def experiment(n_epochs, n_iterations, ep_per_run, save_states_to_disk):
    np.random.seed()

    logger = Logger('plot_and_norm_example', results_dir=None)
    logger.strong_line()
    logger.info('Plotting and normalization example')

    # MDP
    mdp = LQR.generate(dimensions=2, max_pos=10., max_action=5., episodic=True)

    approximator = Regressor(LinearApproximator,
                             input_shape=mdp.info.observation_space.shape,
                             output_shape=mdp.info.action_space.shape)

    sigma = Regressor(LinearApproximator,
                      input_shape=mdp.info.observation_space.shape,
                      output_shape=mdp.info.action_space.shape)

    sigma_weights = 2 * np.ones(sigma.weights_size)
    sigma.set_weights(sigma_weights)

    policy = StateStdGaussianPolicy(approximator, sigma)

    # Agent
    optimizer = AdaptiveOptimizer(eps=.01)
    algorithm_params = dict(optimizer=optimizer)
    agent = REINFORCE(mdp.info, policy, **algorithm_params)

    # normalization callback
    prepro = MinMaxPreprocessor(mdp_info=mdp.info)

    # plotting callback
    plotter = PlotDataset(mdp.info, obs_normalized=True)

    # Train
    core = Core(agent, mdp, callback_step=plotter, preprocessors=[prepro])

    # training loop
    for n in range(n_epochs):
        core.learn(n_episodes=n_iterations * ep_per_run,
                   n_episodes_per_fit=ep_per_run)
        dataset = core.evaluate(n_episodes=ep_per_run, render=False)
        J = np.mean(compute_J(dataset, mdp.info.gamma))
        logger.epoch_info(n + 1, J=J)

    if save_states_to_disk:
        # save normalization / plot states to disk path
        logger.info('Saving plotting and normalization data')
        os.makedirs("./logs/plot_and_norm", exist_ok=True)
        prepro.save("./logs/plot_and_norm/preprocessor.msh")
        plotter.save_state("./logs/plot_and_norm/plotting_state")

        # load states from disk path
        logger.info('Loading preprocessor and plotter')
        prerpo = MinMaxPreprocessor.load(
            "./logs/plot_and_norm/preprocessor.msh")
        plotter.load_state("./logs/plot_and_norm/plotting_state")
예제 #2
0
def test_pytorch_approximator():
    np.random.seed(1)
    torch.manual_seed(1)

    n_actions = 2
    s = np.random.rand(1000, 4)
    a = np.random.randint(n_actions, size=(1000, 1))
    q = np.random.rand(1000)

    approximator = Regressor(TorchApproximator, input_shape=(4,),
                             output_shape=(2,), n_actions=n_actions,
                             network=ExampleNet,
                             optimizer={'class': optim.Adam,
                                        'params': {}}, loss=F.mse_loss,
                             batch_size=100, quiet=True)

    approximator.fit(s, a, q, n_epochs=20)

    x_s = np.random.rand(2, 4)
    x_a = np.random.randint(n_actions, size=(2, 1))
    y = approximator.predict(x_s, x_a)
    y_test = np.array([0.37191153, 0.5920861])

    assert np.allclose(y, y_test)

    y = approximator.predict(x_s)
    y_test = np.array([[0.47908658, 0.37191153],
                       [0.5920861, 0.27575058]])

    assert np.allclose(y, y_test)

    gradient = approximator.diff(x_s[0], x_a[0])
    gradient_test = np.array([0., 0., 0., 0., 0.02627479, 0.76513696,
                              0.6672573, 0.35979462, 0., 1.])
    assert np.allclose(gradient, gradient_test)

    gradient = approximator.diff(x_s[0])
    gradient_test = np.array([[0.02627479, 0.], [0.76513696, 0.],
                              [0.6672573, 0.], [0.35979462, 0.],
                              [0., 0.02627479], [0., 0.76513696],
                              [0., 0.6672573], [0., 0.35979462], [1, 0.],
                              [0., 1.]])
    assert np.allclose(gradient, gradient_test)

    old_weights = approximator.get_weights()
    approximator.set_weights(old_weights)
    new_weights = approximator.get_weights()

    assert np.array_equal(new_weights, old_weights)

    random_weights = np.random.randn(*old_weights.shape).astype(np.float32)
    approximator.set_weights(random_weights)
    random_weight_new = approximator.get_weights()

    assert np.array_equal(random_weights, random_weight_new)
    assert not np.any(np.equal(random_weights, old_weights))
예제 #3
0
def experiment(n_epochs, n_iterations, ep_per_run, save_states_to_disk):
    np.random.seed()

