def bulk_apply_mask(image_dir, mask_dir, output_dir, output_suffix, skip_existing_images=True): """Find corresponding images between dirs and apply the second as a mask Inputs: image_dir -- Directory of images to-be-masked mask_dir -- Directory of images that will be used as the mask output_dir -- Directory where the masked images will be saved ouptut_suffix -- Filename text after the core/sample name of the image file """ (image_path_list, mask_path_list) = blk.find_shared_images(image_dir, mask_dir) for i in range(np.size(image_path_list)): masked_path = blk.create_new_image_path(image_path_list[i], output_dir, output_suffix) if masked_path.exists() and skip_existing_images: continue image = meta.setup_image(image_path_list[i]) mask = meta.setup_image(mask_path_list[i]) > 0 print('Masking ' + os.path.basename(image_path_list[i]) + ' with ' + os.path.basename(mask_path_list[i])) masked_image = sitk.Mask(image, mask) meta.copy_relevant_metadata(masked_image, image) meta.write_image(masked_image, masked_path)
def apply_polarization_transforms(path_image, output_dir, transform_dir, transform_prefix, resolution, skip_existing_images=True): """ Apply pre-calculated transforms onto a single mueller polarimetry image :param path_image: path to the image being processed :param output_dir: directory to save the image to :param resolution: resolution of the image file :return: """ print('Applying transforms to {0}'.format(path_image.stem)) fixed_image = czi_timepoint_to_sitk_image(path_image, 0, resolution) for num in range(24): output_path = Path(output_dir, path_image.stem + '_' + str(num + 1) + '.tif') # if skip_existing_images and output_path.is_file(): # continue moving_image = czi_timepoint_to_sitk_image(path_image, num, resolution) transform_path = Path(transform_dir, transform_prefix + '_' + str(num + 1) + '.tfm') if num == 0: meta.write_image(fixed_image, output_path) else: registered_image = tran.apply_transform_fromfile(fixed_image, moving_image, str(transform_path)) meta.write_image(registered_image, output_path)
def bulk_resize_image(fixed_dir, moving_dir, output_dir, output_suffix, skip_existing_images=False): """Resize multiple images to corresponding reference size""" (fixed_image_path_list, moving_image_path_list) = blk.find_shared_images(fixed_dir, moving_dir) for i in range(0, np.size(fixed_image_path_list)): resized_path = blk.create_new_image_path(moving_image_path_list[i], output_dir, output_suffix) if resized_path.exists() and skip_existing_images: continue current_spacing = meta.get_image_parameters(moving_image_path_list[i], return_origin=True, return_spacing=True)[0] target_spacing = meta.get_image_parameters(fixed_image_path_list[i], return_origin=True, return_spacing=True)[0] moving_image = sitk.ReadImage(str(moving_image_path_list[i])) resized_image = resize_image(moving_image_path_list[i], current_spacing, target_spacing) meta.write_image(resized_image, resized_path)
def bulk_resize_to_target(image_dir, output_dir, output_suffix, target_spacing, skip_existing_images=False): image_name_list = [ Path(f) for f in os.listdir(image_dir) if f.endswith('.tif') ] for i in range(0, np.size(image_name_list)): image_path = Path(image_dir, image_name_list[i]) resized_path = blk.create_new_image_path(image_path, output_dir, output_suffix) if resized_path.exists() and skip_existing_images: continue current_spacing = meta.get_image_parameters(image_path, return_origin=False, return_spacing=True)[0][0] itk_image = meta.setup_image(image_path) image_name = os.path.basename(image_path) print('\nResizing ' + image_name + ' from ' + str(current_spacing) + ' to target spacing ' + str(target_spacing) + ')') resized_image = resize_image(itk_image, current_spacing, target_spacing) meta.write_image(resized_image, resized_path)
def bulk_apply_transform(fixed_dir, moving_dir, transform_dir, output_dir, output_suffix, skip_existing_images=False): fixed_paths, moving_paths, transform_paths = blk.find_bulk_shared_images( [fixed_dir, moving_dir, transform_dir]) for i in range(0, np.size(fixed_paths)): registered_path = blk.create_new_image_path(moving_paths[i], output_dir, output_suffix) if registered_path.exists() and skip_existing_images: continue fixed_image = meta.setup_image(fixed_paths[i]) moving_image = meta.setup_image(moving_paths[i]) print('\nApplying transform onto {0} based on transform on {1}'.format( str(moving_paths[i].name), str(transform_paths[i].name))) transform_path = Path(transform_paths[i].parent, transform_paths[i].stem + '.tfm') registered_image = apply_transform_fromfile(fixed_image, moving_image, transform_path) meta.write_image(registered_image, registered_path) write_transform(registered_path, sitk.ReadTransform(str(transform_path))) return
def batch_downsample_retardance(ret_dir, orient_dir, output_dir, scale_factor, simulated_resolution_factor=None): output_suffix = 'DownSample-' + str(scale_factor) + 'x' if (simulated_resolution_factor and simulated_resolution_factor != scale_factor): output_suffix = (output_suffix + '_SimRes-' + str(simulated_resolution_factor) + 'x') (ret_image_path_list, orient_image_path_list) = blk.find_shared_images( ret_dir, orient_dir) for i in range(0, np.size(ret_image_path_list)): (down_ret_image, down_orient_image) = downsample_retardance_image( ret_image_path_list[i], orient_image_path_list[i], scale_factor, simulated_resolution_factor) down_ret_dir = os.path.join(output_dir, output_suffix, '_ret', ) down_orient_dir = os.path.join(output_dir, output_suffix, 'SlowAxis', ) down_ret_path = blk.create_new_image_path(ret_image_path_list[i], down_ret_dir, '__ret_' + output_suffix) down_orient_path = blk.create_new_image_path( orient_image_path_list[i], down_orient_dir, '_SlowAxis_' + output_suffix) meta.write_image(down_ret_image, down_ret_path) meta.write_image(down_orient_image, down_orient_path)
