예제 #1
0
def experiment(n_epochs, n_steps, n_steps_test):
    np.random.seed()

    # MDP
    horizon = 1000
    gamma = 0.99
    gamma_eval = 1.
    mdp = Gym('Acrobot-v1', horizon, gamma)

    # Policy
    epsilon = LinearDecayParameter(value=1., min_value=.01, n=5000)
    epsilon_test = Parameter(value=0.)
    epsilon_random = Parameter(value=1.)
    pi = EpsGreedy(epsilon=epsilon_random)

    # Settings
    initial_replay_size = 500
    max_replay_size = 5000
    target_update_frequency = 100
    batch_size = 200
    n_features = 80
    train_frequency = 1

    # Approximator
    input_shape = mdp.info.observation_space.shape
    approximator_params = dict(network=Network,
                               optimizer={
                                   'class': optim.Adam,
                                   'params': {
                                       'lr': .001
                                   }
                               },
                               loss=F.smooth_l1_loss,
                               n_features=n_features,
                               input_shape=input_shape,
                               output_shape=mdp.info.action_space.size,
                               n_actions=mdp.info.action_space.n)

    # Agent
    agent = DQN(PyTorchApproximator,
                pi,
                mdp.info,
                approximator_params=approximator_params,
                batch_size=batch_size,
                n_approximators=1,
                initial_replay_size=initial_replay_size,
                max_replay_size=max_replay_size,
                target_update_frequency=target_update_frequency)

    # Algorithm
    core = Core(agent, mdp)

    core.learn(n_steps=initial_replay_size,
               n_steps_per_fit=initial_replay_size)

    # RUN
    pi.set_epsilon(epsilon_test)
    dataset = core.evaluate(n_steps=n_steps_test, render=False)
    J = compute_J(dataset, gamma_eval)
    print('J: ', np.mean(J))

    for n in range(n_epochs):
        print('Epoch: ', n)
        pi.set_epsilon(epsilon)
        core.learn(n_steps=n_steps, n_steps_per_fit=train_frequency)
        pi.set_epsilon(epsilon_test)
        dataset = core.evaluate(n_steps=n_steps_test, render=False)
        J = compute_J(dataset, gamma_eval)
        print('J: ', np.mean(J))

    print('Press a button to visualize acrobot')
    input()
    core.evaluate(n_episodes=5, render=True)
예제 #2
0
def experiment():
    np.random.seed()

    # Argument parser
    parser = argparse.ArgumentParser()

    arg_game = parser.add_argument_group('Game')
    arg_game.add_argument("--name",
                          type=str,
                          default='BreakoutDeterministic-v4',
                          help='Gym ID of the Atari game.')
    arg_game.add_argument("--screen-width", type=int, default=84,
                          help='Width of the game screen.')
    arg_game.add_argument("--screen-height", type=int, default=84,
                          help='Height of the game screen.')

    arg_mem = parser.add_argument_group('Replay Memory')
    arg_mem.add_argument("--initial-replay-size", type=int, default=50000,
                         help='Initial size of the replay memory.')
    arg_mem.add_argument("--max-replay-size", type=int, default=500000,
                         help='Max size of the replay memory.')

    arg_net = parser.add_argument_group('Deep Q-Network')
    arg_net.add_argument("--optimizer",
                         choices=['adadelta',
                                  'adam',
                                  'rmsprop',
                                  'rmspropcentered'],
                         default='adam',
                         help='Name of the optimizer to use to learn.')
    arg_net.add_argument("--learning-rate", type=float, default=.00025,
                         help='Learning rate value of the optimizer. Only used'
                              'in rmspropcentered')
    arg_net.add_argument("--decay", type=float, default=.95,
                         help='Discount factor for the history coming from the'
                              'gradient momentum in rmspropcentered')
    arg_net.add_argument("--epsilon", type=float, default=.01,
                         help='Epsilon term used in rmspropcentered')