    # MDP
    mdp = LQR.generate(dimensions=2, max_pos=10., max_action=5., episodic=True)

    approximator = Regressor(LinearApproximator,
                             input_shape=mdp.info.observation_space.shape,
                             output_shape=mdp.info.action_space.shape)

    sigma = Regressor(LinearApproximator,
                      input_shape=mdp.info.observation_space.shape,
                      output_shape=mdp.info.action_space.shape)

    sigma_weights = 2 * np.ones(sigma.weights_size)
    sigma.set_weights(sigma_weights)

    policy = StateStdGaussianPolicy(approximator, sigma)

    # Agent
    learning_rate = AdaptiveParameter(value=.01)
    algorithm_params = dict(learning_rate=learning_rate)
    agent = REINFORCE(mdp.info, policy, **algorithm_params)

    # normalization callback
    prepro = MinMaxPreprocessor(mdp_info=mdp.info)

    # plotting callback
    plotter = PlotDataset(mdp.info, obs_normalized=True)

    # Train
    core = Core(agent, mdp, callback_step=plotter, preprocessors=[prepro])

    # training loop
    for n in range(n_epochs):
        core.learn(n_episodes=n_iterations * ep_per_run,
                   n_episodes_per_fit=ep_per_run)
        dataset = core.evaluate(n_episodes=ep_per_run, render=False)
        print('Epoch: ', n, '  J: ', np.mean(compute_J(dataset,
                                                       mdp.info.gamma)))

    if save_states_to_disk:
        # save normalization / plot states to disk path
        os.makedirs("./temp/", exist_ok=True)
        prepro.save_state("./temp/normalization_state")
        plotter.save_state("./temp/plotting_state")

        # load states from disk path
        prepro.load_state("./temp/normalization_state")
        plotter.load_state("./temp/plotting_state")
예제 #4
0
def experiment(alg, n_epochs, n_iterations, ep_per_run):
    np.random.seed()

    logger = Logger(alg.__name__, results_dir=None)
    logger.strong_line()
    logger.info('Experiment Algorithm: ' + alg.__name__)

    # MDP
    mdp = LQR.generate(dimensions=2, max_action=1., max_pos=1.)

    approximator = Regressor(LinearApproximator,
                             input_shape=mdp.info.observation_space.shape,
                             output_shape=mdp.info.action_space.shape)

    sigma = Regressor(LinearApproximator,
                      input_shape=mdp.info.observation_space.shape,
                      output_shape=mdp.info.action_space.shape)

    sigma_weights = 0.25 * np.ones(sigma.weights_size)
    sigma.set_weights(sigma_weights)

    policy = StateStdGaussianPolicy(approximator, sigma)

    # Agent
    optimizer = AdaptiveOptimizer(eps=1e-2)
    algorithm_params = dict(optimizer=optimizer)
    agent = alg(mdp.info, policy, **algorithm_params)

    # Train
    core = Core(agent, mdp)
    dataset_eval = core.evaluate(n_episodes=ep_per_run)
    J = compute_J(dataset_eval, gamma=mdp.info.gamma)
    logger.epoch_info(0,
                      J=np.mean(J),
                      policy_weights=policy.get_weights().tolist())

    for i in trange(n_epochs, leave=False):
        core.learn(n_episodes=n_iterations * ep_per_run,
                   n_episodes_per_fit=ep_per_run)
        dataset_eval = core.evaluate(n_episodes=ep_per_run)
        J = compute_J(dataset_eval, gamma=mdp.info.gamma)
        logger.epoch_info(i + 1,
                          J=np.mean(J),
                          policy_weights=policy.get_weights().tolist())
예제 #5
0
파일: lqr_pg.py 프로젝트: yanxg/mushroom-rl
def experiment(alg, n_epochs, n_iterations, ep_per_run):
    np.random.seed()

