]) # print(len(sX), sX) # =number of stations # print(len(sY), sY) # =number of stations :return: station_dict """ station_dict = {} sX, sY = self.datObj.station_locations.rel_east, self.datObj.station_locations.rel_north station_names = self.datObj.station_locations.station station_lats = self.datObj.station_locations.lat station_lons = self.datObj.station_locations.lon # get grid centres (finite element cells centres) gceast, gcnorth = [ np.mean([arr[:-1], arr[1:]], axis=0) for arr in [self.modObj.grid_east, self.modObj.grid_north] ] n_stations = len(sX) for n in xrange(n_stations): xdist = np.abs(gceast - sX[n]) snos = np.where(xdist == np.amin(xdist)) ix = snos[0][0] ydist = np.abs(gcnorth - sY[n]) snos = np.where(ydist == np.amin(ydist)) iy = snos[0][0] logger.debug("Station Index: (%s, %s)", ix, iy) station_dict[(ix, iy)] = [ station_names[n], sX[n], sY[n], station_lats[n], station_lons[n] ] # Todo: get (station_name, lat, long)[n] logger.debug(station_dict) return station_dict def set_plot_orientation(self, orient): """set a new plot orientation for plotting :param orient: z, ew, ns :return: """ if orient in ['z', 'ew', 'ns']: self.plot_orientation = orient else: raise Exception("Error: unknown orientation value= %s" % orient) def get_slice_data(self, slice_location): """ get the resistivity slices at the specified location :param slice_location: :return: slice data """ # get grid centres (finite element cells centres) gcz = np.mean([self.modObj.grid_z[:-1], self.modObj.grid_z[1:]], axis=0) gceast, gcnorth = [ np.mean([arr[:-1], arr[1:]], axis=0) for arr in [self.modObj.grid_east, self.modObj.grid_north] ] # distance from slice to grid centre locations if self.plot_orientation == 'ew': sdist = np.abs(gcnorth - slice_location) snos = np.where(sdist == np.amin(sdist)) sno = snos[0][0] actual_location = gcnorth[sno] elif self.plot_orientation == 'ns': sdist = np.abs(gceast - slice_location) snos = np.where(sdist == np.amin(sdist)) sno = snos[0][0] actual_location = gceast[sno] elif self.plot_orientation == 'z': sdist = np.abs(gcz - slice_location) # find the closest slice index to specified location snos = np.where(sdist == np.amin(sdist)) sno = snos[0][0] actual_location = gcz[sno] print(type(snos), len(snos)) # ((index1), (index2), (index3)) # unpack the index tupple, and get the integer value as index number # sno=snos[0][0] logger.debug( "the slice index number= %s and the actual location is %s", sno, actual_location) # get data for plotting if self.plot_orientation == 'ew': X, Y, res = self.modObj.grid_east, self.modObj.grid_z, np.log10( self.modObj.res_model[sno, :, :].T) ss = np.where( np.abs(self.datObj.station_locations['rel_north'] - np.median(gcnorth)) < self.station_dist)[0] sX, sY = self.datObj.station_locations['rel_east'][ ss], self.datObj.station_locations['elev'][ss] xlim = (self.modObj.grid_east[self.modObj.pad_east[1]], self.modObj.grid_east[-self.modObj.pad_east[1] - 1]) ylim = self.zlim title = 'East-west slice at {} meters north'.format(gcnorth[sno]) elif self.plot_orientation == 'ns': X, Y, res = self.modObj.grid_north, self.modObj.grid_z, np.log10( self.modObj.res_model[:, sno, :].T) # indices for selecting stations close to profile ss = np.where( np.abs(self.datObj.station_locations['rel_east'] - np.median(gceast)) < self.station_dist)[0] sX, sY = self.datObj.station_locations['rel_north'][ ss], self.datObj.station_locations['elev'][ss] xlim = (self.modObj.grid_north[self.modObj.pad_north[1]], self.modObj.grid_north[-self.modObj.pad_north[1] - 