    arg_alg = parser.add_argument_group('Algorithm')
    arg_alg.add_argument("--algorithm", choices=['dqn', 'ddqn', 'adqn'],
                         default='dqn',
                         help='Name of the algorithm. dqn is for standard'
                              'DQN, ddqn is for Double DQN and adqn is for'
                              'Averaged DQN.')
    arg_alg.add_argument("--n-approximators", type=int, default=1,
                         help="Number of approximators used in the ensemble for"
                              "Averaged DQN.")
    arg_alg.add_argument("--batch-size", type=int, default=32,
                         help='Batch size for each fit of the network.')
    arg_alg.add_argument("--history-length", type=int, default=4,
                         help='Number of frames composing a state.')
    arg_alg.add_argument("--target-update-frequency", type=int, default=10000,
                         help='Number of learning step before each update of'
                              'the target network.')
    arg_alg.add_argument("--evaluation-frequency", type=int, default=250000,
                         help='Number of learning step before each evaluation.'
                              'This number represents an epoch.')
    arg_alg.add_argument("--train-frequency", type=int, default=4,
                         help='Number of learning steps before each fit of the'
                              'neural network.')
    arg_alg.add_argument("--max-steps", type=int, default=50000000,
                         help='Total number of learning steps.')
    arg_alg.add_argument("--final-exploration-frame", type=int, default=1000000,
                         help='Number of steps until the exploration rate stops'
                              'decreasing.')
    arg_alg.add_argument("--initial-exploration-rate", type=float, default=1.,
                         help='Initial value of the exploration rate.')
    arg_alg.add_argument("--final-exploration-rate", type=float, default=.1,
                         help='Final value of the exploration rate. When it'
                              'reaches this values, it stays constant.')
    arg_alg.add_argument("--test-exploration-rate", type=float, default=.05,
                         help='Exploration rate used during evaluation.')
    arg_alg.add_argument("--test-samples", type=int, default=125000,
                         help='Number of steps for each evaluation.')
    arg_alg.add_argument("--max-no-op-actions", type=int, default=8,
                         help='Maximum number of no-op action performed at the'
                              'beginning of the episodes. The minimum number is'
                              'history_length. This number is 30 in the DQN'
                              'Deepmind paper, but they consider the first 30'
                              'frame without frame skipping.')
    arg_alg.add_argument("--no-op-action-value", type=int, default=0,
                         help='Value of the no-op action.')

    arg_utils = parser.add_argument_group('Utils')
    arg_utils.add_argument('--load-path', type=str,
                           help='Path of the model to be loaded.')
    arg_utils.add_argument('--save', action='store_true',
                           help='Flag specifying whether to save the model.')
    arg_utils.add_argument('--render', action='store_true',
                           help='Flag specifying whether to render the game.')
    arg_utils.add_argument('--quiet', action='store_true',
                           help='Flag specifying whether to hide the progress'
                                'bar.')
    arg_utils.add_argument('--debug', action='store_true',
                           help='Flag specifying whether the script has to be'
                                'run in debug mode.')

    args = parser.parse_args()

    scores = list()

    # Evaluation of the model provided by the user.
    if args.load_path:
        # MDP
        mdp = Atari(args.name, args.screen_width, args.screen_height,
                    ends_at_life=False)

        # Policy
        epsilon_test = Parameter(value=args.test_exploration_rate)
        pi = EpsGreedy(epsilon=epsilon_test)

        # Approximator
        input_shape = (args.screen_height, args.screen_width,
                       args.history_length)
        approximator_params = dict(
            input_shape=input_shape,
            output_shape=(mdp.info.action_space.n,),
            n_actions=mdp.info.action_space.n,
            name='test',
            load_path=args.load_path,
            optimizer={'name': args.optimizer,
                       'lr': args.learning_rate,
                       'decay': args.decay,
                       'epsilon': args.epsilon}
        )

        approximator = ConvNet

        # Agent
        algorithm_params = dict(
            batch_size=1,
            train_frequency=1,
            target_update_frequency=1,
            initial_replay_size=0,
            max_replay_size=0,
            history_length=args.history_length,
            max_no_op_actions=args.max_no_op_actions,
            no_op_action_value=args.no_op_action_value,
            dtype=np.uint8
        )
        agent = DQN(approximator, pi, mdp.info,
                    approximator_params=approximator_params, **algorithm_params)