    # MDP
    mdp = LQR.generate(dimensions=1)

    approximator = Regressor(LinearApproximator,
                             input_shape=mdp.info.observation_space.shape,
                             output_shape=mdp.info.action_space.shape)

    sigma = Regressor(LinearApproximator,
                      input_shape=mdp.info.observation_space.shape,
                      output_shape=mdp.info.action_space.shape)

    sigma_weights = 2 * np.ones(sigma.weights_size)
    sigma.set_weights(sigma_weights)

    policy = StateStdGaussianPolicy(approximator, sigma)

    # Agent
    learning_rate = AdaptiveParameter(value=.01)
    algorithm_params = dict(learning_rate=learning_rate)
    agent = alg(mdp.info, policy, **algorithm_params)

    # Train
    core = Core(agent, mdp)
    dataset_eval = core.evaluate(n_episodes=ep_per_run)
    print('policy parameters: ', policy.get_weights())
    J = compute_J(dataset_eval, gamma=mdp.info.gamma)
    print('J at start : ' + str(np.mean(J)))

    for i in range(n_epochs):
        core.learn(n_episodes=n_iterations * ep_per_run,
                   n_episodes_per_fit=ep_per_run)
        dataset_eval = core.evaluate(n_episodes=ep_per_run)
        print('policy parameters: ', policy.get_weights())
        J = compute_J(dataset_eval, gamma=mdp.info.gamma)
        print('J at iteration ' + str(i) + ': ' + str(np.mean(J)))
예제 #6
0
def test_linear_approximator():
    np.random.seed(1)

    # Generic regressor
    a = np.random.rand(1000, 3)

    k = np.random.rand(3, 2)
    b = a.dot(k) + np.random.randn(1000, 2)

    approximator = Regressor(LinearApproximator,
                             input_shape=(3, ),
                             output_shape=(2, ))

    approximator.fit(a, b)

    x = np.random.rand(2, 3)
    y = approximator.predict(x)
    y_test = np.array([[0.57638247, 0.1573216], [0.11388247, 0.24123678]])

    assert np.allclose(y, y_test)

    point = np.random.randn(3, )
    derivative = approximator.diff(point)

    lp = len(point)
    for i in range(derivative.shape[1]):
        assert (derivative[i * lp:(i + 1) * lp, i] == point).all()

    old_weights = approximator.get_weights()
    approximator.set_weights(old_weights)
    new_weights = approximator.get_weights()

    assert np.array_equal(new_weights, old_weights)

    random_weights = np.random.randn(*old_weights.shape).astype(np.float32)
    approximator.set_weights(random_weights)
    random_weight_new = approximator.get_weights()

    assert np.array_equal(random_weights, random_weight_new)
    assert not np.any(np.equal(random_weights, old_weights))

    # Action regressor + Ensemble
    n_actions = 2
    s = np.random.rand(1000, 3)
    a = np.random.randint(n_actions, size=(1000, 1))
    q = np.random.rand(1000)

    approximator = Regressor(LinearApproximator,
                             input_shape=(3, ),
                             n_actions=n_actions,
                             n_models=5)

    approximator.fit(s, a, q)

    x_s = np.random.rand(2, 3)
    x_a = np.random.randint(n_actions, size=(2, 1))
    y = approximator.predict(x_s, x_a, prediction='mean')
    y_test = np.array([0.49225698, 0.69660881])
    assert np.allclose(y, y_test)

    y = approximator.predict(x_s, x_a, prediction='sum')
    y_test = np.array([2.46128492, 3.48304404])
    assert np.allclose(y, y_test)

    y = approximator.predict(x_s, x_a, prediction='min')
    y_test = np.array([[0.49225698, 0.69660881]])
    assert np.allclose(y, y_test)

    y = approximator.predict(x_s)
    y_test = np.array([[0.49225698, 0.44154141], [0.69660881, 0.69060195]])
    assert np.allclose(y, y_test)

    approximator = Regressor(LinearApproximator,
                             input_shape=(3, ),
                             n_actions=n_actions)

    approximator.fit(s, a, q)

    gradient = approximator.diff(x_s[0], x_a[0])
    gradient_test = np.array([0.88471362, 0.11666548, 0.45466254, 0., 0., 0.])