1]) ylim = self.zlim title = 'North-south slice at {} meters east'.format(gceast[sno]) elif self.plot_orientation == 'z': # for plotting X == EW Y == NS Y, X, res = self.modObj.grid_north, self.modObj.grid_east, np.log10( self.modObj.res_model[:, :, sno]) sY, sX = self.datObj.station_locations.rel_north, self.datObj.station_locations.rel_east ylim = (self.modObj.grid_north[self.modObj.pad_north], self.modObj.grid_north[-self.modObj.pad_north - 1]) xlim = (self.modObj.grid_east[self.modObj.pad_east], self.modObj.grid_east[-self.modObj.pad_east - 1]) title = 'Horizontal Slice at Depth {} meters'.format(gcz[sno]) return (X, Y, res, sX, sY, xlim, ylim, title, actual_location) def create_csv(self, csvfile='tests/temp/Resistivity.csv'): """ write ressitivity into the csvfile with the output columns: StationName, Lat, Long, X, Y, Z, Log(Resistivity) where (X,Y,Z) are relative distances in meters from the mesh's origin. Projection/Coordinate system must be known in order to associate (Lat, Long) to (X, Y) :return: """ self.set_plot_orientation('z') z_cell_centres = np.mean( [self.modObj.grid_z[:-1], self.modObj.grid_z[1:]], axis=0) # csv_header = ['Station', 'Lat', 'Long', 'X', 'Y', 'Z', 'Log_Resisitivity'] csv_header = [ 'X', 'Y', 'Z', 'Log_Resisitivity', 'StationName', 'StationX', 'StationY', 'Lat', 'Long' ] stationd = self.find_stations_in_meshgrid() csvrows = [] for zslice in z_cell_centres: (X, Y, res, sX, sY, xlim, ylim, title, Z_location) = self.get_slice_data(zslice) # print (X,Y,res) # print(sX,sY) print(len(X), len(Y), Z_location, res.shape, len(sX), len(sY)) for i in xrange(len(X) - 1): for j in xrange(len(Y) - 1): st = stationd.get( (i, j), None ) # filter and subset for station location meshgrids if st is not None: arow = [ X[i], Y[j], Z_location, res[j, i], st[0], st[1], st[2], st[3], st[4], i, j ] csvrows.append(arow) with open(csvfile, "wb") as csvf: writer = csv.writer(csvf) writer.writerow(csv_header) writer.writerows(csvrows) logger.debug("Wrote data into CSV file %s", csvfile) return csvfile def plot_a_slice(self, slice_location=1000): """ create a plot based on the input data and parameters :return: """ (X, Y, res, sX, sY, xlim, ylim, title, actual_location) = self.get_slice_data(slice_location) # make the plot fdict = {'size': self.font_size, 'weight': 'bold'} plt.figure(figsize=self.fig_size) plt.rcParams['font.size'] = self.font_size # plot station locations # print("station locations sX:", sX) # print("station locations sY:", sY) plt.plot(sX, sY, 'kv') # station marker:'kv' mesh_plot = plt.pcolormesh(X, Y, res, cmap='bwr_r') xlim2 = (xlim[0] / self.dscale, xlim[1] / self.dscale) ylim2 = (ylim[0] / self.dscale, ylim[1] / self.dscale) plt.xlim(*xlim) plt.ylim(*ylim) # set title plt.title(title, fontdict=fdict) # if self.plot_orientation == 'z': # plt.gca().set_aspect('equal') # an axis may be too small to view plt.gca().set_aspect('auto') plt.clim(*self.clim) # plt.colorbar() # FZ: fix miss-placed colorbar ax = plt.gca() ax.xaxis.set_minor_locator(MultipleLocator( self.xminorticks)) # /self.dscale ax.yaxis.set_minor_locator(MultipleLocator( self.yminorticks)) # /self.dscale ax.tick_params(axis='both', which='minor', width=2, length=5) ax.tick_params(axis='both', which='major', width=3, length=15, labelsize=20) for axis in ['top', 'bottom', 'left', 'right']: ax.spines[axis].set_linewidth(self.border_linewidth) # ax.tick_params(axis='both', which='major', labelsize=20) # ax.tick_params(axis='both', which='minor', labelsize=20) # http://stackoverflow.com/questions/10171618/changing-plot-scale-by-a-factor-in-matplotlib