        # Algorithm
        core_test = Core(agent, mdp)

        # Evaluate model
        pi.set_epsilon(epsilon_test)
        dataset = core_test.evaluate(n_steps=args.test_samples,
                                     render=args.render,
                                     quiet=args.quiet)
        get_stats(dataset)
    else:
        # DQN learning run

        # Summary folder
        folder_name = './logs/atari_' + args.algorithm + '_' + args.name +\
            '_' + datetime.datetime.now().strftime('%Y-%m-%d_%H-%M-%S')

        # Settings
        if args.debug:
            initial_replay_size = 50
            max_replay_size = 500
            train_frequency = 5
            target_update_frequency = 10
            test_samples = 20
            evaluation_frequency = 50
            max_steps = 1000
        else:
            initial_replay_size = args.initial_replay_size
            max_replay_size = args.max_replay_size
            train_frequency = args.train_frequency
            target_update_frequency = args.target_update_frequency
            test_samples = args.test_samples
            evaluation_frequency = args.evaluation_frequency
            max_steps = args.max_steps

        # MDP
        mdp = Atari(args.name, args.screen_width, args.screen_height,
                    ends_at_life=True)

        # Policy
        epsilon = LinearDecayParameter(value=args.initial_exploration_rate,
                                       min_value=args.final_exploration_rate,
                                       n=args.final_exploration_frame)
        epsilon_test = Parameter(value=args.test_exploration_rate)
        epsilon_random = Parameter(value=1)
        pi = EpsGreedy(epsilon=epsilon_random)

        # Approximator
        input_shape = (args.screen_height, args.screen_width,
                       args.history_length)
        approximator_params = dict(
            input_shape=input_shape,
            output_shape=(mdp.info.action_space.n,),
            n_actions=mdp.info.action_space.n,
            folder_name=folder_name,
            optimizer={'name': args.optimizer,
                       'lr': args.learning_rate,
                       'decay': args.decay,
                       'epsilon': args.epsilon}
        )

        approximator = ConvNet

        # Agent
        algorithm_params = dict(
            batch_size=args.batch_size,
            n_approximators=args.n_approximators,
            initial_replay_size=initial_replay_size,
            max_replay_size=max_replay_size,
            history_length=args.history_length,
            train_frequency=train_frequency,
            target_update_frequency=target_update_frequency,
            max_no_op_actions=args.max_no_op_actions,
            no_op_action_value=args.no_op_action_value,
            dtype=np.uint8
        )

        if args.algorithm == 'dqn':
            agent = DQN(approximator, pi, mdp.info,
                        approximator_params=approximator_params,
                        **algorithm_params)
        elif args.algorithm == 'ddqn':
            agent = DoubleDQN(approximator, pi, mdp.info,
                              approximator_params=approximator_params,
                              **algorithm_params)
        elif args.algorithm == 'adqn':
            agent = AveragedDQN(approximator, pi, mdp.info,
                                approximator_params=approximator_params,
                                **algorithm_params)

        # Algorithm
        core = Core(agent, mdp)

        # RUN

        # Fill replay memory with random dataset
        print_epoch(0)
        core.learn(n_steps=initial_replay_size,
                   n_steps_per_fit=initial_replay_size, quiet=args.quiet)

        if args.save:
            agent.approximator.model.save()

        # Evaluate initial policy
        pi.set_epsilon(epsilon_test)
        if args.algorithm == 'ddqn':
            agent.policy.set_q(agent.target_approximator)
        mdp.set_episode_end(False)
        dataset = core.evaluate(n_steps=test_samples, render=args.render,
                                quiet=args.quiet)
        scores.append(get_stats(dataset))
        if args.algorithm == 'ddqn':
            agent.policy.set_q(agent.approximator)

        np.save(folder_name + '/scores.npy', scores)
        for n_epoch in range(1, max_steps // evaluation_frequency + 1):
            print_epoch(n_epoch)
            print('- Learning:')
            # learning step
            pi.set_epsilon(epsilon)
            mdp.set_episode_end(True)
            core.learn(n_steps=evaluation_frequency,
                       n_steps_per_fit=train_frequency, quiet=args.quiet)

            if args.save:
                agent.approximator.model.save()