def bulk_supervised_register_images( fixed_dir: Path, moving_dir: Path, output_dir: Path, output_suffix: str, write_output: bool = True, write_transform: bool = True, transform_type: type = sitk.AffineTransform, registration_parameters: dict = None, skip_existing_images=True): """Register two directories of images, matching based on the core name, the string before the first _ :param fixed_dir: directory holding the images that are being registered to :param moving_dir: directory holding the images that will be registered :param output_dir: directory to save the output images :param output_suffix: base name of the output images :param write_output: whether or not to actually write the output image :param write_transform: whether or not to write down the transform that produced the output :param transform_type: what type of registration, e.g. affine or euler :param registration_parameters: dictionary of registration key/value arguments :param skip_existing_images: whether to skip images that already have a transform/output image :return: """ (fixed_path_list, moving_path_list) = blk.find_shared_images(fixed_dir, moving_dir) for i in range(0, np.size(fixed_path_list)): registered_path = blk.create_new_image_path(moving_path_list[i], output_dir, output_suffix) if registered_path.exists() and skip_existing_images: continue fixed_image = meta.setup_image(fixed_path_list[i]) moving_image = meta.setup_image(moving_path_list[i]) initial_transform = tran.read_initial_transform( moving_path_list[i], transform_type) print('\nRegistering ' + os.path.basename(moving_path_list[i]) + ' to ' + os.path.basename(fixed_path_list[i])) registered_image, transform, metric, stop = \ supervised_register_images(fixed_image, moving_image, initial_transform, moving_path_list[i], registration_parameters) if write_output: meta.write_image(registered_image, registered_path) if write_transform: tran.write_transform(registered_path, transform)
def bulk_orientation_to_proper_degrees(input_dir, output_dir, output_suffix, skip_existing_images=True): path_list = util.list_filetype_in_dir(input_dir, '.tif') for i in range(len(path_list)): output_path = blk.create_new_image_path( path_list[i], output_dir, output_suffix) if output_path.exists() and skip_existing_images: continue print('Converting {} to degrees proper'.format(path_list[i].name)) orient_img = meta.setup_image(path_list[i]) deg_img = sitk.Divide(orient_img, 100) img = rotate_90_degrees(deg_img) meta.write_image(img, output_path)
def bulk_intensity_to_retardance(input_dir, output_dir, output_suffix, skip_existing_images=True): path_list = util.list_filetype_in_dir(input_dir, '.tif') for i in range(len(path_list)): output_path = blk.create_new_image_path( path_list[i], output_dir, output_suffix) if output_path.exists() and skip_existing_images: continue print('Converting {} to degrees linear retardance'.format(path_list[i].name)) int_image = meta.setup_image(path_list[i]) ret_image = convert_intensity_to_retardance(int_image) meta.write_image(ret_image, output_path)
def bulk_threshold(input_dir, output_dir, output_suffix, threshold=1, skip_existing_images=False): """Apply intensity based thresholds to all images in folder""" path_list = util.list_filetype_in_dir(input_dir, '.tif') for i in range(len(path_list)): new_path = blk.create_new_image_path(path_list[i], output_dir, output_suffix) if new_path.exists() and skip_existing_images: continue original = meta.setup_image(path_list[i]) new_image = apply_threshold(original, os.path.basename(path_list[i]), threshold=threshold) meta.copy_relevant_metadata(new_image, original) meta.write_image(new_image, new_path)
def parameters_file_to_metadata(dir_params): path_params = Path(dir_params, 'Image Parameters.csv') df_params = pd.read_csv(path_params, index_col=0) for idx in df_params.index: image_parameters = df_params.loc[idx] path_image= Path(dir_params, idx) path_metadata = Path(dir_params, Path(idx).stem + '_metadata.txt') if path_metadata.is_file(): return else: image = sitk.ReadImage(str(path_image)) print('Adjusting {0}'.format(idx)) unit = 'microns' spacing = [float(image_parameters['Spacing']), float(image_parameters['Spacing'])] image.SetSpacing(spacing) image.SetMetaData('Unit', unit) meta.write_image(image, path_image)
def bulk_convert_to_eightbit(input_dir, output_dir, output_suffix): """Convert all tif images in a directory to 8bit and save in new directory Inputs: input_dir -- Directory of images to convert output_dir -- Directory to save converted images output_suffix -- Text in output image name after the core/sample name """ path_list = util.list_filetype_in_dir(input_dir, '.tif') for i in range(len(path_list)): original = meta.setup_image(path_list[i]) new_image = convert_to_eightbit(original, os.path.basename(path_list[i])) new_path = blk.create_new_image_path(path_list[i], output_dir, output_suffix) meta.copy_relevant_metadata(new_image, original) meta.write_image(new_image, new_path)