    assert np.allclose(gradient, gradient_test)
예제 #7
0
class DQN(Agent):
    """
    Deep Q-Network algorithm.
    "Human-Level Control Through Deep Reinforcement Learning".
    Mnih V. et al.. 2015.

    """
    def __init__(self,
                 mdp_info,
                 policy,
                 approximator,
                 approximator_params,
                 batch_size,
                 target_update_frequency,
                 replay_memory=None,
                 initial_replay_size=500,
                 max_replay_size=5000,
                 fit_params=None,
                 n_approximators=1,
                 clip_reward=True):
        """
        Constructor.

        Args:
            approximator (object): the approximator to use to fit the
               Q-function;
            approximator_params (dict): parameters of the approximator to
                build;
            batch_size (int): the number of samples in a batch;
            target_update_frequency (int): the number of samples collected
                between each update of the target network;
            replay_memory ([ReplayMemory, PrioritizedReplayMemory], None): the
                object of the replay memory to use; if None, a default replay
                memory is created;
            initial_replay_size (int): the number of samples to collect before
                starting the learning;
            max_replay_size (int): the maximum number of samples in the replay
                memory;
            fit_params (dict, None): parameters of the fitting algorithm of the
                approximator;
            n_approximators (int, 1): the number of approximator to use in
                ``AveragedDQN``;
            clip_reward (bool, True): whether to clip the reward or not.

        """
        self._fit_params = dict() if fit_params is None else fit_params

        self._batch_size = batch_size
        self._n_approximators = n_approximators
        self._clip_reward = clip_reward
        self._target_update_frequency = target_update_frequency

        if replay_memory is not None:
            self._replay_memory = replay_memory
            if isinstance(replay_memory, PrioritizedReplayMemory):
                self._fit = self._fit_prioritized
            else:
                self._fit = self._fit_standard
        else:
            self._replay_memory = ReplayMemory(initial_replay_size,
                                               max_replay_size)
            self._fit = self._fit_standard

        self._n_updates = 0

        apprx_params_train = deepcopy(approximator_params)
        apprx_params_target = deepcopy(approximator_params)
        self.approximator = Regressor(approximator, **apprx_params_train)
        self.target_approximator = Regressor(approximator,
                                             n_models=self._n_approximators,
                                             **apprx_params_target)
        policy.set_q(self.approximator)

        if self._n_approximators == 1:
            self.target_approximator.set_weights(
                self.approximator.get_weights())
        else:
            for i in range(self._n_approximators):
                self.target_approximator[i].set_weights(
                    self.approximator.get_weights())

        self._add_save_attr(_fit_params='pickle',
                            _batch_size='primitive',
                            _n_approximators='primitive',
                            _clip_reward='primitive',
                            _target_update_frequency='primitive',
                            _replay_memory='mushroom',
                            _n_updates='primitive',
                            approximator='mushroom',
                            target_approximator='mushroom')

        super().__init__(mdp_info, policy)

    def fit(self, dataset):
        self._fit(dataset)

        self._n_updates += 1
        if self._n_updates % self._target_update_frequency == 0:
            self._update_target()

    def _fit_standard(self, dataset):
        self._replay_memory.add(dataset)
        if self._replay_memory.initialized:
            state, action, reward, next_state, absorbing, _ = \
                self._replay_memory.get(self._batch_size)

            if self._clip_reward:
                reward = np.clip(reward, -1, 1)

            q_next = self._next_q(next_state, absorbing)
            q = reward + self.mdp_info.gamma * q_next

            self.approximator.fit(state, action, q, **self._fit_params)