xticks = ax.get_xticks() / self.dscale ax.set_xticklabels(xticks) yticks = ax.get_yticks() / self.dscale ax.set_yticklabels(yticks) # create an axes on the right side of ax. The width of cax will be 5% # of ax and the padding between cax and ax will be fixed at 0.05 inch. divider = make_axes_locatable(ax) # pad = separation from figure to colorbar cax = divider.append_axes("right", size="5%", pad=0.2) mycb = plt.colorbar(mesh_plot, cax=cax, use_gridspec=True) mycb.outline.set_linewidth(self.border_linewidth) mycb.set_label('Resistivity ($\Omega \cdot$m)', fontdict=fdict) if self.plot_orientation == 'z': ax.set_ylabel('Northing (' + self.map_scale + ')', fontdict=fdict) ax.set_xlabel('Easting (' + self.map_scale + ')', fontdict=fdict) ax.set_aspect(1) if self.plot_orientation == 'ew': ax.set_ylabel('Depth (' + self.map_scale + ')', fontdict=fdict) ax.set_xlabel('Easting (' + self.map_scale + ')', fontdict=fdict) if self.plot_orientation == 'ns': ax.set_ylabel('Depth (' + self.map_scale + ')', fontdict=fdict) ax.set_xlabel('Northing (' + self.map_scale + ')', fontdict=fdict) plt.show() return def plot_multi_slices(self, slice_list=None): """ Visualize multiple slices specified by slice_list. If it is None then will plot every slice at the cell-centres. :param slice_list: :return: """ if slice_list is None: # slice_number = 100 # number of evenly spaced slices if self.plot_orientation == 'ns': # slice_locs = np.linspace(self.ns_lim[0], self.ns_lim[1], num=slice_number # It's better to use cell centres slice_locs = np.mean( [self.modObj.grid_north[:-1], self.modObj.grid_north[1:]], axis=0) if self.plot_orientation == 'ew': slice_locs = np.mean( [self.modObj.grid_east[:-1], self.modObj.grid_east[1:]], axis=0) if self.plot_orientation == 'z': slice_locs = np.mean( [self.modObj.grid_z[:-1], self.modObj.grid_z[1:]], axis=0) else: slice_locs = slice_list logger.debug("Slice locations= %s", slice_locs) logger.debug("Number of slices to be visualised %s", len(slice_locs)) for dist in slice_locs: sdist = int(dist) print("**** The user-input slice location is: ****", sdist) print( "**** The actual location will be at the nearest cell centre ****" ) # plot resistivity image at slices in three orientations at a given slice_location=sdist self.plot_a_slice(slice_location=sdist ) # actual location will be nearest cell centre plt.show()
:author: Jared Peacock :license: MIT """ from mtpy.modeling.modem import Data dfn = r"c:\Users\jpeacock\OneDrive - DOI\Geothermal\GreatBasin\modem_inv\inv_02\gb_modem_data_z03_t02_edits.dat" new_fns = [ r"c:\Users\jpeacock\OneDrive - DOI\Geothermal\GreatBasin\modem_inv\inv_02\edi_files\AVG055.edi", r"c:\Users\jpeacock\OneDrive - DOI\Geothermal\GreatBasin\modem_inv\inv_02\edi_files\AVG056.edi", r"c:\Users\jpeacock\OneDrive - DOI\Geothermal\GreatBasin\modem_inv\inv_02\edi_files\SP05.edi", r"c:\Users\jpeacock\OneDrive - DOI\Geothermal\GreatBasin\modem_inv\inv_02\edi_files\USArray.CAM02.2010.edi", r"c:\Users\jpeacock\OneDrive - DOI\Geothermal\GreatBasin\modem_inv\inv_02\edi_files\USArray.CAM06.2010.edi", ] d = Data() d.read_data_file(dfn) d.error_type_z = "eigen_floor" d.error_value_z = 0.03 d.error_type_tipper = "abs_floor" d.error_value_tipper = 0.02 d.model_epsg = 32611 d.data_array, d.mt_dict = d.add_station(fn=new_fns) d.write_data_file(fn_basename="gb_modem_data_z03_t02_add.dat", compute_error=False, fill=False)