            print('- Evaluation:')
            # evaluation step
            pi.set_epsilon(epsilon_test)
            if args.algorithm == 'ddqn':
                agent.policy.set_q(agent.target_approximator)
            mdp.set_episode_end(False)
            dataset = core.evaluate(n_steps=test_samples, render=args.render,
                                    quiet=args.quiet)
            scores.append(get_stats(dataset))
            if args.algorithm == 'ddqn':
                agent.policy.set_q(agent.approximator)

            np.save(folder_name + '/scores.npy', scores)

    return scores
예제 #3
0
                           optimizer=optimizer,
                           loss=F.smooth_l1_loss)

approximator = TorchApproximator

# Agent
algorithm_params = dict(batch_size=32,
                        target_update_frequency=target_update_frequency //
                        train_frequency,
                        replay_memory=None,
                        initial_replay_size=initial_replay_size,
                        max_replay_size=max_replay_size)

agent = DQN(approximator,
            pi,
            mdp.info,
            approximator_params=approximator_params,
            **algorithm_params)

# Algorithm
core = Core(agent, mdp)

# RUN

# Fill replay memory with random dataset
print_epoch(0)
core.learn(n_steps=initial_replay_size, n_steps_per_fit=initial_replay_size)

# Evaluate initial policy
pi.set_epsilon(epsilon_test)
mdp.set_episode_end(False)
예제 #4
0
def experiment(alg):
    gym.logger.setLevel(0)
    np.random.seed(88)
    tf.set_random_seed(88)

    # DQN settings
    initial_replay_size = 500
    max_replay_size = 1000
    train_frequency = 50
    target_update_frequency = 100
    evaluation_frequency = 200
    max_steps = 2000

    # MDP train
    mdp = Atari('BreakoutDeterministic-v4', 84, 84, ends_at_life=True)

    # Policy
    epsilon = LinearDecayParameter(value=1, min_value=.1, n=10)
    epsilon_test = Parameter(value=.05)
    epsilon_random = Parameter(value=1)
    pi = EpsGreedy(epsilon=epsilon_random)

    # Approximator
    input_shape = (84, 84, 4)
    approximator_params = dict(
        input_shape=input_shape,
        output_shape=(mdp.info.action_space.n, ),
        n_actions=mdp.info.action_space.n,
        input_preprocessor=[Scaler(mdp.info.observation_space.high[0, 0])],
        optimizer={
            'name': 'rmsprop',
            'lr': .00025,
            'decay': .95,
            'epsilon': 1e-10
        })

    approximator = ConvNet

    # Agent
    algorithm_params = dict(batch_size=32,
                            initial_replay_size=initial_replay_size,
                            n_approximators=2 if alg == 'adqn' else 1,
                            max_replay_size=max_replay_size,
                            history_length=4,
                            train_frequency=train_frequency,
                            target_update_frequency=target_update_frequency,
                            max_no_op_actions=10,
                            no_op_action_value=0)
    fit_params = dict()
    agent_params = {
        'approximator_params': approximator_params,
        'algorithm_params': algorithm_params,
        'fit_params': fit_params
    }

    if alg == 'dqn':
        agent = DQN(approximator, pi, mdp.info, agent_params)
    elif alg == 'ddqn':
        agent = DoubleDQN(approximator, pi, mdp.info, agent_params)
    elif alg == 'adqn':
        agent = AveragedDQN(approximator, pi, mdp.info, agent_params)

    # Algorithm
    core = Core(agent, mdp)

    # DQN

    # fill replay memory with random dataset
    core.learn(n_steps=initial_replay_size,
               n_steps_per_fit=initial_replay_size,
               quiet=True)

    # evaluate initial policy
    pi.set_epsilon(epsilon_test)
    mdp.set_episode_end(ends_at_life=False)
    for n_epoch in xrange(1, max_steps / evaluation_frequency + 1):
        # learning step
        pi.set_epsilon(epsilon)
        mdp.set_episode_end(ends_at_life=True)
        core.learn(n_steps=evaluation_frequency,
                   n_steps_per_fit=train_frequency,
                   quiet=True)

        # evaluation step
        pi.set_epsilon(epsilon_test)
        mdp.set_episode_end(ends_at_life=False)
    w = agent.approximator.model.get_weights(only_trainable=True)

    return w
예제 #5
0
def experiment():
    np.random.seed()