    def _fit_prioritized(self, dataset):
        self._replay_memory.add(
            dataset,
            np.ones(len(dataset)) * self._replay_memory.max_priority)
        if self._replay_memory.initialized:
            state, action, reward, next_state, absorbing, _, idxs, is_weight = \
                self._replay_memory.get(self._batch_size)

            if self._clip_reward:
                reward = np.clip(reward, -1, 1)

            q_next = self._next_q(next_state, absorbing)
            q = reward + self.mdp_info.gamma * q_next
            td_error = q - self.approximator.predict(state, action)

            self._replay_memory.update(td_error, idxs)

            self.approximator.fit(state,
                                  action,
                                  q,
                                  weights=is_weight,
                                  **self._fit_params)

    def _update_target(self):
        """
        Update the target network.

        """
        self.target_approximator.set_weights(self.approximator.get_weights())

    def _next_q(self, next_state, absorbing):
        """
        Args:
            next_state (np.ndarray): the states where next action has to be
                evaluated;
            absorbing (np.ndarray): the absorbing flag for the states in
                ``next_state``.

        Returns:
            Maximum action-value for each state in ``next_state``.

        """
        q = self.target_approximator.predict(next_state)
        if np.any(absorbing):
            q *= 1 - absorbing.reshape(-1, 1)

        return np.max(q, axis=1)

    def draw_action(self, state):
        action = super(DQN, self).draw_action(np.array(state))

        return action

    def _post_load(self):
        if isinstance(self._replay_memory, PrioritizedReplayMemory):
            self._fit = self._fit_prioritized
        else:
            self._fit = self._fit_standard

        self.policy.set_q(self.approximator)
예제 #8
0
class AbstractDQN(Agent):
    def __init__(self, mdp_info, policy, approximator, approximator_params,
                 batch_size, target_update_frequency,
                 replay_memory=None, initial_replay_size=500,
                 max_replay_size=5000, fit_params=None, clip_reward=False):
        """
        Constructor.

        Args:
            approximator (object): the approximator to use to fit the
               Q-function;
            approximator_params (dict): parameters of the approximator to
                build;
            batch_size ((int, Parameter)): the number of samples in a batch;
            target_update_frequency (int): the number of samples collected
                between each update of the target network;
            replay_memory ([ReplayMemory, PrioritizedReplayMemory], None): the
                object of the replay memory to use; if None, a default replay
                memory is created;
            initial_replay_size (int): the number of samples to collect before
                starting the learning;
            max_replay_size (int): the maximum number of samples in the replay
                memory;
            fit_params (dict, None): parameters of the fitting algorithm of the
                approximator;
            clip_reward (bool, False): whether to clip the reward or not.

        """
        self._fit_params = dict() if fit_params is None else fit_params

        self._batch_size = to_parameter(batch_size)
        self._clip_reward = clip_reward
        self._target_update_frequency = target_update_frequency

        if replay_memory is not None:
            self._replay_memory = replay_memory
            if isinstance(replay_memory, PrioritizedReplayMemory):
                self._fit = self._fit_prioritized
            else:
                self._fit = self._fit_standard
        else:
            self._replay_memory = ReplayMemory(initial_replay_size,
                                               max_replay_size)
            self._fit = self._fit_standard

        self._n_updates = 0

        apprx_params_train = deepcopy(approximator_params)
        apprx_params_target = deepcopy(approximator_params)

        self._initialize_regressors(approximator, apprx_params_train,
                                    apprx_params_target)
        policy.set_q(self.approximator)

        self._add_save_attr(
            _fit_params='pickle',
            _batch_size='mushroom',
            _n_approximators='primitive',
            _clip_reward='primitive',
            _target_update_frequency='primitive',
            _replay_memory='mushroom',
            _n_updates='primitive',
            approximator='mushroom',
            target_approximator='mushroom'
        )

        super().__init__(mdp_info, policy)

    def fit(self, dataset):
        self._fit(dataset)

        self._n_updates += 1
        if self._n_updates % self._target_update_frequency == 0:
            self._update_target()

    def _fit_standard(self, dataset, approximator=None):
        self._replay_memory.add(dataset)
        if self._replay_memory.initialized:
            state, action, reward, next_state, absorbing, _ = \
                self._replay_memory.get(self._batch_size())