######## inputs ############## wd = r'C:\mtpywin\mtpy\examples\model_files\ModEM_2' savepath = r'C:\test' model_fn = op.join(wd, 'Modular_MPI_NLCG_004.rho') data_fn = op.join(wd, 'ModEM_Data.dat') location_type = 'LL' # 'EN' to save eastings/northings, 'LL' to save longitude/latitude, need to provide model_epsg if using 'LL' model_epsg = 28355 # epsg number model was projected in. common epsg numbers: # 28351 (GDA94, mga zone 51), 28352 (mga zone 52), 28353 (mga zone 53), # 28354 (mga zone 54), 28355 (mga zone 55), 28356 (mga zone 56) # 3112 (Geoscience Australia Lambert) # go to http://spatialreference.org/ref/epsg/?search=&srtext=Search for more info model_utm_zone = '55S' # alternative to epsg, can provide utm zone depth_indices = [44, 45, 46] # indices that define depth ############################## # get the real-world origin from the data file dataObj = Data(data_fn=data_fn, model_epsg=model_epsg) dataObj.read_data_file() origin = [dataObj.center_point['east'][0], dataObj.center_point['north'][0]] modObj = Model() modObj.read_model_file(model_fn=op.join(wd, model_fn)) modObj.write_xyres(origin=origin, savepath=savepath, location_type=location_type, model_epsg=model_epsg, model_utm_zone=None, log_res=True, outfile_basename='GMTtest', depth_index=depth_indices)
stationdist = 50000 # z limits (positive down so order is reversed) zlim = (1e5, -5e3) # colour limits clim = [0.3, 3.7] iterfn = 'Modular_MPI_NLCG_019.rho' datafn = 'ModEM_Data_noise10inv.dat' # END INPUTS # read_data = True if read_data: doo = Data() doo.read_data_file(op.join(modeldir, datafn)) moo = Model(model_fn=op.join(modeldir, iterfn)) moo.read_model_file() # get grid centres gcz = np.mean([moo.grid_z[:-1], moo.grid_z[1:]], axis=0) gceast, gcnorth = [np.mean([arr[:-1], arr[1:]], axis=0) for arr in [moo.grid_east, moo.grid_north]] # distance from slice to grid centre locations if plotdir == 'ew': sdist = np.abs(gcnorth - slice_location) elif plotdir == 'ns': sdist = np.abs(gceast - slice_location) elif plotdir == 'z': sdist = np.abs(gcz - slice_location)
wd = r'C:\mtpywin\mtpy\examples\model_files\ModEM_2' savepath = r'C:/tmp' # get epsg and centre position of model epsg = 28353 # epsg code for projection the model was projected to when creating the grid # define model and data files model_fn = op.join(wd, 'Modular_MPI_NLCG_004.rho') data_fn = op.join(wd, 'ModEM_Data.dat') mObj = Model() mObj.read_model_file(model_fn=model_fn) dObj = Data() dObj.read_data_file(data_fn=data_fn) # get easting and northing of model grid east = mObj.grid_east + dObj.center_point['east'] north = mObj.grid_north + dObj.center_point['north'] # grid centres gcx, gcy = [[np.mean(arr[i:i + 2]) for i in range(len(arr) - 1)] for arr in [east, north]] # make a meshgrid, save the shape east_grid, north_grid = np.meshgrid(east, north) shape = east_grid.shape # project grid to lat, lon lonr, latr = gis_tools.epsg_project(east_grid, north_grid, epsg, 4326)
class PlotRMSMaps(object): """ plots the RMS as (data-model)/(error) in map view for all components of the data file. Gets this infomration from the .res file output by ModEM. Arguments: ------------------ **residual_fn** : string full path to .res file =================== ======================================================= Attributes Description =================== ======================================================= fig matplotlib.figure instance for a single plot fig_dpi dots-per-inch resolution of figure *default* is 200 fig_num number of