예제 #1
0
def make_predictions(): #We will make predictions for those experiments, which are already finished, but don't have the csv file with predictions
    experiments = projects.Project(Path(__file__).parent.parent).experiments()
    for exp in experiments:
        res_file = os.path.join(exp.path, exp.name() + '_result.csv')
        if exp.isCompleted() and not os.path.exists(res_file):
            preds = generic.parse(exp.path).predictions('test')
            preds.dump(res_file)
예제 #2
0
 def __init__(self,path,input_columns,output_columns,ctypes={},input_groups={},output_groups={}):
     self.cfg=generic.parse(path)
     path=os.path.dirname(os.path.dirname(path))
     self.cfg._projectDir=path
     self.input_columns=input_columns
     self.output_columns=output_columns
     self.image_path=[]
     self.ctypes=ctypes
     self.path=path
     self.input_groups=input_groups
     self.output_groups=output_groups
예제 #3
0
def translate(sentence: str):
    file_path = os.path.join(context.get_current_project_data_path(),
                             "rus.vocab")
    vocabulary = utils.load(file_path)
    preds = generic.parse('eng_to_ru').predictions(
        builtin_datasets.from_array([sentence], ['']))
    for item in preds:
        rootItem = item.rootItem()
        sentence = ''
        for indices in item.prediction:
            sentence = sentence + " " + vocabulary.i2w[np.argmax(indices)]
        print(rootItem.x + " " + sentence)
예제 #4
0
    def parse_config(self):
        extra = None
        if self.project is not None:
            if os.path.exists(self.project.commonPath()):
                extra = self.project.commonPath()

        if os.path.exists(self.getConfigYamlPath()):
            cfg = generic.parse(self.getConfigYamlPath(), extra)

        else:
            cfg = generic.parse(self.getConfigYamlConcretePath(), extra)
        cfg.gpus = self.gpus
        if self.allowResume:
            cfg.setAllowResume(self.allowResume)
        if self.project is not None:
            if os.path.exists(self.project.modulesPath()):
                for m in os.listdir(self.project.modulesPath()):
                    if ".py" in m:
                        cfg.imports.append(m[0:m.index(".py")])
            if os.path.exists(self.project.dataPath()):
                cfg.datasets_path = self.project.dataPath()
        return cfg
예제 #5
0
def make_predictions():
    experiments = projects.Project(Path(__file__).parent.parent).experiments()
    for exp in experiments:
        if exp.isCompleted():
            file_path=os.path.join(context.get_current_project_data_path(),"rus.vocab")
            vocabulary=utils.load(file_path)            
            preds = generic.parse(exp.path).predictions('test')
            for item in preds:
                rootItem = item.rootItem()
                sentence = ''
                for indices in item.prediction:
                    sentence = sentence + " " + vocabulary.i2w[np.argmax(indices)]                    
                print(rootItem.x + " " +  sentence)
예제 #6
0
 def blend(self, ds, w=0.5) -> DataSet:
     if isinstance(ds, str):
         from musket_core import generic
         return self.blend(generic.parse(ds).predictions(self.parent.name))
     return self._inner_blend(ds, w)
예제 #7
0
def make_predictions():
    preds = generic.parse("questions1").predictions('test')
    preds.dump('predictions.csv')
예제 #8
0
def make_predictions():
    preds = generic.parse("simpleCnn").predictions('Test')
    preds.dump('predictions_cnn.csv')
    preds = generic.parse("simpleRnn").predictions('Test')
    preds.dump('predictions_rnn.csv')