    # Argument parser
    parser = argparse.ArgumentParser()

    arg_game = parser.add_argument_group('Game')
    arg_game.add_argument("--name",
                          type=str,
                          default='BreakoutDeterministic-v4',
                          help='Gym ID of the Atari game.')
    arg_game.add_argument("--screen-width", type=int, default=84,
                          help='Width of the game screen.')
    arg_game.add_argument("--screen-height", type=int, default=84,
                          help='Height of the game screen.')

    arg_mem = parser.add_argument_group('Replay Memory')
    arg_mem.add_argument("--initial-replay-size", type=int, default=50000,
                         help='Initial size of the replay memory.')
    arg_mem.add_argument("--max-replay-size", type=int, default=500000,
                         help='Max size of the replay memory.')
    arg_mem.add_argument("--prioritized", action='store_true',
                         help='Whether to use prioritized memory or not.')

    arg_net = parser.add_argument_group('Deep Q-Network')
    arg_net.add_argument("--optimizer",
                         choices=['adadelta',
                                  'adam',
                                  'rmsprop',
                                  'rmspropcentered'],
                         default='rmsprop',
                         help='Name of the optimizer to use.')
    arg_net.add_argument("--learning-rate", type=float, default=.00025,
                         help='Learning rate value of the optimizer.')
    arg_net.add_argument("--decay", type=float, default=.95,
                         help='Discount factor for the history coming from the'
                              'gradient momentum in rmspropcentered and'
                              'rmsprop')
    arg_net.add_argument("--epsilon", type=float, default=1e-8,
                         help='Epsilon term used in rmspropcentered and'
                              'rmsprop')

    arg_alg = parser.add_argument_group('Algorithm')
    arg_alg.add_argument("--algorithm", choices=['dqn', 'ddqn', 'adqn', 'cdqn'],
                         default='dqn',
                         help='Name of the algorithm. dqn is for standard'
                              'DQN, ddqn is for Double DQN and adqn is for'
                              'Averaged DQN.')
    arg_alg.add_argument("--n-approximators", type=int, default=1,
                         help="Number of approximators used in the ensemble for"
                              "Averaged DQN.")
    arg_alg.add_argument("--batch-size", type=int, default=32,
                         help='Batch size for each fit of the network.')
    arg_alg.add_argument("--history-length", type=int, default=4,
                         help='Number of frames composing a state.')
    arg_alg.add_argument("--target-update-frequency", type=int, default=10000,
                         help='Number of collected samples before each update'
                              'of the target network.')
    arg_alg.add_argument("--evaluation-frequency", type=int, default=250000,
                         help='Number of collected samples before each'
                              'evaluation. An epoch ends after this number of'
                              'steps')
    arg_alg.add_argument("--train-frequency", type=int, default=4,
                         help='Number of collected samples before each fit of'
                              'the neural network.')
    arg_alg.add_argument("--max-steps", type=int, default=50000000,
                         help='Total number of collected samples.')
    arg_alg.add_argument("--final-exploration-frame", type=int, default=1000000,
                         help='Number of collected samples until the exploration'
                              'rate stops decreasing.')
    arg_alg.add_argument("--initial-exploration-rate", type=float, default=1.,
                         help='Initial value of the exploration rate.')
    arg_alg.add_argument("--final-exploration-rate", type=float, default=.1,
                         help='Final value of the exploration rate. When it'
                              'reaches this values, it stays constant.')
    arg_alg.add_argument("--test-exploration-rate", type=float, default=.05,
                         help='Exploration rate used during evaluation.')
    arg_alg.add_argument("--test-samples", type=int, default=125000,
                         help='Number of collected samples for each'
                              'evaluation.')
    arg_alg.add_argument("--max-no-op-actions", type=int, default=30,
                         help='Maximum number of no-op actions performed at the'
                              'beginning of the episodes.')
    arg_alg.add_argument("--n-atoms", type=int, default=51,
                         help='Number of atoms for Categorical DQN.')
    arg_alg.add_argument("--v-min", type=int, default=-10,
                         help='Minimum action-value for Categorical DQN.')
    arg_alg.add_argument("--v-max", type=int, default=10,
                         help='Maximum action-value for Categorical DQN.')