fig instance *default* is 1 fig_size size of figure in inches [width, height] *default* is [7,6] font_size font size of tick labels, axis labels are +2 *default* is 8 marker marker style for station rms, see matplotlib.line for options, *default* is 's' --> square marker_size size of marker in points. *default* is 10 pad_x padding in map units from edge of the axis to stations at the extremeties in longitude. *default* is 1/2 tick_locator pad_y padding in map units from edge of the axis to stations at the extremeties in latitude. *default* is 1/2 tick_locator period_index index of the period you want to plot according to self.residual.period_list. *default* is 1 plot_yn [ 'y' | 'n' ] default is 'y' to plot on instantiation plot_z_list internal variable for plotting residual modem.Data instance that holds all the information from the residual_fn given residual_fn full path to .res file rms_cmap matplotlib.cm object for coloring the markers rms_cmap_dict dictionary of color values for rms_cmap rms_max maximum rms to plot. *default* is 5.0 rms_min minimum rms to plot. *default* is 1.0 save_path path to save figures to. *default* is directory of residual_fn subplot_bottom spacing from axis to bottom of figure canvas. *default* is .1 subplot_hspace horizontal spacing between subplots. *default* is .1 subplot_left spacing from axis to left of figure canvas. *default* is .1 subplot_right spacing from axis to right of figure canvas. *default* is .9 subplot_top spacing from axis to top of figure canvas. *default* is .95 subplot_vspace vertical spacing between subplots. *default* is .01 tick_locator increment for x and y major ticks. *default* is limits/5 =================== ======================================================= =================== ======================================================= Methods Description =================== ======================================================= plot plot rms maps for a single period plot_loop loop over all frequencies and save figures to save_path read_residual_fn read in residual_fn redraw_plot after updating attributes call redraw_plot to well redraw the plot save_figure save the figure to a file =================== ======================================================= :Example: :: >>> rms_plot = Plot_RMS_Maps(r"/home/ModEM/Inv1/mb_NLCG_030.res") >>> # change some attributes >>> rms_plot.fig_size = [6, 4] >>> rms_plot.rms_max = 3 >>> rms_plot.redraw_plot() >>> # happy with the look now loop over all periods >>> rms_plot.plot_loop() """ def __init__(self, residual_fn, **kwargs): self.residual_fn = residual_fn self.residual = None self.save_path = kwargs.pop( 'save_path', os.path.dirname( self.residual_fn)) self.period_index = kwargs.pop( 'period_index', 0) # where is depth_index? self.subplot_left = kwargs.pop('subplot_left', .1) self.subplot_right = kwargs.pop('subplot_right', .9) self.subplot_top = kwargs.pop('subplot_top', .95) self.subplot_bottom = kwargs.pop('subplot_bottom', .1) self.subplot_hspace = kwargs.pop('subplot_hspace', .1) self.subplot_vspace = kwargs.pop('subplot_vspace', .01) self.font_size = kwargs.pop('font_size', 8) self.fig_size = kwargs.pop('fig_size', [7.75, 6.75]) self.fig_dpi = kwargs.pop('fig_dpi', 200) self.fig_num = kwargs.pop('fig_num', 1) self.fig = None self.marker = kwargs.pop('marker', 's') self.marker_size = kwargs.pop('marker_size', 10) self.rms_max = kwargs.pop('rms_max', 5) self.rms_min = kwargs.pop('rms_min', 0) self.tick_locator = kwargs.pop('tick_locator', None) self.pad_x = kwargs.pop('pad_x', None) self.pad_y = kwargs.pop('pad_y', None) self.plot_yn = kwargs.pop('plot_yn', 'y') # colormap for rms, goes white to black from 0 to rms max and # red below 1 to show where the data is being over fit self.rms_cmap_dict = {'red': ((0.0, 1.0, 1.0), (0.2, 1.0, 1.0), (1.0, 0.0, 0.0)), 'green': ((0.0, 0.0, 0.0), (0.2, 1.0, 1.0), (1.0, 0.0, 0.0)), 'blue': ((0.0, 0.0, 0.0), (0.2, 1.0, 1.0), (1.0, 0.0, 0.0))} self.rms_cmap = colors.LinearSegmentedColormap('rms_cmap', self.rms_cmap_dict, 256) self.plot_z_list = [{'label': r'$Z_{xx}$', 'index': (0, 0), 'plot_num': 1}, {'label': r'$Z_{xy}$', 'index': ( 0, 1), 'plot_num': 2}, {'label': r'$Z_{yx}$', 'index': ( 1, 0), 'plot_num': 3}, {'label': r'$Z_{yy}$', 'index': ( 1, 1), 'plot_num': 4}, {'label': r'$T_{x}$', 'index': ( 0, 0), 'plot_num': 5}, {'label': r'$T_{y}$', 'index': (0, 1), 'plot_num': 6}] if self.plot_yn == 'y': self.plot() def read_residual_fn(self): if self.residual is None: self.residual = Data() self.residual.read_data_file(self.residual_fn) else: pass def plot(self): """ plot rms in map view """ self.read_residual_fn() font_dict = {'size': self.font_size + 2, 'weight': 'bold'} rms_1 = 1. / self.rms_max if self.tick_locator is None: x_locator = np.round((self.residual.data_array['lon'].max() - self.residual.data_array['lon'].min()) / 5, 2) y_locator = np.round((self.residual.data_array['lat'].max() - self.residual.data_array['lat'].min()) / 5, 2) if x_locator > y_locator: self.tick_locator = x_locator elif x_locator < y_locator: self.tick_locator = y_locator if self.pad_x is None: self.pad_x = self.tick_locator / 2 if self.pad_y is None: self.pad_y = self.tick_locator / 2 plt.rcParams['font.size'] = self.font_size plt.rcParams['figure.subplot.left'] = self.subplot_left plt.rcParams['figure.subplot.right'] = self.subplot_right plt.rcParams['figure.subplot.bottom'] = self.subplot_bottom plt.rcParams['figure.subplot.top'] = self.subplot_top plt.rcParams['figure.subplot.wspace'] = self.subplot_hspace plt.rcParams['figure.subplot.hspace'] = self.subplot_vspace self.fig = plt.figure(self.fig_num, self.fig_size, dpi=self.fig_dpi) for p_dict in self.plot_z_list: ax = self.fig.add_subplot(3, 2, p_dict['plot_num'], aspect='equal') ii = p_dict['index'][0] jj = p_dict['index'][0] for r_arr in self.residual.data_array: # calulate the rms self.residual/error if p_dict['plot_num'] < 5: rms = r_arr['z'][self.period_index, ii, jj].__abs__() / \ (r_arr['z_err'][self.period_index, ii, jj].real) else: rms = r_arr['tip'][self.period_index, ii, jj].__abs__() / \ (r_arr['tip_err'][self.period_index, ii, jj].real) # color appropriately if np.nan_to_num(rms) == 0.0: marker_color = (1, 1, 1) marker = '.' marker_size = .1 marker_edge_color = (1, 1, 1) if rms > self.rms_max: marker_color = (0, 0, 0) marker = self.marker marker_size = self.marker_size marker_edge_color = (0, 0, 0) elif rms >= 1 and rms <= self.rms_max: r_color = 1 - rms / self.rms_max + rms_1 marker_color = (r_color, r_color, r_color) marker = self.marker marker_size = self.marker_size marker_edge_color = (0, 0, 0) elif rms < 1: r_color = 1 - rms / self.rms_max marker_color = (1, r_color, r_color) marker = self.marker marker_size = self.marker_size marker_edge_color = (0, 0, 0) ax.plot(r_arr['lon'], r_arr['lat'], marker=marker, ms=marker_size, mec=marker_edge_color, mfc=marker_color, zorder=3) if p_dict['plot_num'] == 1 or p_dict['plot_num'] == 3: ax.set_ylabel('Latitude (deg)', fontdict=font_dict) plt.setp(ax.get_xticklabels(), visible=False) elif