            if self._clip_reward:
                reward = np.clip(reward, -1, 1)

            q_next = self._next_q(next_state, absorbing)
            q = reward + self.mdp_info.gamma * q_next

            if approximator is None:
                self.approximator.fit(state, action, q, **self._fit_params)
            else:
                approximator.fit(state, action, q, **self._fit_params)

    def _fit_prioritized(self, dataset, approximator=None):
        self._replay_memory.add(
            dataset, np.ones(len(dataset)) * self._replay_memory.max_priority)
        if self._replay_memory.initialized:
            state, action, reward, next_state, absorbing, _, idxs, is_weight = \
                self._replay_memory.get(self._batch_size())

            if self._clip_reward:
                reward = np.clip(reward, -1, 1)

            q_next = self._next_q(next_state, absorbing)
            q = reward + self.mdp_info.gamma * q_next
            td_error = q - self.approximator.predict(state, action)

            self._replay_memory.update(td_error, idxs)

            if approximator is None:
                self.approximator.fit(state, action, q, weights=is_weight,
                                      **self._fit_params)
            else:
                approximator.fit(state, action, q, weights=is_weight,
                                 **self._fit_params)

    def draw_action(self, state):
        action = super().draw_action(np.array(state))

        return action

    def _initialize_regressors(self, approximator, apprx_params_train,
                               apprx_params_target):
        self.approximator = Regressor(approximator, **apprx_params_train)
        self.target_approximator = Regressor(approximator,
                                             **apprx_params_target)
        self._update_target()

    def _update_target(self):
        """
        Update the target network.

        """
        self.target_approximator.set_weights(self.approximator.get_weights())

    def _next_q(self, next_state, absorbing):
        """
        Args:
            next_state (np.ndarray): the states where next action has to be
                evaluated;
            absorbing (np.ndarray): the absorbing flag for the states in
                ``next_state``.

        Returns:
            Maximum action-value for each state in ``next_state``.

        """
        raise NotImplementedError

    def _post_load(self):
        if isinstance(self._replay_memory, PrioritizedReplayMemory):
            self._fit = self._fit_prioritized
        else:
            self._fit = self._fit_standard

        self.policy.set_q(self.approximator)
예제 #9
0
def test_cmac_approximator():
    np.random.seed(1)

    # Generic regressor
    x = np.random.rand(1000, 2)

    k1 = np.random.rand(2)
    k2 = np.random.rand(2)

    y = np.array(
        [np.sin(x.dot(k1) * 2 * np.pi),
         np.sin(x.dot(k2) * 2 * np.pi)]).T

    tilings = Tiles.generate(10, [10, 10], np.zeros(2), np.ones(2))
    approximator = Regressor(CMAC,
                             tilings=tilings,
                             input_shape=(2, ),
                             output_shape=(2, ))

    approximator.fit(x, y)

    x = np.random.rand(2, 2)
    y_hat = approximator.predict(x)
    y_true = np.array(
        [np.sin(x.dot(k1) * 2 * np.pi),
         np.sin(x.dot(k2) * 2 * np.pi)]).T

    y_test = np.array([[-0.73787754, 0.90673493], [-0.94972964, -0.72380013]])

    assert np.allclose(y_hat, y_test)

    point = np.random.rand(2)
    derivative = approximator.diff(point)

    assert np.array_equal(np.sum(derivative, axis=0), np.ones(2) * 10)
    assert len(derivative) == approximator.weights_size

    old_weights = approximator.get_weights()
    approximator.set_weights(old_weights)
    new_weights = approximator.get_weights()

    assert np.array_equal(new_weights, old_weights)

    random_weights = np.random.randn(*old_weights.shape).astype(np.float32)
    approximator.set_weights(random_weights)
    random_weight_new = approximator.get_weights()

    assert np.array_equal(random_weights, random_weight_new)
    assert not np.any(np.equal(random_weights, old_weights))