    arg_utils = parser.add_argument_group('Utils')
    arg_utils.add_argument('--use-cuda', action='store_true',
                           help='Flag specifying whether to use the GPU.')
    arg_utils.add_argument('--load-path', type=str,
                           help='Path of the model to be loaded.')
    arg_utils.add_argument('--save', action='store_true',
                           help='Flag specifying whether to save the model.')
    arg_utils.add_argument('--render', action='store_true',
                           help='Flag specifying whether to render the game.')
    arg_utils.add_argument('--quiet', action='store_true',
                           help='Flag specifying whether to hide the progress'
                                'bar.')
    arg_utils.add_argument('--debug', action='store_true',
                           help='Flag specifying whether the script has to be'
                                'run in debug mode.')

    args = parser.parse_args()

    scores = list()

    optimizer = dict()
    if args.optimizer == 'adam':
        optimizer['class'] = optim.Adam
        optimizer['params'] = dict(lr=args.learning_rate,
                                   eps=args.epsilon)
    elif args.optimizer == 'adadelta':
        optimizer['class'] = optim.Adadelta
        optimizer['params'] = dict(lr=args.learning_rate,
                                   eps=args.epsilon)
    elif args.optimizer == 'rmsprop':
        optimizer['class'] = optim.RMSprop
        optimizer['params'] = dict(lr=args.learning_rate,
                                   alpha=args.decay,
                                   eps=args.epsilon)
    elif args.optimizer == 'rmspropcentered':
        optimizer['class'] = optim.RMSprop
        optimizer['params'] = dict(lr=args.learning_rate,
                                   alpha=args.decay,
                                   eps=args.epsilon,
                                   centered=True)
    else:
        raise ValueError

    # Evaluation of the model provided by the user.
    if args.load_path:
        # MDP
        mdp = Atari(args.name, args.screen_width, args.screen_height,
                    ends_at_life=False, history_length=args.history_length,
                    max_no_op_actions=args.max_no_op_actions)

        # Policy
        epsilon_test = Parameter(value=args.test_exploration_rate)
        pi = EpsGreedy(epsilon=epsilon_test)

        # Approximator
        input_shape = (args.history_length, args.screen_height,
                       args.screen_width)
        approximator_params = dict(
            network=Network,
            input_shape=input_shape,
            output_shape=(mdp.info.action_space.n,),
            n_actions=mdp.info.action_space.n,
            load_path=args.load_path,
            optimizer=optimizer,
            loss=F.smooth_l1_loss,
            use_cuda=args.use_cuda
        )

        approximator = TorchApproximator

        # Agent
        algorithm_params = dict(
            batch_size=1,
            train_frequency=1,
            target_update_frequency=1,
            initial_replay_size=0,
            max_replay_size=0
        )
        agent = DQN(approximator, pi, mdp.info,
                    approximator_params=approximator_params, **algorithm_params)

        # Algorithm
        core_test = Core(agent, mdp)

        # Evaluate model
        pi.set_epsilon(epsilon_test)
        dataset = core_test.evaluate(n_steps=args.test_samples,
                                     render=args.render,
                                     quiet=args.quiet)
        get_stats(dataset)
    else:
        # DQN learning run

        # Summary folder
        folder_name = './logs/atari_' + args.algorithm + '_' + args.name +\
            '_' + datetime.datetime.now().strftime('%Y-%m-%d_%H-%M-%S')
        pathlib.Path(folder_name).mkdir(parents=True)

        # Settings
        if args.debug:
            initial_replay_size = 50
            max_replay_size = 500
            train_frequency = 5
            target_update_frequency = 10
            test_samples = 20
            evaluation_frequency = 50
            max_steps = 1000
        else:
            initial_replay_size = args.initial_replay_size
            max_replay_size = args.max_replay_size
            train_frequency = args.train_frequency
            target_update_frequency = args.target_update_frequency
            test_samples = args.test_samples
            evaluation_frequency = args.evaluation_frequency
            max_steps = args.max_steps