p_dict['plot_num'] == 2 or p_dict['plot_num'] == 4: plt.setp(ax.get_xticklabels(), visible=False) plt.setp(ax.get_yticklabels(), visible=False) elif p_dict['plot_num'] == 6: plt.setp(ax.get_yticklabels(), visible=False) ax.set_xlabel('Longitude (deg)', fontdict=font_dict) else: ax.set_xlabel('Longitude (deg)', fontdict=font_dict) ax.set_ylabel('Latitude (deg)', fontdict=font_dict) ax.text(self.residual.data_array['lon'].min() + .005 - self.pad_x, self.residual.data_array['lat'].max() - .005 + self.pad_y, p_dict['label'], verticalalignment='top', horizontalalignment='left', bbox={'facecolor': 'white'}, zorder=3) ax.tick_params(direction='out') ax.grid(zorder=0, color=(.75, .75, .75)) # [line.set_zorder(3) for line in ax.lines] ax.set_xlim(self.residual.data_array['lon'].min() - self.pad_x, self.residual.data_array['lon'].max() + self.pad_x) ax.set_ylim(self.residual.data_array['lat'].min() - self.pad_y, self.residual.data_array['lat'].max() + self.pad_y) ax.xaxis.set_major_locator(MultipleLocator(self.tick_locator)) ax.yaxis.set_major_locator(MultipleLocator(self.tick_locator)) ax.xaxis.set_major_formatter(FormatStrFormatter('%2.2f')) ax.yaxis.set_major_formatter(FormatStrFormatter('%2.2f')) # cb_ax = mcb.make_axes(ax, orientation='vertical', fraction=.1) cb_ax = self.fig.add_axes([self.subplot_right + .02, .225, .02, .45]) color_bar = mcb.ColorbarBase(cb_ax, cmap=self.rms_cmap, norm=colors.Normalize(vmin=self.rms_min, vmax=self.rms_max), orientation='vertical') color_bar.set_label('RMS', fontdict=font_dict) self.fig.suptitle('period = {0:.5g} (s)'.format(self.residual.period_list[self.period_index]), fontdict={'size': self.font_size + 3, 'weight': 'bold'}) plt.show() def redraw_plot(self): plt.close('all') self.plot() def save_figure(self, save_path=None, save_fn_basename=None, save_fig_dpi=None, fig_format='.png', fig_close=True): """ save figure in the desired format """ if save_path is not None: self.save_path = save_path if save_fn_basename is not None: pass else: save_fn_basename = '{0:02}_RMS_{1:.5g}_s.{2}'.format(self.period_index, self.residual.period_list[ self.period_index], fig_format) save_fn = os.path.join(self.save_path, save_fn_basename) if save_fig_dpi is not None: self.fig_dpi = save_fig_dpi self.fig.savefig(save_fn, dpi=self.fig_dpi) print 'saved file to {0}'.format(save_fn) if fig_close == True: plt.close('all') def plot_loop(self, fig_format='png'): """ loop over all periods and save figures accordingly """ self.read_residual_fn() for f_index in range(self.residual.period_list.shape[0]): # FZ: print(self.residual.period_list) print(f_index) self.period_index = f_index self.plot() self.save_figure(fig_format=fig_format)
import numpy as np from mtpy.modeling.modem import Data, Model if __name__ == "__main__": #workdir = r'C:\Git\mtpy\examples\data' workdir = r'E:\Githubz\mtpy\examples\data' modeldir = op.join(workdir, 'ModEM_files') # folder where *.rho files exist read_data = True iterfn = max([ff for ff in os.listdir(modeldir) if ff.endswith('.rho')]) if read_data: doo = Data() doo.read_data_file(op.join(modeldir, 'ModEM_Data.dat')) moo = Model(model_fn=op.join(modeldir, iterfn)) moo.read_model_file() snoew = 10 snons = 10 snoz = np.where(moo.grid_z > 80000)[0][0] gcz = np.mean([moo.grid_z[:-1], moo.grid_z[1:]], axis=0) plotdir = 'ew' if plotdir == 'ew': X, Y, res = moo.grid_east, moo.grid_z, np.log10( moo.res_model[snoew, :, :].T) xlim = (-25000, 25000) ylim = (1e4, 0) sliceinfo = ''