C = int(options.C) K = int(options.K) iterations = int(options.I) print "init dataset" dataset = [] N = 0 for row in sys.stdin: if (N % 100000 == 0): print "processed " + str(N) + " rows." splitrow = row.split("\t") dataset.append(map(int, splitrow)) N += 1 print "finished dataset" hyperP = MME.MultinomialMixtureModelHyperparams(C, K, [1]*C, [1]*K) finalModel = MMB.computeDirichletMixture(dataset, hyperP, iterations, int(options.B), float(options.R)) logging.debug("Final Model:") outputModel = sys.stdin if (options.outputModel): outputModel = open(options.outputModel, 'w') finalModel.outputToFile(outputModel) #finalModel.outputToTSV(sys.stdout) (worst, worstN, worstC) = MME.worstFit(dataset, finalModel) print "worst", worst print "worst N", worstN print "worst: ", dataset[worstN] print "worst C", worstC
raise ValueError('Invalid log level: %s' % loglevel) logging.basicConfig(level=numeric_level) C = int(options.C) iterations = int(options.I) print "init dataset" dataset = [] N = 0 for row in sys.stdin: if (N % 100000 == 0): print "processed " + str(N) + " rows." splitrow = row.split("\t") dataset.append(map(int, splitrow)) N += 1 print "finished dataset" hyperP = MME.MultinomialMixtureModelHyperparams(C, 168, [1]*C, [1]*168) finalModel = MME.computeDirichletMixture(dataset, hyperP, iterations) logging.debug("Final Model:") outputModel = sys.stdin if (options.outputModel): outputModel = open(options.outputModel, 'w') finalModel.outputToFile(outputModel) finalModel.outputToTSV(sys.stdout) (worseLogProb, worstN, worstC) = MME.worstFit(dataset, finalModel) print "worstLogProb", worseLogProb print "worst N", worstN print "worst C", worstC
raise ValueError('Invalid log level: %s' % loglevel) logging.basicConfig(level=numeric_level) C = int(options.C) iterations = int(options.I) print "init dataset" dataset = [] N = 0 for row in sys.stdin: if (N % 100000 == 0): print "processed " + str(N) + " rows." splitrow = row.split("\t") dataset.append(map(int, splitrow)) N += 1 print "finished dataset" hyperP = MME.MultinomialMixtureModelHyperparams(C, 168, [1] * C, [1] * 168) finalModel = MME.computeDirichletMixture(dataset, hyperP, iterations) logging.debug("Final Model:") outputModel = sys.stdin if (options.outputModel): outputModel = open(options.outputModel, 'w') finalModel.outputToFile(outputModel) finalModel.outputToTSV(sys.stdout) (worseLogProb, worstN, worstC) = MME.worstFit(dataset, finalModel) print "worstLogProb", worseLogProb print "worst N", worstN print "worst C", worstC
C = int(options.C) K = int(options.K) iterations = int(options.I) print "init dataset" dataset = [] N = 0 for row in sys.stdin: if (N % 100000 == 0): print "processed " + str(N) + " rows." splitrow = row.split("\t") dataset.append(map(int, splitrow)) N += 1 print "finished dataset" hyperP = MME.MultinomialMixtureModelHyperparams(C, K, [1] * C, [1] * K) finalModel = MMB.computeDirichletMixture(dataset, hyperP, iterations, int(options.B), float(options.R)) logging.debug("Final Model:") outputModel = sys.stdin if (options.outputModel): outputModel = open(options.outputModel, 'w') finalModel.outputToFile(outputModel) #finalModel.outputToTSV(sys.stdout) (worst, worstN, worstC) = MME.worstFit(dataset, finalModel) print "worst", worst print "worst N", worstN print "worst C", worstC