        # MDP
        mdp = Atari(args.name, args.screen_width, args.screen_height,
                    ends_at_life=True, history_length=args.history_length,
                    max_no_op_actions=args.max_no_op_actions)

        # Policy
        epsilon = LinearParameter(value=args.initial_exploration_rate,
                                  threshold_value=args.final_exploration_rate,
                                  n=args.final_exploration_frame)
        epsilon_test = Parameter(value=args.test_exploration_rate)
        epsilon_random = Parameter(value=1)
        pi = EpsGreedy(epsilon=epsilon_random)

        class CategoricalLoss(nn.Module):
            def forward(self, input, target):
                input = input.clamp(1e-5)

                return -torch.sum(target * torch.log(input))

        # Approximator
        input_shape = (args.history_length, args.screen_height,
                       args.screen_width)
        approximator_params = dict(
            network=Network if args.algorithm != 'cdqn' else FeatureNetwork,
            input_shape=input_shape,
            output_shape=(mdp.info.action_space.n,),
            n_actions=mdp.info.action_space.n,
            n_features=Network.n_features,
            optimizer=optimizer,
            loss=F.smooth_l1_loss if args.algorithm != 'cdqn' else CategoricalLoss(),
            use_cuda=args.use_cuda
        )

        approximator = TorchApproximator

        if args.prioritized:
            replay_memory = PrioritizedReplayMemory(
                initial_replay_size, max_replay_size, alpha=.6,
                beta=LinearParameter(.4, threshold_value=1,
                                     n=max_steps // train_frequency)
            )
        else:
            replay_memory = None

            # Agent
        algorithm_params = dict(
            batch_size=args.batch_size,
            n_approximators=args.n_approximators,
            target_update_frequency=target_update_frequency // train_frequency,
            replay_memory=replay_memory,
            initial_replay_size=initial_replay_size,
            max_replay_size=max_replay_size
        )

        if args.algorithm == 'dqn':
            agent = DQN(approximator, pi, mdp.info,
                        approximator_params=approximator_params,
                        **algorithm_params)
        elif args.algorithm == 'ddqn':
            agent = DoubleDQN(approximator, pi, mdp.info,
                              approximator_params=approximator_params,
                              **algorithm_params)
        elif args.algorithm == 'adqn':
            agent = AveragedDQN(approximator, pi, mdp.info,
                                approximator_params=approximator_params,
                                **algorithm_params)
        elif args.algorithm == 'cdqn':
            agent = CategoricalDQN(pi, mdp.info,
                                   approximator_params=approximator_params,
                                   n_atoms=args.n_atoms, v_min=args.v_min,
                                   v_max=args.v_max, **algorithm_params)

        # Algorithm
        core = Core(agent, mdp)

        # RUN

        # Fill replay memory with random dataset
        print_epoch(0)
        core.learn(n_steps=initial_replay_size,
                   n_steps_per_fit=initial_replay_size, quiet=args.quiet)

        if args.save:
            np.save(folder_name + '/weights-exp-0-0.npy',
                    agent.approximator.get_weights())

        # Evaluate initial policy
        pi.set_epsilon(epsilon_test)
        mdp.set_episode_end(False)
        dataset = core.evaluate(n_steps=test_samples, render=args.render,
                                quiet=args.quiet)
        scores.append(get_stats(dataset))

        np.save(folder_name + '/scores.npy', scores)
        for n_epoch in range(1, max_steps // evaluation_frequency + 1):
            print_epoch(n_epoch)
            print('- Learning:')
            # learning step
            pi.set_epsilon(epsilon)
            mdp.set_episode_end(True)
            core.learn(n_steps=evaluation_frequency,
                       n_steps_per_fit=train_frequency, quiet=args.quiet)

            if args.save:
                np.save(folder_name + '/weights-exp-0-' + str(n_epoch) + '.npy',
                        agent.approximator.get_weights())

            print('- Evaluation:')
            # evaluation step
            pi.set_epsilon(epsilon_test)
            mdp.set_episode_end(False)
            dataset = core.evaluate(n_steps=test_samples, render=args.render,
                                    quiet=args.quiet)
            scores.append(get_stats(dataset))

            np.save(folder_name + '/scores.npy', scores)

    return scores