    # Action regressor + Ensemble
    n_actions = 2
    s = np.random.rand(1000, 3)
    a = np.random.randint(n_actions, size=(1000, 1))
    q = np.random.rand(1000)

    tilings = Tiles.generate(10, [10, 10, 10], np.zeros(3), np.ones(3))
    approximator = Regressor(CMAC,
                             tilings=tilings,
                             input_shape=(3, ),
                             n_actions=n_actions,
                             n_models=5)

    approximator.fit(s, a, q)

    x_s = np.random.rand(2, 3)
    x_a = np.random.randint(n_actions, size=(2, 1))
    y = approximator.predict(x_s, x_a, prediction='mean')
    y_test = np.array([[0.10921918, 0.09923379]])
    assert np.allclose(y, y_test)

    y = approximator.predict(x_s, x_a, prediction='sum')
    y_test = np.array([0.54609592, 0.49616895])
    assert np.allclose(y, y_test)

    y = approximator.predict(x_s, x_a, prediction='min')
    y_test = np.array([[0.10921918, 0.09923379]])
    assert np.allclose(y, y_test)

    y = approximator.predict(x_s)
    y_test = np.array([[0.07606651, 0.10921918], [0.40698114, 0.09923379]])
    assert np.allclose(y, y_test)
def test_cmac_approximator():
    np.random.seed(1)

    # Generic regressor
    x = np.random.rand(1000, 2)

    k1 = np.random.rand(2)
    k2 = np.random.rand(2)

    y = np.array(
        [np.sin(x.dot(k1) * 2 * np.pi),
         np.sin(x.dot(k2) * 2 * np.pi)]).T

    tilings = Tiles.generate(10, [10, 10], np.zeros(2), np.ones(2))
    approximator = Regressor(CMAC,
                             tilings=tilings,
                             input_shape=(2, ),
                             output_shape=(2, ))

    approximator.fit(x, y)

    x = np.random.rand(2, 2)
    y_hat = approximator.predict(x)
    y_true = np.array(
        [np.sin(x.dot(k1) * 2 * np.pi),
         np.sin(x.dot(k2) * 2 * np.pi)]).T

    y_test = np.array([[-0.73581504, 0.90877225], [-0.95854488, -0.72429239]])

    assert np.allclose(y_hat, y_test)

    point = np.random.rand(2)
    derivative = approximator.diff(point)

    assert np.array_equal(np.sum(derivative, axis=0), np.ones(2) * 10)
    assert len(derivative) == approximator.weights_size

    old_weights = approximator.get_weights()
    approximator.set_weights(old_weights)
    new_weights = approximator.get_weights()

    assert np.array_equal(new_weights, old_weights)

    random_weights = np.random.randn(*old_weights.shape).astype(np.float32)
    approximator.set_weights(random_weights)
    random_weight_new = approximator.get_weights()

    assert np.array_equal(random_weights, random_weight_new)
    assert not np.any(np.equal(random_weights, old_weights))

    # Action regressor + Ensemble
    n_actions = 2
    s = np.random.rand(1000, 3)
    a = np.random.randint(n_actions, size=(1000, 1))
    q = np.random.rand(1000)

    tilings = Tiles.generate(10, [10, 10, 10], np.zeros(3), np.ones(3))
    approximator = Regressor(CMAC,
                             tilings=tilings,
                             input_shape=(3, ),
                             n_actions=n_actions,
                             n_models=5)

    approximator.fit(s, a, q)
    np.random.seed(2)
    x_s = np.random.rand(2, 3)
    x_a = np.random.randint(n_actions, size=(2, 1))
    y = approximator.predict(x_s, x_a, prediction='mean')
    y_test = np.array([[0.56235045, 0.25080909]])
    assert np.allclose(y, y_test)

    y = approximator.predict(x_s, x_a, prediction='sum')
    y_test = np.array([2.81175226, 1.25404543])
    assert np.allclose(y, y_test)

    y = approximator.predict(x_s, x_a, prediction='min')
    y_test = np.array([0.56235045, 0.25080909])
    assert np.allclose(y, y_test)

    y = approximator.predict(x_s)
    y_test = np.array([[0.10367145, 0.56235045], [0.05575822, 0.25080909]])
    assert np.allclose(y, y_test)