# if getting accentedness predictions # summary_y_values = modeler.get_ys_dict("../../SJP_JC_Audio/perception_results/accented_avgs.csv", # speaker_list) # if getting fluency predictions # summary_y_values = modeler.get_ys_dict("../../SJP_JC_Audio/perception_results/fluency_avgs.csv", # speaker_list) # if getting comprehensibility predictions # summary_y_values = modeler.get_ys_dict("../../SJP_JC_Audio/perception_results/comp_avgs.csv", # speaker_list) summary_y_values = modeler.get_ys_dict(fpath, speaker_list) # zip x and y data summary_zipped = modeler.zip_feats_and_ys(phono_feats, summary_y_values) # test to make sure this worked unzipped_summary_feats, unzipped_summary_ys = zip(*summary_zipped) # set variables for input into model unzipped_summary_ys = list(unzipped_summary_ys) unzipped_summary_feats = np.array(list(unzipped_summary_feats)) summary_shape = unzipped_summary_feats.shape # create instance of class AdaptiveModel sum_adapt = modeler.AdaptiveModel(unzipped_summary_feats, unzipped_summary_ys, summary_shape, "../../SJP_JC_Audio/phonological_test") # split data into datasets
"S02", "S03", "S04", "S05", "S07", "S08", "S09", "S19", "S21", "S22", "S23", "S24", "S25", "S26", "S28" ] types = [ "../../SJP_JC_Audio/perception_results/accented_avgs.csv", "../../SJP_JC_Audio/perception_results/fluency_avgs.csv", "../../SJP_JC_Audio/perception_results/comp_avgs.csv" ] for fpath in types: # read in y data summary_y_values = modeler.get_ys_dict(fpath, speaker_list) # zip x and y data summary_zipped = modeler.zip_feats_and_ys(summary_features, summary_y_values) # test to make sure this worked unzipped_summary_feats, unzipped_summary_ys = zip(*summary_zipped) # set variables for input into model unzipped_summary_ys = list(unzipped_summary_ys) unzipped_summary_feats = np.array(list(unzipped_summary_feats)) summary_shape = unzipped_summary_feats.shape # create instance of class AdaptiveModel sum_adapt = modeler.AdaptiveModel(unzipped_summary_feats, unzipped_summary_ys, summary_shape, dpath) # split data into datasets
"../data/perception_results/comp_avgs.csv"] for fpath in y_paths: # read in y data # accentedness y_values = modeler.get_ys_dict(fpath, speaker_list) # # fluency # y_values = modeler.get_ys_dict("../../SJP_JC_Audio/perception_results/fluency_avgs.csv", # speaker_list) # # # comprehensibility # y_values = modeler.get_ys_dict("../../SJP_JC_Audio/perception_results/comp_avgs.csv", # speaker_list) # zip x and y data zipped = modeler.zip_feats_and_ys(acoustic_features, y_values) # test to make sure this worked unzipped_feats, unzipped_ys = zip(*zipped) # set variables for input into model unzipped_ys = list(unzipped_ys) unzipped_feats = np.array(list(unzipped_feats)) shape = unzipped_feats.shape # create instance of class AdaptiveModel adapt = modeler.AdaptiveModel(unzipped_feats, unzipped_ys, shape, "../audio/IS09_summary") # split data into datasets cv_data, cv_ys = adapt.split_data_for_cv(k=10)